
Citation: Schiopu, I.; Bilcu, R.C.

Memory-Efficient Fixed-Length

Representation of Synchronous Event

Frames for Very-Low-Power Chip

Integration. Electronics 2023, 12, 2302.

https://doi.org/10.3390/

electronics12102302

Academic Editor: Kiat Seng Yeo

Received: 31 March 2023

Revised: 11 May 2023

Accepted: 17 May 2023

Published: 19 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Memory-Efficient Fixed-Length Representation of Synchronous
Event Frames for Very-Low-Power Chip Integration
Ionut Schiopu * and Radu Ciprian Bilcu

Tampere Handset Camera Innovation Lab, Huawei Technologies Oy (Finland) Co., Ltd., 33720 Tampere, Finland;
radu.ciprian.bilcu@huawei.com
* Correspondence: ionut.schiopu@huawei.com

Abstract: The new event cameras are now widely used in many computer vision applications. Their
high raw data bitrate levels require a more efficient fixed-length representation for low-bandwidth
transmission from the event sensor to the processing chip. A novel low-complexity lossless compres-
sion framework is proposed for encoding the synchronous event frames (EFs) by introducing a novel
memory-efficient fixed-length representation suitable for hardware implementation in the very-low-
power (VLP) event-processing chip. A first contribution proposes an improved representation of the
ternary frames using pixel-group frame partitioning and symbol remapping. Another contribution
proposes a novel low-complexity memory-efficient fixed-length representation using multi-level
lookup tables (LUTs). Complex experimental analysis is performed using a set of group-size configu-
rations. For very-large group-size configurations, an improved representation is proposed using a
mask-LUT structure. The experimental evaluation on a public dataset demonstrates that the proposed
fixed-length coding framework provides at least two times the compression ratio relative to the raw
EF representation and a close performance compared with variable-length video coding standards
and variable-length state-of-the-art image codecs for lossless compression of ternary EFs generated at
frequencies bellow one KHz. To our knowledge, the paper is the first to introduce a low-complexity
memory-efficient fixed-length representation for lossless compression of synchronous EFs, suitable
for integration into a VLP event-processing chip.

Keywords: fixed-length coding; synchronous event camera frames; very-low-power chips;
low-complexity coding; lookup-table-based event frame representation

1. Introduction

A new type of sensor called an event camera was recently developed based on the
new biomimetic technologies proposed in the neuromorphic engineering domain [1]. The
event camera is bio-inspired by the human brain, as each pixel operates separately to mimic
the biological neural system and performs simple tasks with small energy consumption.
More exactly, in contrast to the conventional camera where all are operating simultaneously,
the event camera sensor introduces a novel design where each pixel detects and reports
independently only the changes (increased or deceased) of the incoming light intensity
above a threshold or remains silent otherwise.

The event camera proposes a new paradigm shift for capturing visual data, where only
the dynamic information of the scene is captured using a sequence (stream) of events
that are triggered asynchronously, without capturing the unnecessary static information
represented by the background or skyline. This gives the event camera some very important
properties of low energy consumption, low latency, high dynamic range (HDR), and high
temporal resolution, as the asynchronous events can be triggered individually at the
smallest timestamp distance of one microsecond (µs). Two types of sensors are now made
available on the market: the dynamic vision sensor (DVS) [2], which captures sequences of
asynchronous events; and the dynamic and active-pixel vision sensor (DAVIS) [3], which
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adds a second camera to the DVS sensor, an active pixel sensor (APS) for capturing greyscale
or color (RGB) frames.

In the computer vision domain, event cameras are now widely used as the solutions
designed to process the RGB and event modalities already reached state-of-the-art perfor-
mance for many applications such as deblurring [4], feature detection and tracking [5,6],
optic flow estimation [7], 3D estimation [8], super-resolution [9], interpolation [10], visual
odometry [11], and many others. For a comprehensive literature review of event-based
applications in computer vision, we recommend the work presented in [12]. Since many
of these upper-level applications are designed to process the event modality as an image
rather than an asynchronous events sequence, the event data acquired by the DVS sen-
sor is pre-processed, usually using an event-accumulation process to form a sequence of
synchronous Event Frames (EFs), i.e., the EF contains a set of synchronous events having
assigned the timestamp associated with the EF.

In general, an EF is represented using the ternary alphabet, Araw
3 = {0, 1, 2}, where

for each pixel position (x, y), one of the following three possible symbols is assigned: “0” to
signal the position of an event with negative polarity (report a light intensity decrease), “1”
to signal the position of a non-event, and “2” to signal the position of an event with positive
polarity (report a light intensity increase). Please note that sometimes the representation
of the first two symbols is swapped. Although Araw

3 is used to store the EF on the disk,
one can note that in some cases, a ternary alphabet containing different symbols might be
used for a better visual representation. E.g., Ap

3 = {−1, 0, +1} is preferred for signaling
the negative and positive event polarity; Aint

3 = {0, 127, 255} is preferred for having an
8-bit intensity-like representation and guarantees compatibility with traditional image and
video codecs. In the DVS sensor representation, each event is stored using a package of 8
Bytes (B). While in the raw EF representation, each pixel contains a ternary symbol that is
stored using 2 bits, i.e., an EF having a W × H pixel resolution sensor is stored using a total
of 2× H ×W bits.

The event data captured by the event sensor contains different distortions (e.g., noise,
latency), which must be corrected by the sensor or the event-processing chip, i.e., on low-
power chips with limited memory before it can be consumed by upper-level applications.
Since the raw EF representation reaches high bitrate levels, a more efficient fixed-length
representation is required for low-bandwidth transmission of the event data from the event
sensor to the event-processing chip. One can note that such a method must satisfy several
constraints. The codec must operate in a group of pixels as other algorithms are employed
to correct the event data using a limited chip memory, i.e., the codec must provide a fixed-
length representation to provide random access to any group of pixels by allocating an
equal number of bits to encode each group. Note that in data compression, large coding
gains are achieved by allocating a variable-length representation to each group of pixels,
as the coding gain depends on the amount of data stored inside each group. The codec
must have a low complexity so it can be hardware written, i.e., only simple computations
are accepted. The codec must provide an efficient memory representation to justify the
costs of hardware writing the lossless codec. Hence, in this paper, we propose a novel
low-complexity lossless compression framework of synchronous EFs based on fixed-length
coding, which is suitable for integration into very-low-power (VLP) processing chips.

In the literature, the event data compression problem remains understudied. Only a
few coding solutions are proposed to either encode asynchronous event sequences [13,14]
or synchronous EF sequences [15,16]. In [13], the authors propose to encode lossless
asynchronous event sequences by exploiting the spatial and temporal characteristics of
the event location information. The research was further extended in [14]. In [15], the
Time Aggregation-based Lossless Video Encoding for Neuromorphic vision sensor data
(TALVEN) algorithm is proposed, where an event-accumulation process is employed to
generate EFs by concatenating the positive and negative polarity EF counts and form an
EF sequence then compresses by the High-Efficiency Video Coding (HEVC) [17] standard.
Finally, in [16], a lossy coding solution is proposed for the DAVIS sensor. One can note that
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these solutions are much too complex for hardware implementation in the event-processing
chip with limited memory. These are performance–oriented compression solutions that
can be integrated only in a system-on-a-chip (SoC) where enough computation power is
available. Here, we propose a low-complexity–oriented lossless compression framework
of EFs suitable for integration into low-power event signal processing (ESP) chips or VLP
event-processing chips, i.e., inside the sensor, where the event data are constrained to have
fixed-length representation.

In our prior work, we employ an event-accumulation process where each asyn-
chronous event sequence is split into spatiotemporal neighborhoods of time interval ∆,
where each neighborhood generates an EF as follows: at each pixel position (x, y), the
polarity sum of the events triggered in the time interval ∆ is computed so that (x, y) is
set as the sum’s sign, see Figure 1. In our prior work [18], we proposed a context-based
lossless image codec for encoding a stack of up to eight EFs using two data structures: an
event map image (EMI) that stores the event spatial information; and the concatenated
polarity vector (CPV) that stores the polarity information; a lossless codec suitable for
integration into SoC. In our prior work [19], we proposed a low-complexity lossless coding
framework by adapting the run-length encoding scheme and Elias coding for EF coding,
suitable for integration into low-cost ESP chips. While in our prior work [20], we proposed
a low-complexity lossless coding method for encoding the event data represented as asyn-
chronous event sequences that employ only low-complexity coding techniques so that it
is suitable for integration into low-cost ESP chips. Moreover, these solutions provide a
variable-length representation, a strategy used by most state-of-the-art coding methods.
In contrast, the goal of this work is to introduce a novel low-complexity lossless coding
framework for fixed-length representation of EFs using multi-level look-up tables (LUTs)
that is suitable for integration into VLP chips.

(a) (b)

Figure 1. A camera view example of two modalities (RGB and Event) captured by sequence
“interlaken_00_c” in the DSEC training dataset [21] using a pair of a standard RGB camera and
a Prophesee Gen3.1 (DVS) event camera. (a) Crop of first-captured RGB frame. (b) The EF was gener-
ated using the asynchronous event sequence (captured before, during, and after the frame exposure
time) by employing a sum-accumulation process over the first spatiotemporal neighborhood in the
sequence of ∆ = 5.555 ms (180 fps). Blue, red, and white background marks the negative polarity-sum
positions, the positive polarity-sum positions, and the zero-sum (or non-event) positions, respectively.

In summary, the novel contributions proposed in this paper are listed below.

(1) A novel lossless compression framework for encoding synchronous EFs, suitable for
hardware implementation in VLP event-processing chips; see Section 3.

(2) A novel ternary frame representationmusing group partitioning and symbol remap-
ping; see Section 3.1.

(3) A novel memory-efficient low-complexity coding scheme for lossless compression of
sparse images using a novel fixed-length representation based on multi-level LUTs;
see Section 3.2.2.

(4) An improved fixed-length representation using a mask-LUT structure for encoding
EFs using very-large groups of pixels; see Section 3.2.3.
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(5) A codec that provides random access (RA) to any group of pixels using a fixed-length
representation; see Section 3.3.

The remainder of this paper is organized as follows. Section 2 presents a discussion
on state-of-the-art methods developed for the new event modality. Section 3 describes the
proposed fixed-length coding framework. Section 4 presents the experimental evaluation
of the proposed framework. Section 5 concludes this work.

2. State-of-the-Art Methods

Let us consider an event sensor having a resolution of W × H pixels. When the sensor
detects a change in the incoming light intensity that is above a set threshold, an asyn-
chronous event, denoted ei = (xi, yi, pi, ti), is triggered by encapsulating and transmitting
8 B of event data containing the following information: (i) the event spatial information,
denoted (xi, yi), where xi ∈ [1, H], and yi ∈ [1, W], corresponding to the pixel position
where the change was detected; (ii) the event polarity information, denoted pi ∈ {−1, 1},
which signals the type of change using symbol “− 1” for a decrease and symbol “1” for
an increase in the incoming light intensity; and (iii) the event time information, ti, i.e., the
timestamp when the change was detected. Let us denote the asynchronous event sequence
capture by a DVS sensor [2] as ST = {ei}i=1,2,...,Ne , where Ne events were triggered over
the time period T µs.

One can note that the processing steps in event-based computer vision solutions are
significantly different than in the case of conventional color cameras. In the event-signal
processing framework, an important decision is represented by the selection of the event
representation. ST is first extracted from the raw DVS data and then further transformed
into the format interpretable by the following processing steps, which may differ from one
application to another.

The section is organized as follows. Section 2.1 analysis the event representations
proposed in the computer vision domain. Section 2.2 outlines the proposed state-of-the-art
methods for lossless event data compression and analysis how to modify the traditional
data compression codecs for lossless event data compression.

2.1. Event Data Representations in Computer Vision

The simplest event representation that gained a lot of popularity in recent years is
spike processing, such as Spike Neural Networks (SNNs), which directly can process the
asynchronous event sequences [22]. Another representation used in Computer Vision is the
“image-like" representation, denoted here EF, as most of the upper applications prefer to
consume the event data as an image rather than an asynchronous event sequence. One can
note that the event data can be stored as a sequence of generated EFs in a lossless manner
(no information is lost) only by setting ∆ with the smallest time-window size, i.e., ∆ = 1 µs.
Then the raw EF representation will require an impressive amount of space to store one
second of captured event data, i.e., H × W

4 MB (around 76.8 GB). Note that the raw EF
representation (2-bit per pixel) is more efficient than the raw sensor representation (8 B
per event) only if more than pτ = 3.125% of the positions in the generated EF sequence
signal event positions, i.e., a capturing event density that the DVS sensor cannot reach
using current technology. Therefore, ∆ is usually set using values in the ms time range so
that the generated EFs have a much higher matrix filling percentage than pτ , which results
in losing some part of the raw captured information.

Different pre-processing strategies were proposed in the literature to quantize the
event data and further process it in such a way that an upper-level application can achieve
state-of-the-art performance. In [23], the event polarity sum frames are computed by
summing the polarity of events within a given time window for real-time visual-inertial
odometry. In [24], the count-based event-accumulation representation is proposed for
steering prediction for self-driving cars, where the events within a temporal window
are counted for each polarity type to generate two EFs. In [25], the distance surface
representation is proposed for pixel motion estimation, where the generated image contains
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the spatial distance to the active pixel. In [26], the surface of active events representation
is proposed for computing the visual flow, where the EF contains only the latest event
triggered at each pixel position. In [27,28], the graph-based representation is proposed for
object classification, where the events are transformed within a temporal window into a
set of connected nodes. Although this representation is quite compact and efficient, the
generated graphs can be computationally expensive. In [29], the voxel grid representation
is proposed. In [30], the event spike tensor representation is proposed as a voxel grid
variation. In [31], the time-ordered recent events representation is proposed for a wide
range of applications (denoising, reconstruction, classification, pose estimation), where a
first-in-first-out buffer is used to retain the most recent events at each location, while the
others are ignored.

2.2. Event Data Representations in Lossless Compression

In the lossless compression domain, two event data representations, asynchronous
event sequences, and event-accumulation EFs, were studied. In [13], the authors propose
a solution for encoding the raw asynchronous event sequences by removing the redun-
dancy of the spatial and temporal information using three strategies: adaptive macro-cube
partitioning structure, the address-prior mode, and time-prior mode. An extension was
proposed in [14] by introducing an event sequence octree-based cube partition and a
flexible inter-cube prediction method based on motion estimation and motion compen-
sation. In [32], the authors present a complex performance analysis of different lossless
data compression algorithms employed to compete against the Spike Coding approach
proposed in [14]. The study shows that several state-of-the-art traditional data compression
codecs, such as the Lempel–Ziv–Markov chain algorithm (LZMA) [33] developed by Igor
Pavlov and the dictionary-based codec Zeta Library (ZLIB) [34], provide a good coding
performance. One can note that the comparison with [13] and [14] is not possible as their
codec/source code is not made publicly available, and the PKU-DVS dataset [35] is partially
made available only for academic research purpose.

The study in [32] was extended in [15] by introducing the TALVEN algorithm for
encoding the count-accumulated EF sequences so that they can be further encoded by
employing the HEVC codec [17]. For encoding event-accumulation EFs, in our prior
work [18,19], we proposed to compare the coding performance with that of prior and
current video coding standards, HEVC [17] and VVC [36], and of well-known state-of-the-
art lossless image codecs, such as Context Adaptive Lossless Image Codec (CALIC) [37],
and Free Lossless Image Format (FLIF) codec [38]. Experiments show that an improved
performance is achieved when encoding an intensity-like event representation obtained
using a symbol remapping technique where a set of five (consecutive) EFs is merged into a
combined EF that contains (8-bit) intensity-like values.

In conclusion, the current coding solutions of event data, either based on event
codecs [13–15] or traditional data/image/video codecs [17,33,34,36–38], provide com-
petitive variable-length representations designed to optimize the codec’s performance. In
contrast, in this work, we propose a fixed-length representation designed to achieve low
complexity and fast RA to any group of pixels, suitable for integration into VLP chips.

3. Proposed Framework

Figure 2 presents a comparison between the requirements imposed for different
compression strategies. In a left-to-right order, the first representation is the raw image
representation, where no compression strategy is employed as all pixels are represented
uncompressed in memory using a fixed-length representation of the maximum number
of bits required to store each symbol in the alphabet, and which provides random access
to any pixel. The first compression strategy is the fixed-length representation, where on
top of the fixed-length and random-access requirements, the codec must provide a more
efficient representation of the image in the memory, i.e., to store the image using a reduced
number of bits compared with raw representation. Moreover, such compression methods
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usually propose to encode together a group of pixels (e.g., a w× h pixel-block) and must
have a very low computational complexity so that it can be directly hardware written
in the sensors. The second compression strategy is the variable-length representation
with random access, where the coding performance is further improved by removing the
fixed-length representation of each group of pixels and where a header is introduced to
store additional information needed to provide random access to each group of pixels. The
last compression strategy is storage-optimized, i.e., it is designed to provide the highest
coding performance possible without imposing any constraints on algorithmic complexity,
runtime, or memory requirements.
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Figure 2. Comparison between the requirements of different compression strategies.

One can note that the fixed-length representation requirement is a very hard constraint
and does not allow the solution to achieve the best performance. The fixed-length and
variable-length representations offer the possibility to apply any pre-processing algorithm
to a group of pixels while still storing in memory the entire package of data. In general,
variable-length representations, also known as performance-oriented codecs, are optimized
to achieve the best coding performance without imposing any constraints on complexity,
runtime, or having access to groups of pixels.

Figure 3 presents what type of compression strategies can be used for each type of
chip. E.g., the VLP chips may incorporate a lossless compression method as long as its
complexity is very low so that it is possible to be written on hardware, and each group of
pixels can be encoded separately so that they can be packetized together. The ESP chip may
incorporate a lossless compression method to reduce the amount of data to be transmitted.
Such a chip contains a limited memory of a few MB, and the codec must be simple enough
to be hardware written. While in general, the SoC chip may incorporate any compression
method as long as the SoC specifications allow the coding method to be run on the SoC.
Finally, the data are transmitted from the SoC chip to be stored on the non-volatile memory
of a mobile phone (e.g., memory card) or a computer (e.g., hard disk drive).

Sensor / Very-Low-Power 
(VLP) chip 

Event Signal Processing 
(ESP) / Low-Power chip 

System-on-a-Chip 
(SoC)

Non-Volatile 
Memory

➢ Fixed-Length Representations
➢ Raw Image representation 

➢ Variable-Length Representations with RA
➢ Fixed-Length Representations
➢ Raw Image representation 

➢ Performance-Oriented Codecs
➢ Variable-Length Representations

Figure 3. The compression strategy required for each type of chip.

In this work, we propose a fixed-length representation framework suitable for integra-
tion into VLP chips, which offers the possibility to store more efficiently in memory the
input image compared with the raw image representation. Figure 4 presents the proposed
fixed-length representation framework for encoding the input raw image representation.
The proposed strategy consists in first dividing the raw image into groups of pixels of
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w× h size, where each group is represented using a reduced set of (Nt) remapped sym-
bols. The figure’s central part shows that the raw image can be represented as remapped
volume having group-partition resolution and remapped-group-size depth. While the
right part shows the proposed method is employed to store the remapped volume using
two data structures: a matrix for storing using a fixed-length representation of an index
and additional information and a set of one or more LUTs for storing the unique symbols
combination used to remap the original raw data.
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Figure 4. The proposed fixed-length LUT-based representation framework.

The section is organized as follows. Section 3.1 presents the group partitioning and
symbol remapping processes. The remapped volume is used to generate the proposed
fixed-length representation consisting of an index matrix and a set of one or more LUTs.
Section 3.2 presents the proposed LUT-based Representations. Section 3.3 presents the final
algorithmic details.

3.1. Group Partition and Symbol Remap

Let us denote I the input image of size W × H which stores using 2 bits a ternary
symbol, s ∈ {0, 1, 2}, at each pixel position (ir, jr), ∀ir ∈ [1, H], jr ∈ [1, W]. In this work,
we propose to partition I into Ng = W

h ×
H
h groups of pixels, where each group Gig jg , ∀ig ∈

[1, H
h ], jg ∈ [1, W

w ], of size w× h contains N = wh ternary symbols. Firstly, each group of
pixels Gig jg is vectorized as follows:

Vv
ig jg = [s0 s1 . . . sN−1]. (1)

Next, Vv
ig jg is then zero-padded up to the closest multiple-of-five length such that the

zero-padded vector can be split into Nt = dN
5 e subgroups of five ternary symbols, see

Figure 5. Let us denote the zero-padded group vector as Vz
ig jg , where

Vz
ig jg = [s0 s1 . . . s5Nt−1] = [[s0 s1 . . . s4] . . . [s5k s5k+1 . . . s5k+4] . . . [s5Nt−5 s5Nt−4 . . . s5Nt−1]]. (2)

Each subgroup k of five ternary symbols, [s5k s5k+1 . . . s5k+4], is then remapped into
a symbol t in the alphabet {0, 1, . . . , 35 − 1} (represented using 8 bits), by employing the
following symbol remapping formula:

tk =
4

∑
r=0

34−rs5k+r, k = 0, 1, . . . , Nt. (3)

Figure 5 shows that Vz
ig jg is remapped as follows:

Vig jg = [t0 t1 . . . tNt−1]. (4)

Furthermore, Vig jg can be further rearranged as a remapped unite volume of size
1× 1× Nt.
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Figure 5. Proposed group partitioning and symbol remapping processes.

In conclusion, the proposed fixed-length representation first stores the input image I as
a remapped volume V(ig, jg, tk), ∀ig ∈ [1, H

h ], jg ∈ [1, W
w ], k ∈ [0, Nt], of size W

w ×
H
h × Nt,

as depicted in the middle part of Figure 4. One can note that the input image I, having a
raw image representation of 2WH bits, stored in memory using the proposed remapped
volume representation, V, using 8NgNt = 8 WH

wh d
wh
5 e, i.e., the input memory size is reduced

with a percentage of

pmr = 100− 400
wh

⌈
wh
5

⌉
(%). (5)

A maximum memory reduction of pmr = 20% (or a compression ratio of 1.25, see
Section 4) is obtained when the pixel-group size, N, is selected as a multiple-of-five number.

3.2. Proposed LUT-Based Representations

The proposed fixed-length representation is designed to encode each group Gig jg using
an index value (represented on a specific number of bits) stored in the index matrix M. The
main idea is to find all unique combinations of Nt symbols found in any vector Vig jg and
store them in memory using a novel LUT-based structure that continues to provide a fixed-
length representation. Therefore, the remapped volume representation, V, is represented
using a fixed number of bits by the index matrix M and the LUT-based structure, see the
right part of Figure 4, where M(ig, jg) contains all the necessary information to extract
Vig jg from the LUT-based structure. Several fixed-length representation solutions based on
different levels of LUT indexing are proposed. A variable-length representation solution
for storing the LUT-based structure is also studied.

Sections 3.2.1, 3.2.2 and 3.2.3 present the proposed fixed-length representation so-
lutions based on a single-level LUT, double-level LUTs, and multi-level LUT structures,
respectively. Section 3.2.4 presents the variable-length representation solution for compress-
ing the LUT-based structure.

3.2.1. Single-Level LUT Solution

The proposed single-level LUT solution, called 1L-LUT, introduces a simple fixed-
length representation by storing the Nuc unique combinations of Nt symbols using a single
LUT table structure, which requires

L1L
LUT = 8NtNuc bits. (6)

In such case, M(ig, jg) stores an index κ using nκ = dlog2Nuce bits, where Vig jg is
extracted from LUT as Vig jg = LUT(κ). The index matrix M is represented using

L1L
M = Ngnκ bits. (7)

The number of bits needed to represent I using the 1L-LUT solution is computed
as follows:

L1L = L1L
M + L1L

LUT = Ngnκ + 8NtNuc bits. (8)

Figure 6 depicts the proposed 1L-LUT solution. One can note that the value κ − 1
(instead of κ) is written in M(ig, jg) using nκ bits as κ ∈ {1, 2, . . . , Nuc}. For example,
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if Nuc = 4, then only two bits are needed to represent the index κ = 4 instead of three
(4(10) = 100(2)). L1L depends on the group size, N, as follows:

(i) If N is too small, then M contains too much information, and Nuc is too large as too
many unique combinations are stored by LUT;

(ii) If N is too large, then M contains too less information, and each line in LUT contains
too much information as Nt is too large.

An optimal N∗ provides the smallest memory representation for the 1L-LUT solution,
however, its coding performance remains limited.

𝑯

𝒉

𝑾

𝒘
𝐍𝐭

Remapped Volume
Representation Proposed 1L-LUT Solution

Index Matrix

𝑯

𝒉

𝑾

𝒘

𝑛𝜅 = log2𝑁𝑢𝑐

Write 𝜅 − 1
using 𝑛𝜅 bits

LUT

1
…
𝜅
𝑁𝑢𝑐

Nt symbols

𝑁𝑔𝑛𝜅
bits

8𝑁𝑡𝑁𝑢𝑐
bits

ℒ1𝐿 = 𝑁𝑔𝑛𝜅 + 8𝑁𝑡𝑁𝑢𝑐
bits

Total Memory Usage

Figure 6. Proposed fixed-length single-level LUT (1L-LUT) solution. Green arrows show that the
encoding process employs the following steps: (e1) each remapped group is searched in LUT to
find index κ; (e2) κ is stored using nκ bits in the index matrix. The decoding process simply follows
these steps in the reverse order: (d1) read nκ bits from the index matrix to decode κ; (d2) decode the
remapped group as the κ-th line in LUT.

3.2.2. Double-Level LUT Solution

The proposed double-level LUT solution, called 2L-LUT, introduces a fixed-length
representation where the Nuc unique combinations of Nt symbols are further divided into a
set of Nt LUTs, {LUT`}`=1:Nt , to achieve an improve compression performance and faster
search of the unique combinations. The main idea is that Vig jg is first classified into Nuc + 1
classes by counting the number of non-zero values as `. 2L-LUT propose to created Nt LUTs,
where the `-th LUT, denoted LUT`, stores N`

uc unique combinations of Nt symbols found in
any vector Vig jg . One can note that for ` = 0, no LUT is needed to be stored in memory as
a single deterministic case can be found: all values are zero. In such case, M(ig, jg) stores
the LUT index, `, using n` bits, see Equation (9), and the index in the LUT, κ`, using nM

κ

bits, see Equation (10), i.e., using the maximum number of bits needed to represent the
largest number of unique combinations in the set of LUTs. Hence, M(ig, jg) stores ` using
the first n` bits and κ` using the following nM

κ bits. Vig jg is extracted from the `-th LUT as
Vig jg = LUT`(κ`). Therefore, M is stored by 2L-LUT using L2L

M bits, see Equation (11).

n` = dlog2Nte (9)

nM
κ = dlog2(max{N`

uc}`=1:Nt)e (10)

L2L
M = Ng(n` + nM

κ ) (11)

The set of Nt LUTs, {LUT`}`=1:Nt , contains N`
uc = ∑`=1:Nt N`

uc entries. 2L-LUT makes
use of the information that LUT` (the `-th LUT) contains ` non-zero symbols by introducing
a mask of Nt binary symbols, b`, where the `-th mask symbol is set by checking if the
corresponding symbol t` is or not symbol “0” in the alphabet, see Equation (12).

b` =

{
0 if t` = 0
1 if t` 6= 0

, ` = 0, 1, . . . , Nt − 1 (12)
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The ` non-zero symbols are stored using 8` bits. Hence, 2L-LUT stores LUT` in
memory using L2L

LUT`
bits, see Equation (13), and I using L2L bits, see Equation (14).

L2L
LUT` = (Nt + 8`)N`

uc (13)

L2L = Ng(n` + nM
κ ) +

Nt

∑
`=1

(Nt + 8`)N`
uc (14)

Figure 7 depicts the proposed 2L-LUT solution. Note that nM
κ can be computed only

after populating the entire set of LUTs with unique combinations of Nt symbols. Therefore,
the following bit-cleaner procedure, BITCLEANER(nM

κ ), is employed to guarantee a single
pass encoding of I.

BitCleaner(nM
κ ) procedure:

(i) Compute nw = dlog2 Nge as N`
uc ≤ Ng, i.e., in the extreme case each group contains a

unique combination of Nt symbols.
(e) Employ 2L-LUT and write each value κ` − 1 using nw bits instead of nM

κ bits.
(b1) Compute nM

κ using Equation (10) and {N`
uc}`=1:Nt .

(b2) Remove the unnecessary nw − nM
κ bits, n` + nM

κ + 1 : n` + nw, from the representation
of each index value M(ig, jg).
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𝐛𝐢𝐭𝐬
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ℓ

bits

Write ℓ − 1 using 𝑛ℓ bits 
and 𝜅ℓ − 1 using 𝑛𝜅
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Figure 7. Proposed fixed-length double-level LUT (2L-LUT) solution. Green arrows show that the
encoding process employs the following steps: (i) each remapped group is processed to find `, the
number of non-zero symbols; (ii) the rearranged vector is searched in LUT` to find κ`; (iii) ` and κ` are
stored in the index matrix using n` and nM

κ bits, respectively. The decoding process simply follows
these steps in the reverse order: decode the two indices, read the rearranged vector at κ`-th line in
LUT`, and generate the remapped group using the mask and ` non-zero symbols.

In the encoding algorithm, one can note that step (i) is employed in the initialization
stage, step (e) in the encoding stage; and steps (b1)–(b2) in the final processing stage of the
final bitstream, BM, generated for encoding the index matrix.

A similar procedure was developed to post-process the bitstream and remove the
unnecessary bits used in the signaling of ` for the large group size case, where not all
LUTs are used in the proposed LUT-based representation, i.e., only the first few LUTs are
used as, for example, LUTNt has the lowest probability to be used included in the LUT
set. Therefore, the number of bits needed to represent ` is the number of bits needed
to represent `∗, the index of the last LUT in the set for which N`∗

uc 6= 0. The bit-cleaner
procedure, BITCLEANER(n∗` ), is employed.

BITCLEANER(n∗` ) procedure:

(i) Compute n` = dlog2
HW
hw e.

(e) Employ 2L-LUT and write each value `− 1 using n` bits.
(b1) Compute n∗` = dlog2(N`∗

uc)e.
(b2) Remove the extra n` − n∗` bits, n∗` + 1 : n`, from the representation of each M(ig, jg).
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Similarly, step (i) is employed in the initialization stage, (e) in the encoding stage; and
steps (b1)–(b2) in the final processing stage of BM.

3.2.3. Multi-Level LUT Solution

When the selected group size is very large, for example, for Nt ≥ 150, the memory
allocated to store the LUT-based structure of 2L-LUT contains a lot of redundancy. One
can note that in such a case, the number of unique combinations in the set of LUTs is
reduced, and the unique combinations are more populated with the symbol “0”, the most
frequent symbol in the alphabet. In this work, we propose to modify 2L-LUT for very
large block sizes further and introduce the multi-level LUT solution called ML-LUT. ML-
LUT introduces an extra LUT compared with 2L-LUT, called LUT mask and denoted
LUTM, to store a mask associated with each LUT in {LUT`}`=1:Nt , i.e., line ` in LUTM is
associated with LUT`. Therefore, the position k in line `, LUTM(`, k), is set by checking
if all the unique combinations stored by LUT` contain a symbol “0” on the k-th position,
i.e., LUT`(q, k) = 0, ∀q = 1, 2, . . . , N`

uc, see Equation (15). Let us denote π as the number of
lines in LUTM, and LMask as the number of bits required to store LUTM, computed using
Equation (16).

LUTM(`, k) =

{
1 if LUT`(q, k) = 0, ∀q = 1, 2, . . . , N`

uc

0 otherwise
, `, k = 1, 2, . . . , Nt (15)

LML
Mask = Ntπ (16)

Figure 8 depicts the proposed ML-LUT solution. One can note that, by using LUTM,
only for the positions LUTM(`, k) = 0, we can employ Equation (12) to generate the mask.
Let us denote m`

κ the number of positions for which Equation (12) is employed. Since m`
κ

depends on the structure of the found unique combination, a variable-length representation
would be required to store in memory the LUT-based structure of ML-LUT efficiently.
However, to guarantee a fixed-length representation, we propose to store each updated
mask using a fixed-length representation of m` = min(`N`

uc, Nt) bits. Hence, Equation (13)
is updated as Equation (17), and Equation (14) is updated as Equation (18).

LML
LUT` = (m` + 8`)N`

uc (17)

LML = L2L
M + LML

Mask +
Nt

∑
`=1
LML

LUT` = Ng(n` + nM
κ ) + Ntπ +

Nt

∑
`=1

(m` + 8`)N`
uc (18)
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Figure 8. Proposed fixed-length multi-level LUT (ML-LUT) solution. Green arrows show that the
encoding process employs the following steps: (i) each remapped group is processed to find `, the
number of non-zero symbols, and generated the rearranged vector (mask of Nt bits and ` non-zero
symbols of 8 bits each); (ii) read from LUTM the `-th line and filter the rearranged vector to generate
the filtered vector (filtered mask of m` bits and ` non-zero symbols); (iii) the filtered vector is searched
in LUT` to find κ`; (iv) ` and κ` are stored in the index matrix using n` and nM

κ bits, respectively. The
decoding process simply follows these steps in the reverse order: decode the two indices, read the
filtered vector at κ`-th line in LUT`, generate the rearranged vector using the `-th line in LUTM, and
finally generate the remapped group using the mask and ` non-zero symbols.
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3.2.4. Variable-Length Solution

In this work, we also studied the possibility of relaxing the constraint of fixed-length
representation for encoding the LUT-based structure and introducing a variable-length
multi-level LUT solution called MLv-LUT, see Figure 9. MLv-LUT simply modifies the
fixed-length representation version, ML-LUT, by introducing two variable-length strategies
for storing each LUT` without where the zero-padding procedure is removed from the
generation of the filtered mask and the last non-zero symbol tNt−1.

Firstly, instead of storing each filtered mask using a fixed number of bits, mκ , we
propose to store each filtered mask using the exact number of bits, m`

κ , and avoid the
zero-padding process. The cost of storing the filtered mask of LUT` is computed by (19).

LMLv
LUT` =

N`
uc

∑
κ=1

(
m`

κ + 8`N`
uc

)
(19)
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Figure 9. Proposed variable-length multi-level LUT (MLv-LUT) solution. Green arrows show that the
same encoding process is employed as ML-LUT. Only a simple modification is introduced: instead
of a fixed-length representation, the filtered vector has a variable-length representation where the
filtered mask is stored using m`

κ bits, the first `− 1 non-zero symbols are represented on 8 bits each,
and the `-th non-zero symbol is represented either using nt bits if it placed on the last position in the
remapped vector or using 8 bits otherwise. The decoding process follows similar steps as ML-LUT.

Secondly, the last non-zero symbol tNt−1 can be efficiently represented using less then
8 bits by removing the zero-padding process of Vv

ig jg . In such case, the last group of ternary
symbols in Vv

ig jg is [s5Nt−5 . . . sN ] and has a length of rl symbols, where rl is computed by
Equation (20). We can now update Equation (3) as Equation (21) for remapping tNt−1. If
rl < 5, then tNt−1 ∈ {0, 1, . . . , 3rl − 1} and, instead of 8 bits, only nt bits are needed to store
tNt−1, where nt is computed using Equation (22). Let us denote N`

nzl , the number of unique
combinations in LUT` which contain a non-zero symbol on the last position. The gain
obtained by employing such a strategy is computed by (23). Due to the variable-length
representation of the LUT-based structure, an additional cost of LMLv

vl bits, computed by
(24), is required to signal which LUTs are included in the LUT set, i.e., for which N`

uc > 0.

rl = N − 5(Nt − 1) (20)

tNt−1 =
rl

∑
r=0

3rl−rs5k+r (21)

nt = dlog2 3rle (22)

LMLv
gain = (8− nt)N`

nzl (23)

LMLv
vl = Nt (24)

Finally, MLv-LUT stores in memory I using LMLv bits, where LMLv is computed by
(25) using (11), (16), (19), (23) and (24).
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LMLv = L2L
M + LML

Mask + L
MLv
vl +

Nt

∑
`=1

(
LMLv

LUT` −L
MLv
gain

)

= Ng(n` + nM
κ ) + Ntπ + Nt +

Nt

∑
`=1

N`
uc

∑
κ=1

m`
κ + 8`N`

uc − (8− nt)N`
nzl

 (25)

3.3. Algorithmic Details

The encoder implementation of the proposed 2L-LUT/ML-LUT fixed-length representa-
tion is presented in Algorithm 1. The threshold T is used to select the appropriate solution
based on the group size information. One can note that the index matrix is initially encoded
as bitstream BM using steps 5–22 in Algorithm 1. The proposed LUT-based representation
is encoded as bitstream BLUT using steps 23–39 in Algorithm 1. Bitstream BI is finally
updated using steps 40–41 in Algorithm 1 by removing the unnecessary bits based on the
information provided by the proposed LUT-based representation. The output bitstream, B,
concatenates BLUT and BM in this order.

Algorithm 1: Encode using ML-LUT
Data: I of size W × H containing symbols in alphabet

A3 = {0 (non-event), 1 (positive), 2 (negative)}; w× h, group size; T , group size threshold;
Result: B, output bitstream;

1 if I is full of non-event symbols then // Encode an empty I using 8 bits.
2 Return B ← [Write 8 bits of 0]; // Bits needed to represent Nuc .

3 Compute: Nt = d hw
5 e, nw = dlog2

HW
hw e, n` = dlog2 Nte;

4 Initialize: {N`
uc}`=1:Nt ← 0;BM ← [];BLUT ← [];

5 for jg = 1, 2, . . . , W
w do // Encode I into BM.

6 for ig = 1, 2, . . . , H
h do

7 Gig jg = vec(I(h(ig − 1) + 1 : hig, w(jg − 1) : wjg)); // Current group of pixels.
8 Vig jg ← Remap Gig jg using (1)–(4); // Symbol remapping, see Section 3.1.
9 `← Count tk 6= 0, k = 1, 2, . . . , Nt; // Find `, the LUT index.

10 if ` = 0 then
11 BI ← [Write n` + nw bits of 0]; // All-zero groups are encoded as n` + nw bits of 0.
12 else
13 if N`

uc = 0 then // Add 1st line to LUT`.
14 N`

uc ← 1; LUT`(N`
uc)← Vig jg ; eIndex = 1;

15 else
16 if Vig jg is already in LUT` at position κ` then // Find κ` in LUT`.

17 eIndex = κ`
18 else // Add a new line to LUT`.
19 N`

uc ← N`
uc + 1; LUT`(N`

uc)← Vig jg ; eIndex = N`
uc;

20 BM ← [ Write `− 1 on n` bits; Write eIndex on nw bits]; // Write M(ig , jg) in BM .

21 end
22 end
23 for ` = 1, 2, . . . , Nt do // Encode the LUT-based representation into BLUT .
24 Compute nκ(`) = dlog2 N`

uce;
25 if Nt < T then
26 Employ 2L-LUT, see Section 3.2.2; // Use the 2L-LUT solution.
27 BLUT ←

[
[b0, b1, . . . , bNt−1] using (12)

]
; // Mask information.

28 BLUT ← [ Write ` non-zero symbols on 8` bits]; // Non-zero symbol information.

29 else
30 Employ ML-LUT, see Section 3.2.3; // Use the ML-LUT solution.

31 if N`
uc > 0 then

32 BLUT ← [1; LUTM(`) on Nt bits; N`
uc on nw bits]; // LUTM information.

33 BLUT ← [[b0, b1, . . . , bNt−1] using (12)]; // Mask information.
34 BLUT ← [Write ` non-zero symbols on 8` bits]; // Non-zero symbol information.

35 else
36 BLUT ← [0]; // Signal N`

uc = 0.

37 end
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Algorithm 1: Cont.
38 Compute: Nuc = ∑`=1:Nt N`

uc; nκ = dlog2 Nuce;
39 BLUT ← [Write nκ on 8 bits; Write Nuc on nκ bits; BLUT ]; // All info to decode BLUT .
40 BLUT ←BitCleaner(n∗` ,BLUT ).(b1)–(b2); // Remove unnecessary bits in the representation of `.

41 BLUT ←BitCleaner(nM
κ ,BLUT ).(b1)–(b2); // Remove unnecessary bits to avoid a 2nd image pass.

42 Return B ← [BLUT ; BM]; // B concatenates BLUT and BM.

The pseudo-code provided by Algorithm 1 is used to encode the input image and
store the data on the disk, while (14) and (18) compute the total memory needed to store in
memory all the necessary information.

The decoder implementation of the proposed 2L-LUT/ML-LUT fixed-length representa-
tion is presented in Algorithm 2. Similarly, the threshold T is used to select the appropriate
solution based on the group size information. The proposed LUT-based representation is
first decoded from the first part of B using steps 7–24 in Algorithm 2. The index matrix,
M, is decoded from the remaining part of B using steps 26–29 in Algorithm 2, i.e., ` and κ`
are decode on steps 28 and 29 in Algorithm 2, respectively. Note that the inverse remap
process consists in first representing each symbol tk in Vig jg in base 3 to generate five ternary
symbols and then selecting Gig jg with the first Nt ternary symbols. Finally, I is generated
using the proposed LUT-based representation and M using steps 30–36 in Algorithm 2.

Algorithm 1 and Algorithm 2 are used to introduce the encoder and decoder of
the proposed fixed-length ML-LUT method, respectively. In the case of the proposed
variable-length MLv-LUT method, the two algorithms may be further modified using
the algorithmic description presented in Section 3.2.4, i.e., by modifying steps 33–34 in
Algorithm 1 and steps 21–22 in Algorithm 2.

The size of B, i.e., the compressed file size, is usually smaller than the total memory
usage size computed by L2L or LML. In this work, L1L,L2L, and LML are computed to
report the total memory usage of each proposed fixed-length method, while LMLv is
computed to report the optimal storage size of the proposed framework.

Algorithm 2: Decode using ML-LUT
Data: B, input bitstream; W × H, size of I; w× h, group size; T , group size threshold;
Result: I containing symbols in alphabet A3 = {0 (non-event), 1 (positive event), 2 (negative event)};

1 Initialize: I← 0H,W ; // Fill the output with non-event symbols.
2 Decode: nκ ← Bin2Dec(first 8 bits in B); // B(1 : 8) stores the binary representation of nκ .
3 if nκ = 0 then // No other information is encoded.
4 Return I; // I is full of non-event symbols.
5 Decode: Nuc ← Bin2Dec(next nκ bits in B); // Decode Nuc.

6 Compute: Nt = d hw
5 e, nw = dlog2

HW
hw e, n` = dlog2 Nte;

7 if Nt < T then // 2L-LUT Solution.
8 Decode: Mask2L

LUTs ← Reshape( next Nuc Nt bits in B as Nuc × Nt); // Decode all mask info.

9 Compute: {N`
uc}`=1:Nt by counting the non-zero positions in each line of Mask2L

LUTs;
10 Split Mask2L

LUTs into {Mask2L
LUT`
}`=1:Nt using {N`

uc}`=1:Nt ; // Decode each LUT` mask info.

11 for ` = 1 : Nt do // Process each LUT`

12 Decode N`
uc` symbols← Bin2Dec( next 8N`

uc` bits in B as N`
uc` symbols); // 8 bits/symbol.

13 Set LUT` using Mask2L
LUT`

and the set of N`
uc` non-zero symbols;

14 Compute nκ(`) = dlog2 N`
uce;

15 end
16 else // ML-LUT Solution.
17 d` ← Bin2Dec(next bit in B); // Decode the decision regarding N`

uc > 0.

18 if d` = 1 then // An LUT having at least on line, i.e., N`
uc > 0

19 Decode LUTM(LUT`)← Reshape( next Nt bits in B); // Decode one line in LUTM.

20 Decode N`
uc ← Bin2Dec( next nw bits in B); // Decode N`

uc.

21 Decode MaskML
LUT`

← Reshape( next N`
uc` bits in B as N`

uc × `); // Decode MaskLUT`.

22 Decode N`
uc` symbols← Bin2Dec( next 8N`

uc` bits in B as N`
uc` symbols); // 8 bits/symbol.

23 Set LUT` using MaskML
LUT`

and the set of N`
uc` non-zero symbols;

24 Compute nκ(`) = dlog2 N`
uce;
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Algorithm 2: Cont.
25 Compute: nM

κ using (10) and n∗` = dlog2(N`∗
uc )e; // Find the representation of ` and κ` .

26 for jg = 1, 2, . . . , W
w do // Decode each M(ig , jg).

27 for ig = 1, 2, . . . , H
h do

28 Decode `← Bin2Dec( next n∗` bits in B); // Decode `, the LUT index.

29 Decode κ` ← Bin2Dec( next nM
κ bits in B); // Decode κ` , line in LUT` containing Vig jg.

30 if ` > 0 then // No action is needed if ` = 0 (all-zero group), see step 1 above.
31 if Nt < T then // 2L-LUT Solution.
32 Set Vig jh ← LUT`(κ`); // Use group mask and ` non-zero symbols to generate Vig jg .

33 else // ML-LUT Solution.
34 Set Vig jh ← GenerateGroup(LUT`(κ`), LUTM(`)); // Use LUTM(`) and filtered

mask to generate group mask. Use group mask and ` symbols to generate Vig jg .

35 Gig jh ← Remap Vig jg to generate Gig jg using the inverse process of (1)–(4);
36 I(h(ig − 1) + 1 : hig, w(jg − 1) : wjg)← Reshape( Gig jg , h× w); // Reshape group.
37 end
38 end
39 Return I;

4. Experimental Evaluation
4.1. Experimental Setup

In our work, the experimental evaluation is carried out on the large-scale outdoor
stereo event camera datasets [21], called DSEC, containing a set of 82 asynchronous event
sequences captured for network training using the Prophesee Gen3.1 event sensor placed
on top of a moving car, having a W × H = 640× 480 resolution.

In this work, the total memory usage of the three proposed fixed-length represen-
tations, 1L-LUT, 2L-LUT, and ML-LUT, and the compressed file size of the proposed
variable-length representation, MLv-LUT, are reported. All proposed methods are imple-
mented in the MATLAB programming language. One can note that both 2L-LUT and
ML-LUT results are reported as ML-LUT, where the corresponding method is selected
based on the group size, N. An EF sequence is generated using the sum-accumulation
process for each asynchronous event sequence and each time-window size ∆. Four frame
rates are studied for generating the EFs: (i) ∆ = 5555 µs (180 fps); (ii) ∆ = 1000 µs (103 fps);
(iii) ∆ = 100 µs (104 fps); and (iv) ∆ = 1 µs (106 fps), i.e., all acquired asynchronous events
are collected by EFs as all events having the same timestamp are collected by one EF. The
proposed methods are designed to store-on-disk/represent-in-memory each EF separately.
The performance of the proposed framework is studied using a large variety of group sizes.
The group configuration provides RA to blocks of pixels having the w× h block size set as
follows: (g1) 8× 4; (g2) 16× 4; (g3) 8× 8; (g4) 16× 8, (g5) 64× 4, (g6) 16× 16, (g7) 32× 32,
and (g8) 64× 32. More exactly, ML-LUT selects the 2L-LUT method for (g1)–(g6) and the
ML-LUT method for (g7) and (g8).

The performance of the proposed lossless coding framework is compared with the fol-
lowing state-of-the-art methods, which encode lossless intensity-like event representation
that remaps a sequence of five EFs (see [18]):

(1) The HEVC standard [17] using the FFmpeg implementation [39] which was employed
using the following command:

ffmpeg -f rawvideo -vcodec rawvideo -s W x H -r 30 -pix_fmt gray -i in.yuv

-c:v libx265 -x265-params lossless=1 out.mp4
(26)

(2) The Versatile Video Codec (VVC) standard [36] using the VVC Test Model [40] imple-
mentation which was employed using the following command:

EncoderAPP -c encoder_intra_vtm.cfg -c lossless.cfg –FrameRate=30 -wdt W -hgt H

–InputChromaFormat=400 –FramesToBeEncoded=1 –InputBitDepth=8

–OutputBitDepth=8 –BDPCM=1 -i in.yuv -b out.vvc -o out.yuv

(27)

(3) The Context-based, Adaptive, Lossless Image Codec (CALIC) lossless image codec [37];
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(4) The Free Lossless Image Format (FLIF) lossless image codec [38]; and with our
performance-oriented prior work Lossless Compression of Event Camera Frames
(LCECF) [18], where eight EFs are represented as a pair of an event map image (EMI)
and a concatenated polarity vector.

The Raw data size is computed using 2 bits per pixel, i.e., each pixel symbol is stored
using 2 bits; therefore, the size of one EF is 2HW bits. Moreover, a similar procedure as
in [18,19] is employed: the EF sequences generated for only the first 20 s, 2 s, and 20 ms
are extracted from each asynchronous event sequence for ∆ = 1000 µs, ∆ = 100 µs, and
∆ = 1 µs, respectively, i.e., a maxim of 20,000 EFs are generated for each sequence.

The coding performance of all codecs is measured using the compression ratio (CR)
metric defined as follows:

CR =
Raw data size

Compressed file size
. (28)

For ML-LUT, Equation (28) is computed using the size of output bitstream, B, gener-
ated by Algorithm 1. See Section 4.2 for the lossless compression results over DSEC.

The memory usage performance of the proposed fixed-length codecs is measured
using the compression ratio—memory usage (CRMU) metric defined as follows:

CRMU =
Raw data size

Total memory usage size
. (29)

More exactly, Equation (29) is computed using (8), (14), (18) and (25), for the proposed
fixed-length representation solutions, 1L-LUT, 2L-LUT, ML-LUT, and MLv-LUT, respec-
tively. See Section 4.3 for the memory usage results over DSEC for the proposed fixed-length
representations. See Section 4.4 for the average runtime results per EF over DSEC.

4.2. Lossless Compression Results

Figure 10 shows the lossless compression results over DSEC for four different values
of the time window of the spatiotemporal neighborhood. One can note that on one hand,
when ∆ is very small (∆ = 1 µs), see Figure 10a, a larger block size provides improved
performance as the EF is sparsely populated with event frames as a small amount of
information is stored in each EF, while a small block size provides a limited improvident as
a few bits are still necessary to signal empty group (i.e., full of non-event symbols). While
on the other hand, when ∆ is much larger (∆ = 5555 µs), see Figure 10d, the largest block
size might not provide the best performance as the EF size is limited to W × H, and the
cost of encoding ` might become too high as too many LUTs are generated with only a few
unique combinations. Figure 10 shows that, in general, the 32× 32 group size provides
the best results for any of the selected time-window sizes. Therefore, the ML-LUT 32× 32
solution was selected as the anchor fixed-length representation, and the DSEC sequences
are sorted in ascending order of the ML-LUT 32× 32 result.

Table 1 shows the average compression results over DSEC, where the bold font marks
the best results. One can note that ML-LUT 32× 32 is able to provide a CR performance of
at least 3.15 at ∆ = 5555 µs and up to 310.13 at ∆ = 1 µs. If the chip memory requirements
are stricter, then a small group size can be used, however, the CR performance decreases
by up to 95.15% at ∆ = 1 µs. One can note that the proposed method is able to provide
a minimum CR performance of at least 2, i.e., the ML-LUT can offer the sensor to store
in memory at least two compressed EF and apply other pre-processing methods (using a
block-processing approach) compared with a single EF using the raw representation. The
results also show that a larger group size might not provide improved performance as a
large group size and the possible number of unique combinations increases too much.

Figure 11 shows the lossless compression results over DSEC for comparison with
state-of-the-art methods, using different values of ∆. One can note that when ∆ is very
small (∆ = 1 µs), see Figure 11a, the performance of the proposed ML-LUT 32× 32 method
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is worse than the state-of-the-art methods as the fixed-length representation constraint is
must be satisfied by still using a few bits to signal empty groups. This small extra cost
per group adds up to a high extra cost compared with state-of-the-art methods; however,
ML-LUT 32× 32 provides an average CR compared with the raw data representation.
While on the other hand, when ∆ is much larger, see Figure 11d, the proposed fixed-length
representation ML-LUT 32× 32 provides competitive results compared with the state-of-
the-art variable-length representations, especially to the video coding standards. One can
note that ML-LUT must work under powerful constraints: must provide a fixed-length
representation, i.e., for each group of pixels, we must allocate an equal number of bits,
although maybe some groups of pixels can be encoded using a much less bitrate; must have
a low-complexity so it is suitable for integration into VLP event-processing chips, i.e., it can
be written on hardware (e.g., the use of basic coding concepts such as arithmetic coding
or adaptive Markov modeling are too complex); and must provide an efficient memory
representation, i.e., the coding gains must be large enough to justify the introduction of the
proposed coding method in the sensor.

Table 2 shows the average compression results over DSEC for comparison with state-
of-the-art, where the bold font marks the best results. One can note that the proposed
ML-LUT 32× 32 solution, although offering a fixed-length representation, is able to pro-
vide a close CR performance compared with variable-length video coding standards and
variable-length state-of-the-art image codecs for ∆ = 1000 µs and ∆ = 5555 µs, i.e., at
frequencies below 1 KHz. When ∆ is too small, the fixed-length representation feature of
the proposed framework affects the CR performance.

Table 1. Lossless compression results over DSEC for ML-LUT using different group sizes.

Method ML-LUT
8 × 4

ML-LUT
16 × 4

ML-LUT
8 × 8

ML-LUT
16 × 8

ML-LUT
64 × 4

ML-LUT
16 × 16

ML-LUT
32 × 32

ML-LUT
64 × 32

∆ = 1 µs CR 15.04 29.64 29.67 58.32 113.33 111.17 310.13 312.98
Improv. −95.15% −90.44% −90.43% −81.20% −63.46% −64.15% – 0.92%

∆ = 100 µs CR 5.97 9.92 9.89 13.92 15.83 16.07 27.18 27.67
Improv. −78.03% −63.52% −63.61% −48.80% −41.76% −40.88% – 1.79%

∆ = 1000 µs CR 3.30 4.45 4.46 5.22 5.47 5.58 6.84 6.43
Improv. −51.76% −34.96% −34.84% −23.59% −20.04% −18.37% – −5.95%

∆ = 5555 µs CR 2.17 2.62 2.60 2.88 3.03 3.03 3.15 3.00
Improv. −31.12% −16.69% −17.39% −8.36% −3.81% −3.62% – −4.51%

Table 2. Lossless compression results over DSEC for comparison with state-of-the-art.

Method HEVC
[17]

VVC
[36]

CALIC
[37]

FLIF
[38]

LCECF
[18]

ML-LUT
32 × 32

Representation Variable-
Length

Variable-
Length

Variable-
Length

Variable-
Length

Variable-
Length Fixed-Length

Chip Integration SoC SoC SoC SoC SoC VLP/ESP

∆ = 1 µs CR 1715.40 1507.25 2309.98 2775.60 5533.72 310.13
Improv. 453.12% 386.01% 644.84% 794.98% 1684.32% –

∆ = 100 µs CR 46.21 50.17 45.12 67.52 80.10 27.18
Improv. 70.01% 84.58% 66.00% 148.42% 194.70% –

∆ = 1000 µs CR 7.26 7.84 7.21 10.25 12.87 6.84
Improv. 6.14% 14.62% 5.41% 49.85% 88.16% –

∆ = 5555 µs CR 3.24 3.49 3.51 4.40 5.15 3.15
Improv. 2.86% 10.79% 11.43% 39.68% 63.49% –
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Figure 10. Lossless compression results over DSEC, measured using Compression Ratio (CR), for
ML-LUT using different group sizes when encoding EF sequences generated using a time-window of
(a) ∆ = 1 µs; (b) ∆ = 100 µs; (c) ∆ = 1000 µs; and (d) ∆ = 5555 µs. The DSEC sequence is ordered in
ascending order of the CR results of ML-LUT for a group size of w× h = 32× 32.



Electronics 2023, 12, 2302 19 of 26

10 20 30 40 50 60 70 80

Sequence index sorted in ascending order of CR results of ML-LUT 32x32

0

0.5

1

1.5

2

2.5

C
o

m
p

re
s
s
io

n
 R

a
ti

o
 (

C
R

)

10
4 Lossless Compression Results over DSEC datset for =1 s

HEVC (SoC, Variable-Length)

VVC (SoC,  Variable-Length)

CALIC (SoC,  Variable-Length)

FLIF (SoC,  Variable-Length)

LCECF (SoC,  Variable-Length)

ML-LUT-32x32 (Sensor/ESP, Fixed-Length)

(a)

10 20 30 40 50 60 70 80

Sequence index sorted in ascending order of CR results of ML-LUT 32x32

0

50

100

150

200

250

300

C
o

m
p

re
s
s
io

n
 R

a
ti

o
 (

C
R

)

Lossless Compression Results over DSEC datset for =100 s

HEVC (SoC, Variable-Length)

VVC (SoC,  Variable-Length)

CALIC (SoC,  Variable-Length)

FLIF (SoC,  Variable-Length)

LCECF (SoC,  Variable-Length)

ML-LUT-32x32 (Sensor/ESP, Fixed-Length)

(b)

10 20 30 40 50 60 70 80

Sequence index sorted in ascending order of CR results of ML-LUT 32x32

0

5

10

15

20

25

30

C
o

m
p

re
s
s
io

n
 R

a
ti

o
 (

C
R

)

Lossless Compression Results over DSEC datset for =1000 s

HEVC (SoC, Variable-Length)

VVC (SoC,  Variable-Length)

CALIC (SoC,  Variable-Length)

FLIF (SoC,  Variable-Length)

LCECF (SoC,  Variable-Length)

ML-LUT-32x32 (Sensor/ESP, Fixed-Length)

(c)

10 20 30 40 50 60 70 80

Sequence index sorted in ascending order of CR results of ML-LUT 32x32

1

2

3

4

5

6

7

8

9

10

11

C
o

m
p

re
s
s
io

n
 R

a
ti

o
 (

C
R

)

Lossless Compression Results over DSEC datset for =5555 s

HEVC (SoC, Variable-Length)

VVC (SoC,  Variable-Length)

CALIC (SoC,  Variable-Length)

FLIF (SoC,  Variable-Length)

LCECF (SoC,  Variable-Length)

ML-LUT-32x32 (Sensor/ESP, Fixed-Length)

(d)

Figure 11. Lossless compression results over DSEC, measured using Compression Ratio (CR), for
state-of-the-art methods and ML-LUT 32× 32, when encoding EF sequences generated using a time-
window of (a) ∆ = 1 µs; (b) ∆ = 100 µs; (c) ∆ = 1000 µs; and (d) ∆ = 5555 µs. The DSEC sequence is
ordered in ascending order of the CR results of ML-LUT for a group size of w× h = 32× 32.
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4.3. Memory Usage Results

Figure 12 shows the memory usage results over DSEC for 1L-LUT using different group
sizes. One can note that for each ∆, a different group size provides the best performance.
A large group size is affecting the overall performance as too much information is stored
by the LUT-based structure. However, the proposed 1L-LUT solution has the lowest
complexity, and the provided performance might be enough for some types of applications.

Figure 13 shows the memory usage results for ML-LUT and MLv-LUT using different
group sizes. Note that the 32× 32 group size usually provides the best performance. For
∆ = 1 µs, a larger group size provides a much better performance than a smaller group
size. Moreover, variable-length representation solutions provide only a small improvement
compared with the corresponding fixed-length representation solutions.

Table 3 shows the average compression results for ML-LUT and MLv-LUT, where
the bold font marks the best results. Note that the memory usage results are similar to
the lossless compression results; see Table 1. The variable-length representation solutions
always provide improved performance compared with the corresponding fixed-length
representation solutions.

4.4. Runtime Results

Figure 14 shows the encoding runtime results. Table 4 shows the average compression
results for ML-LUT, where a larger group size always provides a smaller runtime. The
hardware implementation of the proposed method can provide a much smaller runtime as
the proposed framework is designed to employ only low-complexity coding techniques
and a reduced number of operations, compared with state-of-the-art methods which are
developed to compute more complex structures and employ complex coding techniques.
To be able to hardware write such complex methods, several other optimization techniques
must be applied while accepting a drop in the coding performance and paying a high
price for developing such a specialized chip. Therefore, here, these complex methods are
evaluated as unsuitable for integration into VLP chips.

Table 3. Memory usage results over DSEC for ML-LUT and MLv-LUT using different group sizes.

Method
ML-
LUT
8 × 4

ML-
LUT

16 × 4

ML-
LUT
8 × 8

ML-
LUT

16 × 8

ML-
LUT

64 × 4

ML-
LUT

16 × 16

ML-
LUT

32 × 32

MLv-
LUT

32 × 32

ML-
LUT

64 × 32

MLv-
LUT

64 × 32

∆ = CRMU 15.04 29.66 29.68 58.38 113.58 111.42 353.70 353.82 411.43 411.49
1 µs Improv. −95.75% −91.61% −91.61% −83.49% −67.89% −68.50% – 0.03% 16.32% 16.34%

∆ = CRMU 5.97 9.91 9.89 13.91 15.83 16.07 26.38 27.77 28.35 28.58
100 µs Improv. −77.37% −62.43% −62.51% −47.27% −39.99% −39.08% – 5.27% 7.47% 8.34%

∆ = CRMU 3.27 4.44 4.44 5.20 5.46 5.57 6.56 6.91 6.44 6.50
1000 µs Improv. −50.15% −32.32% −32.32% −20.73% −16.77% −15.09% – 5.34% −1.83% −0.91%

∆ = CRMU 2.12 2.61 2.59 2.86 3.01 3.02 2.92 3.17 2.96 3.02
5555 µs Improv. −27.40% −10.62% −11.30% −2.05% 3.08% 3.42% – 8.56% 1.37% 3.42%
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Figure 12. Memory usage results over DSEC, measured using CRMU , for 1L-LUT using differ-
ent group sizes, when encoding EF sequences generated using a time-window of (a) ∆ = 1 µs;
(b) ∆ = 100 µs; (c) ∆ = 1000 µs; and (d) ∆ = 5555 µs. The DSEC sequence is ordered in ascending
order of the CRMU results of 1L-LUT 32× 32.
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Figure 13. Memory usage results over DSEC, measured using CRMU , for ML-LUT and MLv-
LUT using different group sizes, when encoding EF sequences generated using a time-window
of (a) ∆ = 1 µs; (b) ∆ = 100 µs; (c) ∆ = 1000 µs; and (d) ∆ = 5555 µs. The DSEC sequence is ordered
in ascending order of the CRMU results of ML-LUT 32× 32.
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Figure 14. Encoding runtime results (using MATLAB code implementation) over DSEC for ML-
LUT using different group sizes when encoding EF sequences generated using a time-window of
(a) ∆ = 1 µs; (b) ∆ = 100 µs; (c) ∆ = 1000 µs; and (d) ∆ = 5555 µs. The DSEC sequence is ordered in
ascending order of the encoding runtime results of ML-LUT 32× 32.
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Table 4. Encoding runtime results over DSEC for ML-LUT using different group sizes.

Method ML−LUT
8 × 4

ML−LUT
16 × 4

ML−LUT
8 × 8

ML−LUT
16 × 8

ML−LUT
64 × 4

ML−LUT
16 × 16

ML−LUT
32 × 32

ML−LUT
64 × 32

∆ = 1 µs
time

(ms/EF) 48.44 31.19 30.70 26.48 23.52 22.76 19.81 19.68

Improv. 144.52% 57.45% 54.97% 33.67% 18.73% 14.89% – −0.66%

∆ = 100 µs
time

(ms/EF) 132.87 99.05 97.24 83.54 79.14 75.21 60.57 56.05

Improv. 119.37% 63.53% 60.54% 37.92% 30.66% 24.17% – −7.46%

∆ = 1000 µs
time

(ms/EF) 217.68 154.18 150.69 115.08 92.41 88.72 69.82 65.18

Improv. 211.77% 120.82% 115.83% 64.82% 32.35% 27.07% – −6.65%

∆ = 5555 µs
time

(ms/EF) 200.99 100.12 98.08 62.45 46.67 45.09 35.51 32.49

Improv. 466.01% 181.95% 176.20% 75.87% 31.43% 26.98% – −8.50%

5. Conclusions

The paper proposed a novel low-complexity lossless compression framework for
encoding synchronous EFs by introducing a novel memory-efficient fixed-length repre-
sentation suitable for hardware implementation in the VLP event-processing chip. The
proposed framework first partitions the ternary EFs into groups and remaps the symbols.
Several solutions are proposed using different levels of LUTs. 2L-LUT is the low-complexity
lossless compression solution for encoding EFs, which provides fixed-length representation
based on two-level LUTs. ML-LUT provides an improved fixed-length representation based
on multi-level LUTs using very-large groups of pixels. The proposed framework provides
RA to any group of pixels using a fixed-length representation.

The experimental evaluation demonstrates that the proposed fixed-length framework
provides at least two times the compression ratio relative to the raw EF representation and
a close performance compared with the traditional variable-length lossless compression
methods, such as CALIC and FLIF, and with the variable-length video coding standards,
HEVC and VVC, for lossless compression of the ternary EFs generated at frequencies
below 1 KHz. To our knowledge, the paper is the first to explore low-complexity lossless
compression solutions which provide fixed-length representation of synchronous EFs,
suitable for integration into very-low-power processing chips.
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TALVEN Time Aggregation-based Lossless Video Encoding for Neuromorphic sensor
ESP Event Signal Processing
VLP Very-Low-Power
EMI Event Map Image
CPV Concatenated Polarity Vector
HEVC High-Efficiency Video Coding
SNN Spike Neural Network
CALIC Context Adaptive Lossless Image Codec
FLIF Free Lossless Image Format
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