
Citation: Kuznetsov, A.; Frontoni, E.;

Romeo, L.; Poluyanenko, N.; Kandiy,

S.; Kuznetsova, K.; Beňová, E.
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Abstract: Nonlinear substitutions or S-boxes are important cryptographic primitives of modern
symmetric ciphers. They are designed to complicate the plaintext-ciphertext dependency. According
to modern ideas, the S-box should be bijective, have high nonlinearity and algebraic immunity, low
delta uniformity, and linear redundancy. These criteria directly affect the cryptographic strength
of ciphers, providing resistance to statistical, linear, algebraic, differential, and other cryptanalysis
techniques. Many researchers have used various heuristic search algorithms to generate random
S-boxes with high nonlinearity; however, the complexity of this task is still high. For example, the
best-known algorithm to generate a random 8-bit bijective S-box with nonlinearity 104 requires high
computational effort—more than 65,000 intermediate estimates or search iterations. In this article, we
explore a hill-climbing algorithm and optimize the heuristic search parameters. We show that the
complexity of generating S-boxes can be significantly reduced. To search for a random bijective S-box
with nonlinearity 104, only about 50,000 intermediate search iterations are required. In addition, we
generate cryptographically strong S-Boxes for which additional criteria are provided. We present
estimates of the complexity of the search and estimates of the probabilities of generating substitutions
with various cryptographic indicators. The extracted results demonstrate a significant improvement
in our approach compared to the state of the art in terms of providing linear non-redundancy,
nonlinearity, algebraic immunity, and delta uniformity.

Keywords: hill-climbing algorithm; heuristic function; mathematical optimization; bijective substitution;
local search

1. Introduction

Nonlinear substitutions (S-boxes) have been used for a long time in cryptography.
For example, in one of the basic works in cryptography, Claude Shannon pointed out
the use of substitutions and permutations [1]. Modern cryptographic algorithms make
extensive use of this concept. For instance, the AES standard, established by the US
National Institute of Standards and Technology (NIST), uses an 8-bit bijective S-box, which
is formed by a simple algebraic construction [2]. This algebraic simplicity is used to criticize
AES. It is assumed that there are effective algebraic attacks on AES [3–5], i.e., according to
modern ideas, S-boxes in a secure cipher should be random. At the same time, random
generation is computationally inefficient. For an 8-bit S-box, the set of possible solutions
is huge. It contains 28! > 10506 values. It is really difficult to find a target S-box (with
the required cryptographic indicators) [6–8]. For example, the nonlinearity of a randomly
chosen substitution rarely N(S) > 98 [7].
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Heuristic techniques are A good alternative to random generation [6,9–11]; instead of
brute force, heuristic algorithms use a limited subset of values. The number of these inter-
mediate estimates (search iterations) is used as a criterion for computational complexity.

Compared to random generation, heuristic techniques enable the finding of 8-bit
bijective S-boxes with nonlinearity N(S) = 104. However, the computational complexity of
the search remains quite high. The performed analysis shows that the best known heuristic
algorithm requires more than 65,000 intermediate estimates (search iterations).

It is worth noting that, according to modern concepts, a cryptographically strong S-box
must simultaneously satisfy several criteria, including being bijective, and having high
nonlinearity and algebraic immunity, low delta uniformity, and linear redundancy. If all
these criteria are taken into account, then the complexity of the search increases significantly.

Thus, a relevant task within the cryptography literature is to develop computationally
efficient techniques for generating cryptographically strong S-boxes.

In this article, we propose a Hill Climbing (HC) [12,13] optimization strategy to fill in
this gap. HC is one of the most effective local optimization algorithms (LSA), which is used
to solve various AI problems [14–17].

HC is an iterative algorithm that, at each step, tries to maximize (or minimize) the
objective function f (x), where x is a vector of continuous and/or discrete data. At each
iteration, HC changes one element in x and determines how it changes the value of inter-
mediate estimates. The iterative process continues until (1) there is no way to find such x,
to improve the heuristic value f (x) or (2) the target solution is reached. The found value
f (x) is the «local optimum» and the search is terminated.

Thus, the objective function f (x) has to interpret the cryptographic parameters of the
S-boxes in some (heuristic) way. Our task is to find a point x (to generate a target S-box), for
which there will be optimized heuristics f (x) and cryptographic performance. As target
indicators of cryptographically strong 8-bit S-boxes we propose:

• Bijectivity;
• Nonlinearity N(S) ≥ 104,
• Algebraic immunity AI(S) ≥ 3,
• Delta uniformity δ ≤ 8,
• Linear non-redundancy, i.e., the number of affine non-equivalent component Boolean

functions NnonLE(S) = 255.

The most difficult task is to generate highly nonlinear random substitutions. Appar-
ently, the value N(S) = 104 is the best-known result for random bijective S-boxes and our
main goal is this target result.

We consider the cost function based on Walsh–Hadamard Spectra (WHS heuristic
function) [18] as one of the first and most studied heuristic functions f (x) used to generate
S-boxes [19–21]. Various works provide estimates of the efficiency of local search using
WHS [10,19,20]. Although most sources [10,20] point out more efficient heuristics (in
combination with other search algorithms), we demonstrated the low generalizability of
these approaches. Several experiments show that with the WHS recommend parameters, it
is possible to significantly increase the efficiency of local search. We present the results of the
comparison and show that HC with WHS function can be more effective than many current
techniques. Actually, we manage to obtain the least number of iterations (intermediate
estimates) to generate an S-box with N(S) ≥ 104. We also show that we can generate target
S-boxes (with indicators: bijectivity, N(S) ≥ 104, AI(S) ≥ 3, δ ≤ 8, NnonLE(S) = 255)
faster (i.e., with less number of search iterations).

The article is structured as follows. Section 2 provides a brief review of the literature
sources with the analysis of the obtained results. Section 3 presents the main notation and
background of the research. Section 4 describes the proposed heuristic search methodology.
Section 5 presents the main results obtained by the proposed approach. Finally, Section 6
provide a discussion about the results and our conclusions. In the list of references, we
provide a link to the GitHub repository, where you can find the developed algorithms. The
code allows independently reproducing and verifying our results.
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2. Related Works

Many modern works are devoted to the problems of finding new ways to improve the
efficiency of modern information protection systems, including new ways to generate S-
boxes [22–24]. Many of them are based on advanced AI techniques, evolutionary algorithms,
chaos, heuristic search, etc. [25–28].

Heuristic algorithms do not use brute force, but select only a subset of solutions
(intermediate estimates) [13,29,30]. At the same time, intuitively introduced functions
(heuristics) are used to rank decision alternatives [31,32].

Usually, heuristic techniques in AI are used to quickly find a local optimum, i.e., they
make it possible to find an acceptable (target) solution to the optimization problem in
a short time and at reasonable computational costs. For example, the article [7] studies
the HC algorithm. The authors have significantly reduced the difficulty of finding target
S-boxes; however, the authors did not obtain a nonlinearity value of N(S) ≥ 100.

In [6,18,33], the authors present the simulated annealing method (SA). They have
reduced the search time and formed an S-box with a nonlinearity value of N(S) = 102. In
addition, the article [18] proposed a new heuristic function based on Walsh–Hadamard
Spectra (the WHS cost function), which is used in many other later works.

The works [19,21,34] present the genetic algorithms (GA) and the immune algorithms
(IA) for solving this task. In [19], the authors proposed a new method that combines
a special version of the genetic method with the tree search, the name of the method
is GaT («Genetic and Tree»). The author obtained an S-box with a nonlinearity value
of N(S) = 104. The WHS function was also used as a heuristic, for which the author
has conducted a large study to select the best parameters. In all subsequent works, the
parameters of the WHS heuristic from [21] are mainly used. However, the average number
of iterations (intermediate WHS estimates) required to generate a S-box with N(S) = 104
using GaT is still big (more than 3 million) [19,35].

Subsequent works have focused on finding the best heuristics. The work [20] proposes
a new heuristic PCF (Picek Cost Function). The authors reviewed several heuristic algo-
rithms (GA, GaT, LSA) and compared their performance in combination with the WHS
and PCF functions. In almost all their comparisons, algorithms with the new PCF heuristic
turned out to be more efficient (it should be noted that WHS was used with parameters
from [19]). The best result achieved in [20] was (on average) 167,451 iterations (intermediate
PCF estimates) to create an S-box with N(S) = 104. The GaT algorithm turned out to be
the best again.

The recent papers [10,35] propose a new heuristic WCF (Cost Function of the content
of the Walsh–Hadamard spectrum). The authors combined WCF with three algorithms
(LSA, GaT, HC) and compared the results with respect to [20]. It turned out that the
new WCF heuristic significantly speeds up the search for a S-box with N(S) = 104. For
instance, for GaT, the average number of iterations (intermediate WCF estimates) decreased
to 116,266 [10]. However, the improvement of the HC algorithm is even more interesting.
In combination with the new WCF function, it turned out to be the fastest search algorithm,
the average number of iterations (number of evaluations) was reduced to 70,596 [10]. In [35],
the authors report an even greater improvement. In particular, the average number of
iterations (number of estimates) for the HC algorithm is reduced to 65,933.

The logical conclusion is that the choice of the cost function significantly affects the
efficiency of the search. This brief analysis of the related works clearly confirms this
reasoning. Considered in 1998 [7], the HC algorithm turned out to be more efficient than
many modern algorithms [10,35]. In this article, we show that the WHS cost function
proposed in [18] is also very efficient.

We assumed that heuristic parameter optimization has to be performed for each
heuristic algorithm separately. Till now, WHS has been optimized for SA in [6,18] and for
GaT in [19]. Differently from the other state-of-the-art research in this paper, we present our
own interpretation of the HC algorithm. In particular, we optimize the WHS parameters



Electronics 2023, 12, 2338 4 of 18

for the HC algorithm and estimate the computational complexity of generating the S-box
with N(S) = 104.

Our experiments show that the optimized WHS parameters applied to the HC al-
gorithm enable the obtaining of the smallest average number of iterations (number of
estimates). We need to perform an average of 50,265 iterations to generate the S-box with
N(S) = 104. For us, this is the best-known result to date. In addition, we show that our
technique makes it possible to generate target S-boxes with additionally introduced cryp-
tographic indicators (bijectivity, N(S) ≥ 104, AI(S) ≥ 3, δ ≤ 8, NnonLE(S) = 255). Such
cryptographically strong S-boxes are currently integrated and used in modern symmetric
ciphers [36–39].

3. Background

The main object of research in our work is 8-bit substitution. Schematically, it can be
represented as a block (S-box) with 8 binary inputs x0, x1, x2, . . . , x7 and 8 binary outputs
y0, y1, y2, . . . , y7 (Figure 1).
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Thus, an 8-bit S-box implements a Boolean mapping S : {0, 1}8 → {0, 1}8 , which is
given by a system of algebraic equations (coordinate Boolean functions) over a binary field:

f0(x0, x1, . . . , x7) = y0,
f2(x0, x1, . . . , x7) = y1,
. . .
f7(x0, x1, . . . , x7) = y7.

(1)

For compact notation, we use the definition of (8, 8)—function F(x) = ( f1, f2, . . . , f8)
(Boolean function with several outputs) [40].

A bijective substitution (S-box) can be specified as a vector of 256 non-repeating 8-bit
integers, where the element’s position is given by x = (x0, x1, x2, . . . , x7), and the element’s
value is given by y = F(x).

The 8-bit S-boxes are widely used in modern cryptography; for example, they are
used in symmetric ciphers to complicate the functional dependence of plaintext and cipher-
text [41]. Some cryptographic indicators of ciphers are directly determined by indicators of
S-boxes [2].

Let us consider the most important S-boxes indicators used in this work.
The nonlinearity N(S) of the substitution is calculated as the minimum nonlinearity

over the set of nonlinearities of coordinate Boolean functions and all their linear combina-
tions (see, for example, Definition 1 in [40]):

N(S) = min
v∈{0,1}8\{0}8

{N(v · F(x))} (2)

The nonlinearity of a Boolean function f (x0, x1, . . . , x7) is defined in terms of the
Hamming distance between its outputs and the outputs of all affine functions. This is
equivalent to

N( f ) =
1
2
(28 −WHTmax),



Electronics 2023, 12, 2338 5 of 18

where WHTmax is the maximum absolute value in the Walsh–Hadamard spectrum (see, for
example, (5) in [40]):

WHTmax = max
u,v∈{0,1}8\{0}8

|WHT(v · F(x), u)|,

WHT( f (x), u) = ∑
x∈{0,1}8

(−1) f (x)⊕u·x.

The nonlinearity of S-boxes is the most important performance indicator, because
it determines the resistance to linear cryptanalysis [42,43]. A safe substitution has to be
approximated with equal probability by linear relations of the form:

u · x = v · F(x), u, v ∈ {0, 1}8\{0}8. (3)

In practice, this means that we can count how many times on the entire set
u, v ∈ {0, 1}8\{0}8 the equality (3) is true, i.e., make a so-called linear approximation

table (LAT) from values

LAT(u, v) = #
{

x ∈ {0, 1}8
∣∣∣u · x = v · F(x)

}
.

Then, for the resistance to linear cryptanalysis the value∣∣∣LAT(u, v)− 27
∣∣∣

should be as small as possible for all u, v ∈ {0, 1}8\{0}8.
Maximum value in LAT

maxLAT = max
u,v∈{0,1}8\{0}8

∣∣∣LAT(u, v)− 27
∣∣∣ (4)

is related to the nonlinearity (2) by the formula:

N(S) = 27 −maxLAT. (5)

The largest known nonlinearity result for a bijective S-box is given by the algebraic
construction of the S-box of the AES cipher N(S) = 112 [2]. At the same time, such S-boxes
can lead to efficient algebraic cryptanalysis [3–5]. We consider random (non-algebraic)
S-boxes, which are formed by heuristic techniques of mathematical optimization.

Most of the works on heuristic methods for generating S-boxes use the indicator N(S)
as the main performance criterion. At the same time, many authors proposed different
heuristics. For example, the authors of [18] proposes the WHS cost function,

WHS = ∑
v∈{0,1}8\{0}8

∑
u∈{0,1}8

||WHT(v · F(x), u)|−X |R, (6)

where X and R are parameters with real values.
Many related works use the WHS feature. For example, the article [19] presents a large

study on heuristic search optimization using GaT and WHS. The best results are achieved
with parameters X = 21, R = 7. At the same time, the GaT algorithm requires an average of
3.239 million iterations (intermediate WHS estimates) to form an S-box with a nonlinearity
value of 104. This result is practically confirmed in a recent paper [35], where the average
number of iterations is 3,849,881.

Another example of the PCF heuristic was proposed in [20]. Denote the vector of
absolute values |WHT(v · F(x), u)| by H(S), and the i-th position of the vector indicates
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the number of coefficients WHT with the value |4i|, k is the maximum (last) position in this
vector with a non-zero value. Then, the cost function PCF is given by

PCF =
Np

∑
i=1

2−i H(S)k−i, (7)

where Np is the heuristic parameter (value recommended by the authors is Np = 10).
It is shown in [20] that the PCF function allows a much more efficient implementation

of searching target S-boxes. For example, to form an S-box with a nonlinearity of 104, the
GaT algorithm needs 167,451 iterations (intermediate PCF estimates), on average. This
greatly improves the result from [19] for the WHS function.

Recent papers [10,35] reported significant progress in the fast S-box generation of with
N(S) = 104. The best result in [35] is achieved using the new WCF cost function

WCF = ∑
v∈{0,1}8

∑
u∈{0,1}8

∏
z∈C
||WHT(v · F(x), u)|−z|, (8)

where C = {0, 4, . . . , 32}.
To form an S-box with a nonlinearity value of 104, the GaT algorithm needs 116,266 iter-

ations (intermediate WCF estimates) [10]. The HC algorithm requires 65,933 iterations [35]
to form such an S-box (the work [10] reported about 70,596 iterations). For us, this is the
best known result, which significantly exceeds the previous one from [19,20].

Consider the system of algebraic Equation (1) as a set of Boolean polynomials

y0 − f0(x0, x1, . . . , x7), y1 − f1(x0, x1, . . . , x7), . . . , y7 − f7(x0, x1, . . . , x7) (9)

in a ring K[x0, x1, . . . , x7, y0, y1, . . . , y7] of variables x0, x1, . . . , x7, y0, y1, . . . , y7 with coeffi-
cients over a binary field K.

Consider the ideal I, generated by polynomials (9):

I(S) = {(y0 − f0) · r0 + (y1 − f1) · r1 + . . . + (y7 − f7) · r7},

where
r0, r1, . . . , r7 ∈ K[x0, x1, . . . , x7, y0, y1, . . . , y7].

The algebraic immunity of S-box is defined as the minimum degree of a polynomial P
from the ideal I(S) [44]:

AI(S) = min{deg(P), P ∈ I(S) C GF(2)[x1, x2, . . . , xn, y1, y2, . . . , ym]}, (10)

and the minimal reduced Gröbner basis of the ideal I(S) under degree reverse lexico-
graphic order (degrevlex) contains a linear basis of polynomials P from I(S), such that
AI(S) = deg(P).

To calculate the algebraic immunity (10), it suffices to construct a minimally reduced
Gröbner basis of the ideal I(S), given by Equation (9) and find a polynomial of the minimum
degree among the elements of this basis. The value of minimum degree is the desired
value of algebraic immunity AI(S). For an 8-bit S-box, you can also use other calculation
algorithms, for example, from [45] or [36,46].

The concept of algebraic S-box immunity is closely related to algebraic cryptanalysis of
symmetric ciphers [3–5]. For an S-box S : {0, 1}8 → {0, 1}8 ; to be safe, the required value
is AI(S) = 3.

The indicator AI(S) can also be used as a characteristic of S-box randomness. For a
randomly generated S-box S : {0, 1}8 → {0, 1}8 we almost always have a value AI(S) = 3.
The algebraic structure of such an S-box is described by a complex system of equations,
and then the cipher will be resistant to algebraic cryptanalysis. For S-boxes with a simple



Electronics 2023, 12, 2338 7 of 18

algebraic structure, we have a low value AI(S) = 2 (for example, S-box AES and some
other ciphers [36,46]). Such ciphers are potentially vulnerable to algebraic attacks.

It should be noted that some published results on the generation of random S-boxes
do not take into account the indicator AI(S). For example, in [21] there are examples of
S-boxes with N(S) > 104. A direct check shows that AI(S) = 2. In practice, this means
that such S-boxes are described by a simple system of equations, i.e., cannot be random. A
simple algebraic structure can potentially lead to the vulnerability to algebraic attack [44].

Another important cryptographic indicator of S-boxes is delta uniformity [47,48]. Delta
uniformity (the maximum value of the difference table) is used as an indicator of resistance
to differential cryptanalysis. It characterizes the maximum probability of the appearance
of a difference ∆y = F(x)⊕ F(x⊕ α) = β at the output of the S-box (see Figure 1) with an
input difference ∆x = x⊕ α:

δ = max
α∈{0,1}8\{0}8

max
β∈{0,1}8

| { x|F(x)⊕ F(x⊕ α) = β} |. (11)

The value δ has to be as small as possible. For example, the best estimate of delta-
uniformity for the algebraic S-box cipher AES is δ = 4. In our studies, the target S-boxes
must be random and satisfy the condition δ ≤ 8.

The concept of linear redundancy (LR) was introduced in [49,50]. An S-box has LR if
there are at least two affine equivalent functions on the entire set v · F(x), v ∈ {0, 1}8\{0}8.
For example, for the algebraic S-box cipher AES, all 255 component functions v · F(x) are
affinely equivalent to each other. Such an LR is called complete [21]. The presence of LR
indicates the non-randomness of S-boxes. To quantify the LR S-box, the number of affine
non-equivalent component Boolean functions is usually given by NnonLE(S).

To date, there are no cryptographic attacks using the LR property. However, it is
assumed that the generated S-boxes does not have to contain affine equivalent Boolean
functions v · F(x), i.e., NnonLE(S) = 255.

The presence of a fixed point (FP) in the S-box corresponds to the case F(x) = x [21,51].
This case of identity transformation can be supplemented with an inverse fixed point
F(x) = x⊕ {1}8. For cryptographic applications, the S-box should not contain such points
(this condition can be easily ensured by performing an affine transformation [52]). Thus, it
is required that the number of fixed points be NFP(S) = 0.

4. Methods

We explore the HC algorithm, which is used to solve various mathematical optimiza-
tion problems [14–17]. For example, in [10] there is the pseudocode of one of the versions
of the HC algorithm for generating S-boxes (see Algorithm 1).

The pseudocode uses the nonlinear substitution definition N(S) introduced above.
The value of the cost function (heuristic) is denoted by CF(S).
Random substitution S is used as initial data. The Fisher–Yates method is usually used

to form it [53,54].
Our extension and implementation of the HC algorithm formalize three new exit

conditions:

• Reaching the limit number of solutions Ne = 106;
• Formation of the target S-box with the required nonlinearity N(S) ≥ 104;
• Achievement of the maximum number of consecutive unsuccessful cycles K = 105. By

an unsuccessful cycle we mean the case CF(S′) > CF(S).

Thus, the pseudocode of the HC algorithm implemented by us (see Algorithm 2)
is different from [10]. In fact, we eliminated the nonlinearity estimate at step 3 of the
algorithm, i.e., we accept S′ for all CF(S′) ≤ CF(S). The rationale behind that choice lies
to significantly reduce the number of iterations; reduce the computational complexity of
generating S-boxes with N(S) ≥ 104.
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Algorithm 1: The Hill Climbing Algorithm [10]

Input: a random substitution S, the number of solution evaluations Ne;
While Ne > 0 do:

S′ ← S ;
Select at random two different positions i and j and swap the outputs on S′ corresponding to
i and j;

if N(S′) > N(S) or (N(S′) = N(S) and CF(S′) < CF(S)) then
S← S′ ;

Ne = Ne− 1;
Return S.

Algorithm 2: The Implemented Hill Climbing Algorithm

Input:
a random substitution S;
the number of solution evaluations Ne = 106;
the nonlinearity target S-box N(S) ≥ 104;
the maximum number of consecutive unsuccessful cycles N f r = 105;

k← 0 ;
While (Ne > 0) and (N(S) < 104) and (k < N f r) do:

S′ ← S ;
Select at random two different positions i and j and swap the outputs on S′ corresponding to
i and j;

if CF(S′) ≤ CF(S) then
S← S′ , k← 0 ;
else
k = k + 1;
Ne = Ne− 1;

Return S.

In our research, we have focused on the WHS cost function, i.e., values CF(S′) and
CF(S) were calculated by Formula (6).

The second part of our research consisted in introducing additional requirements
for S-boxes cryptographic indicators. In addition to the requirement of nonlinearity
N(S) ≥ 104 we also introduce restrictions on other indicators, algebraic immunity
AI(S) = 3, delta uniformity δ ≤ 8, linear non-redundancy (NnonLE(S) = 255), and
no fixed points (NFP(S) = 0).

Then, we can rewrite the condition for executing the while loop in the Algorithm 2:

«(Ne > 0 ) and (N(S) < 104) and (AI(S) < 3) and

(δ > 8) and (NnonLE(S) < 255) and (k < N f r )».

The condition (NFP(S) > 0) is not used in the search algorithm and we remove fixed
points by the affine transformations after finding the target S-box (bijectivity, N(S) ≥ 104,
AI(S) ≥ 3, δ ≤ 8, and NnonLE(S) = 255).

5. Results

We conducted several trial runs of the algorithm with different WHS parameters. In
particular, for the entire range of parameters X and R from [18] we have never been able to
form the target S-box with N(S) ≥ 104. At the same time, S-boxes with N(S) ≥ 102 are
formed fairly quickly. Examples of changes (tracks) of nonlinearity N(S) and values of cost
functions CF(S) for different values of the WHS parameters are shown in Figures 2–4:

• The number of iterations NI is marked along the abscissa;
• On the y-axis (on the left) the value of the WHS cost function CF(S) is marked;
• The value N(S) is marked on the y-axis (on the right).
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We review the operation of the HC algorithm (see Algorithm 2) at each iteration and
calculate the values of WHS CF(S) and nonlinearity N(S). Each of the figures shows two
examples (marked with a different color) of iterative change (track) of the cost function
CF(S) and nonlinearity N(S). The values of CF(S) and N(S) at each iteration correspond
to the points on the diagram. For convenience of perception, these points are connected
by lines.

In [18], there were the values X from the set {−4,−3,−2,−1, 0, 1, 2, 3, 4} and R = 3.
On Figures 2–4 we give tracks for parameters:

• R = 3, X = −4;
• R = 3, X = 0;
• R = 3, X = 4.

Different colors show different tracks.
As can be seen from the examples, the value of the WHS heuristic gradually decreases

(on the graphs, only improving positions are marked, i.e., only cases when the condition
CF(S′) ≤ CF(S) is true at step 3 of the algorithm). In this case, the value of the nonlinearity
generally increases. Nevertheless, the decrease in the cost function can lead to the nonlin-
earity decrease in some cases. This is a natural process for local optimization algorithms.

To optimize the parameters X and R in (6), we carried out extensive experimental
studies, following the example of [19]. We used the HC algorithm instead of GaT from [19],
as the search algorithm (see Algorithm 2).

The research results are shown in Table 1. For each combination of parameters X and
R we give the number of iterations of the HC algorithm that were required to generate
an S-box with N(S) = 104. All values were obtained by averaging over 100 runs of the
algorithm. The “–” symbol denotes cases where the target S-box was found in less than
50% of launches.

The results from Table 1 are graphically reflected in Figure 5. For ease of perception,
different ranges of values are shown in color.
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The obtained results show that when choosing R = 12 and X = 0 for the heuristic
function (6), the best results are achieved in terms of the average number of iterations
(intermediate estimates) for the HC algorithm. Compared to the best result published
in [35], we observe a reduction in the number of iterations by more than 20%. On average,
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the HC algorithm with optimized parameters WHS (R = 12 and X = 0) needs to perform
50,265 iterations.

Table 1. The average number of iterations NI that were performed to find the S-box with N(S) = 104,
using the WHS function.

X

R 28 24 20 16 12 8 4 0

5 – – – – – – – –
6 – – – 76,407 74,028 131,640 200,386 –
7 – – – 63,123 61,182 88,677 119,959 130,057
8 – – 135,248 54,553 61,261 63,599 67,845 75,202
9 – – 97,632 52,332 52,829 58,811 62,225 68,247

10 – – 82,720 60,552 53,835 54,412 52,746 59,391
11 – – 86,567 77,219 55,569 55,230 51,278 54,607
12 – – 120,302 80,965 64,079 54,808 51,477 50,265
13 – – 132,661 108,804 74,352 64,675 56,544 54,004
14 – – 163,762 135,713 97,179 75,484 62,673 58,345
15 – – 181,318 127,413 113,160 80,836 74,119 63,903
16 – – – 164,523 126,476 98,593 86,159 61,689
17 – – – – 127,581 110,609 95,163 74,467
18 – – – – 155,198 134,842 107,553 82,044

R −4 −8 −12 −16 −20 −24 −28 −32

5 – – – – – – – –
6 – – – – – – – –
7 185,806 184,416 – – – – – –
8 129,162 156,697 – – – – – –
9 92,074 100,506 124,512 – – – – –

10 61,968 76,063 87,195 108,244 134,658 151,218 148,705 –
11 59,183 65,964 76,724 84,920 93,532 121,572 144,282 138,456
12 57,436 52,491 61,249 64,744 76,193 88,271 108,969 114,841
13 52,490 57,945 50,326 58,004 66,747 69,984 86,396 90,622
14 52,632 53,320 54,406 53,227 62,222 67,536 74,931 77,978
15 57,090 54,603 54,067 53,737 55,952 56,868 53,962 70,220
16 62,064 62,749 57,505 50,798 54,547 53,964 57,724 60,717
17 66,137 64,422 57,958 51,717 53,741 57,006 55,372 63,607
18 70,148 61,668 55,114 57,795 54,358 53,199 51,289 53,015

It is worth noting that for our version of the HC algorithm, there is a range of values
of parameters X and R, for which close values of computational complexity are observed.
These values of the X and R parameters are highlighted in Table 1. For each combination
of these parameters, we have the smallest average number of iterations compared to the
best result known to date from [31]. To compare the computational complexity of different
methods for generating 8-bit bijective S-boxes with N(S) = 104 we present Table 2.

For our results, Table 2 also shows the confidence intervals calculated for a statistical
significance level of α = 0.05. Practically, this means that in 95% of cases the number of
iterations required to generate S-boxes will be in the specified interval. As can be seen from
the above results, our optimization of the HC algorithm compared to the best-known result
allows us to reduce the average number of iterations by more than 20%.

In the last few years, many papers in the field of S-boxes generation have been
published, e.g., [24–27,55]. In these papers, the authors estimate the average value of
nonlinearity over all coordinate Boolean functions (1). However, the nonlinearity of S-
boxes calculated by formula (2) is usually not high. For example, in [27], the minimum
nonlinearity of the two generated S-boxes is 98 and 100. Two examples in [25] are also
given, with minimum nonlinearity of 96 and 100. The paper [55] gives an estimate of the
linear approximation probability of 0.125. This means that the maximum value in LAT
calculated by Formula (4) is 32, whence, by Formula (5) we have a non-linearity of 96. In



Electronics 2023, 12, 2338 12 of 18

our comparison in Table 2, we present only the results with minimum (for all component
Boolean functions) nonlinearity, i.e., for N(S) = 104.

Table 2. Comparison of the computational complexity of generating 8-bit bijective S-boxes with
N(S) = 104.

Literary Source Generation Method Cost Function, Parameters Generation Complexity
(Average Number of Iterations)

[19] GaT WHS, X = 21 and R = 7 3,239,000

[20]
GA PCF, Np = 10 741,371
LSA PCF, Np = 10 172,280
GaT PCF, Np = 10 167,451

[10]
LSA WCF 149,539
GaT WCF 116,266
HC WCF 70,596

[35]

GaT WHS, X = 21 and R = 7 3,849,881
GA PCF, Np = 10 741,371
LSA PCF, Np = 10 172,280
GaT PCF, Np = 10 167,451
LSA WCF 89,460
HC WCF 65,933

Our work HC algorithm (see Algorithm 2)

WHS, X = 0 and R = 12 50,265 ± 4007
WHS, X = 4 and R = 11 51,278 ± 5565
WHS, X = 4 and R = 12 51,477 ± 6009

WHS, X = −16 and R = 16 50,798 ± 4056
WHS, X = −16 and R = 17 51,717 ± 5062
WHS, X = −28 and R = 18 51,289 ± 4072

Table 3 shows the results of generating target S-boxes with additionally introduced
cryptographic indicators. In addition to the indicator N(S), there are also the results
of forming target S-boxes, that correspond to the additionally introduced criteria. All
calculations were carried out with R =12 and X = 0. We performed 100 runs for each set
of parameters.

Table 3 uses the following notation:

• kmin is the minimum number of iterations performed by the search algorithm out of
all 100 runs, provided that the target S-box is found;

• kmax is the maximum number of iterations performed by the search algorithm out of
all 100 runs, provided that the target S-box is found;

• kaver is the average number of iterations performed by the search algorithm, provided
that the target S-box is found;

• kN=104 is the average number of iterations to find a bijective S-boxes with N(S) = 104;
• kadd = kaver − kN=104 is the average number of additionally performed iterations for

the search algorithm after finding the first bijective S-box with N(S) = 104;
• krej is the average number of the rejected iterations with the additional criteria, i.e.,

after finding the bijective S-box with N(S) = 104, but this S-box does not correspond
to the additional criteria.

As we can see from the results shown in Table 3, the probability of finding the target S-
box with the required parameters is high. In our experiments, the probability of generating
bijective S-boxes (with parameters N(S) ≥ 104, AI(S) = 3, δ ≤ 8, NnonLE(S) = 255, and
NFP(S) = 0) is ≈83%.

The most expensive (in terms of number of iterations) additional parameter is the
condition for delta uniformity δ ≤ 8. This criteria increases the average required number
of iterations to find the target S-box on average by ≈ 50%. Moreover, the scatter is quite
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significant, from immediately found to several hundred thousand additional iterations (in
this case, up to several hundred found bijective S-boxes with N(S) = 104) are rejected.

Table 3. Results of generating target S-boxes with additionally introduced cryptographic indicators.

Search Criteria Number of
Target S-Boxes kmin kmax kaver kN=104 kadd krej

bijectivity, N(S) ≥ 104,
AI(S) ≥ 3 99 14,916 123,800 52,936 52,928 8 0

bijectivity, N(S) ≥ 104,
δ ≤ 8 95 24,715 292,866 80,690 53,385 27,305 19

bijectivity, N(S) ≥ 104,
NFP(S) = 0

91
(100 not considering

NFP(S) = 0)
10,771 103,924 50,864 – – –

bijectivity, N(S) ≥ 104,
NnonLE(S) = 255,

NFP(S) = 0

87
(100 not considering

NFP(S) = 0)
19,676 121,638 54,690 54,688 2 0

bijectivity, N(S) ≥ 104,
δ ≤ 8, AI(S) ≥ 3,

NFP(S) = 0

80
(94 not considering

NFP(S) = 0)
26,333 230,516 81,380 51,589 29,791 12

bijectivity, N(S) ≥ 104,
δ ≤ 8, AI(S) ≥ 3,

NnonLE(S) = 255,
NFP(S) = 0

83
(98 not considering

NFP(S) = 0)
15,460 399,229 90,452 54,803 35,649 30

All found target S-boxes correspond to the criteria AI(S) ≥ 3 and NnonLE(S) = 255.
Thus, we can conclude that the introduction of these two additional parameters does not
affect the performance of the suggested search algorithm.

As it was mentioned earlier, after finding the target S-box, we perform an affine
transformation in order to fulfill the criteria NFP(S) = 0. About 90% of cases were
successful in finding an affine transformation of the target S-box that does not contain
fixed points.

It should be clarified that a small number of kadd with krej = 0 is formed due to the
multi-threading of our software implementation. When calculating the parameters of the
target S-box found by one thread, the other thread carries out some more (1–12, depending
on the set of checked parameters) iterations, which are also counted in the total number.
There are no such anomalies if you run the search algorithm in one thread.

As can be seen from the above results, the proposed optimization of the WHS heuristic
allows using the HC algorithm (Algorithm 2) to generate target S-boxes with addition-
ally introduced cryptographic indicators (bijectivity, N(S) ≥ 104, AI(S) ≥ 3, δ ≤ 8,
NnonLE(S) = 255, and NFP(S) = 0) for 90 452 iterations, on average. The probability of
finding a target S-box with only one run of the algorithm is greater than 80%.

6. Conclusions

In this paper, we have studied algorithms for heuristic search for nonlinear substitu-
tions of symmetric ciphers. We proposed the integration of the HC algorithm for solving
this task and we studied the cost function WHS based on Walsh–Hadamard Spectra. Our
goal was to develop computationally efficient techniques for generating cryptographically
strong S-boxes (bijective substitutions with high nonlinearity and algebraic immunity, low
delta uniformity, and linear redundancy).

Our research consisted of optimizing the WHS objective function (heuristic) in the
context of the local optimization algorithm HC. We managed to reduce the computational
complexity of generating the S-box with N(S) = 104 more than 20% compared to the
best known result from [35]. Most interesting in this result is the combination of search
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algorithm (HC) and heuristic function (WHS). These are well-known and thoroughly
studied mathematical objects [10,18–21,35]. Until now, it was believed that the optimal
parameters for WHS were X = 21, R = 7. These values were obtained while selecting the
parameters during the optimization of the GaT algorithm in [19]. However, as it turned
out, these parameters are far from optimal when using the HC algorithm (see Algorithm 2).
In our experiments, the parameters (X = 0, R = 12) are optimal. In other words, we
believe that the optimization of each cost function should be carried out separately for
each mathematical optimization algorithm; our results clearly confirm it. This opens up
significant prospects for the study of various heuristics in combination with the most
efficient mathematical optimization algorithms.

The second important result of this work is that we were able to quickly generate
target S-boxes with additionally introduced cryptographic indicators. In addition to the
nonlinearity (N(S) ≥ 104), we introduced additional restrictions to algebraic immunity
(AI(S) ≥ 3), delta uniformity (δ ≤ 8), linear non-redundancy (NnonLE(S) = 255), and
the absence of fixed points (NFP(S) = 0). The algorithm HC (see Algorithm 2) and the
heuristic function WHS successfully coped with the task of generating such nonlinear
substitutions [38,39]. These results are relevant because most modern symmetric crypto-
graphic algorithms use such substitutions. We give some examples of the formed S-box in
Appendix A.

Our software implementations for generating target S-boxes and reproducing all
results are available in the public domain on GitHub repository [56]. We hope this will
facilitate the reproducibility and independent verification of our results.
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Appendix A Examples of Bijective S-Boxes in Hexadecimal Notation

(With parameters N(S) = 104, AI(S) = 3, δ = 8, NnonLE(S) = 255, NFP(S) = 0)
S-box1 =
{E5, D3, 17, 74, EA, 0C, 33, 3B, 79, 56, EC, 7B, E3, 51, 59, A2,
16, E0, 76, D8, CD, 6F, E4, DD, 7F, E2, 9F, 73, 67, 01, 61, 5E,
FE, 91, B2, 58, 05, BD, 86, D1, DB, FC, 92, C2, AE, 42, C8, 1A,
46, D0, B3, 57, 2B, AD, 21, C0, B6, 45, 09, A5, AC, 28, 22, 39,
88, 71, 1D, 5D, 0A, 4C, 53, 90, A0, E9, 8B, 8A, 31, 20, 8C, 8D,
26, 35, 06, 27, 49, 13, F6, 40, C3, 70, 68, 9B, 60, C7, CE, 0B,
E1, 64, 77, A6, 52, 98, 4D, 18, 47, 0F, D5, 8E, 94, 5A, 4E, 32,
38, F3, 3C, 5C, 2D, ED, A3, DC, CC, F7, 03, 4F, 54, 8F, 07, 65,
04, 97, 63, 41, EF, 15, 85, 4B, 96, 78, 7A, 75, 00, D2, 10, 48,
95, DF, 3D, F1, F5, 0E, F9, 34, F0, BE, 14, C9, 9E, BF, CB, 5B,
A1, D9, FB, FD, AB, 5F, 80, 6A, 62, 36, B9, A4, C6, B1, 87, 12,
99, 72, 7C, C4, 7E, BA, DE, 19, EE, 0D, AF, F2, D6, E7, D7, 3E,
50, 69, CA, 6E, BC, B8, 93, 4A, A7, 1C, 37, 89, 7D, 6D, 2C, 25,
9D, B7, 3A, 9C, 6C, 29, 08, F4, FF, 30, 2A, A9, 43, 84, CF, FA,
3F, 1B, EB, AA, 82, 24, 81, 44, 23, 2F, C1, B5, 66, 83, DA, D4,
BB, 1E, 1F, B4, E8, 55, 9A, 02, B0, E6, A8, 2E, C5, 11, 6B, F8};
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S-box2 =
{86, AA, 3C, 6A, 66, A3, C3, 4A, BA, C1, 5E, EC, B4, 4F, 92, A7,
A1, 5D, D4, 90, 54, D7, C6, 06, 85, CD, C9, 64, 20, A4, 15, 1B,
DB, 03, 17, 4E, BD, DF, 23, 19, 8B, 91, 7F, 39, B5, 24, 82, A2,
AC, F1, 49, 41, 63, B1, 33, F6, 4B, E9, 1D, AB, 0E, 01, 60, D3,
CF, C5, 3B, 8E, E4, 6F, 9E, 08, 47, C8, FC, F0, FD, 21, 68, 52,
43, 35, 6D, DE, 1A, E7, B7, D5, 9F, 36, 84, 62, D6, 46, B6, 8F,
22, 2C, 69, F5, B0, 00, 8A, 34, 5A, 75, 72, 81, BC, 5C, 59, F9,
D1, 79, ED, EE, 1F, 77, 38, 7C, F2, 83, 70, C0, 14, D9, 87, C4,
0C, 04, 71, 1E, 11, 16, 61, 2B, 80, 56, A9, 30, C7, 42, 96, B2,
3E, DD, AE, 1C, 8D, 73, E2, F4, 13, 3F, A0, EF, F7, 94, 0B, FE,
89, 55, 7D, 58, E6, 48, 9D, 98, 97, F8, 2F, 37, B8, 32, 05, 3D,
BF, 50, E0, AF, 76, 0F, E1, 2D, DC, 9C, 51, FF, 02, 7E, 10, FB,
CC, 9B, CB, 6C, 26, 65, 5F, 53, D2, 4C, 8C, 45, 12, 07, 3A, 27,
B9, 88, A6, 2A, 25, 0D, 7A, D0, 99, 6E, C2, CE, 6B, 9A, 5B, EB,
CA, FA, A5, B3, 28, 29, BB, 95, 78, 7B, 67, EA, 31, E8, 40, 18,
74, 44, 2E, 09, DA, E3, D8, E5, BE, 57, F3, AD, 0A, 93, 4D, A8}.
S-box3 =
{20, A2, 88, D8, 0D, B7, 74, CD, 8E, 3F, C1, B9, 12, 38, 70, 7B,
78, D7, 07, 4F, AF, 02, 2E, 29, 44, 52, AC, F9, 53, 40, 31, DF,
8A, 36, 43, E2, 95, B3, 25, 30, 65, 0C, 69, 45, 71, 24, B4, 3B,
41, E4, 5B, C5, 1A, D6, 42, B6, AE, 3C, EA, 49, 75, BF, F6, 67,
C9, FE, A0, 35, 51, DD, D3, 60, 80, 10, 0E, 2D, 61, EB, F1, 2A,
8C, FA, 7A, FB, 0F, 11, EE, CA, 8B, FF, 0B, 97, B2, 91, 04, 83,
DC, B5, BD, 87, 1C, F7, 1D, 46, CB, AA, 7F, 5D, E6, 89, 68, EF,
F0, D1, 3E, F3, 57, 9E, DE, E5, C8, 3D, 5E, 76, 08, F5, 5F, A1,
27, FC, E1, 63, FD, 82, 85, 34, 58, C2, CE, B1, 9B, 99, A3, 00,
09, C6, D0, 73, 37, 0A, D4, 98, A5, BB, 2F, C4, 4D, 4A, 32, 7E,
BA, 7C, 5A, 66, 5C, E8, E3, C7, AB, 13, 79, 6D, 47, 7D, 8D, 1B,
21, 6E, 1E, 6F, 06, 05, 64, 39, 90, 14, 6B, 4B, 22, 2B, F2, 16,
19, 03, 86, 6C, 18, 4E, E9, DA, F4, 9C, B8, A8, 77, E0, 56, AD,
DB, 96, 8F, 48, C3, A9, 84, CC, 55, 1F, A6, ED, D5, B0, 50, BC,
9A, F8, BE, EC, 54, 59, CF, 17, 15, D2, 33, E7, 01, 6A, 3A, 26,
62, 9F, 92, 72, 2C, C0, A7, D9, 28, 9D, 4C, 81, 94, 93, 23, A4};
S-box4 =
{7B, 88, E6, E7, B5, 6A, FE, 73, 30, 36, 9A, B9, A3, 43, 7D, E5,
AF, C2, 3C, 4F, 0F, 21, A6, 40, C0, 4D, 9B, CB, 2A, F2, BD, CF,
48, 97, 49, AA, 10, 27, CA, 74, E4, 2D, 1B, 92, B3, 69, BA, 28,
EF, A9, 8F, BF, 8C, 02, A4, 7E, 66, 62, 29, 93, 80, FD, 98, E1,
5A, DA, DF, 6C, 53, 44, 8D, 24, 7C, 68, B8, B0, 57, 09, FF, 39,
07, 00, BE, 6B, 1C, 4C, 13, A0, B2, EB, 2B, F8, D4, D9, A8, 8A,
3B, 55, 6D, A1, 4A, 84, E9, 95, 46, 91, 08, 26, 9C, 77, 81, DB,
5E, 4B, 0E, 96, CD, 20, 8E, 17, 9F, AC, AD, 06, 99, D2, 5F, 89,
D5, C7, 1A, 3A, 12, D3, C8, F4, 61, 15, F5, BB, D6, 23, 33, F1,
0D, C5, 22, AE, 1E, 31, 71, A7, B4, 52, 03, A2, 34, 37, 2F, A5,
EE, 58, CC, 63, DD, CE, D1, 42, 54, 11, C3, 2E, 1F, 90, E2, 79,
5D, C4, D8, FC, 5C, 3F, EA, 6E, E0, 47, 75, 04, 86, C9, 9E, 72,
45, 3D, F6, 65, 05, B1, 85, C1, F9, 9D, DC, E3, 16, 67, C6, F3,
FB, B6, 35, 56, 4E, 51, 87, 59, ED, 64, 7F, 38, D0, AB, F7, 25,
41, 1D, 76, 60, 5B, BC, F0, 19, FA, 94, 14, EC, 2C, D7, 0B, DE,
8B, 18, 0C, 82, 50, 32, 83, 70, 3E, 6F, 7A, 01, E8, 0A, B7, 78}.
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