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Abstract: The maximal consistent blocks technique, adopted from discrete mathematics, describes the
maximal collection of objects, in which all objects are indiscernible in terms of available information.
In this paper, we estimate the total possible number of maximal consistent blocks and prove that
the number of such blocks may grow exponentially with respect to the number of attributes for
incomplete data with “do not care” conditions. Results indicate that the time complexity of some
known algorithms for computing maximal consistent blocks has been underestimated so far. Taking
into account the complexity, for the practical usage of such blocks, we propose a performance
improvement involving the parallelization of the maximal consistent blocks construction method.
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1. Introduction

Rough set theory [1,2] is a tool for data mining and knowledge discovery, initially
developed for complete information systems [3,4] and then extended for incomplete sys-
tems [5–15]. Maximal consistent blocks, as a maximal collection of indiscernible objects,
were introduced for incomplete data sets, with missing values represented only as “do
not care” conditions, and were used as basic granules to define only ordinary lower and
upper approximations in [16]. In [17,18], the definition of maximal consistent blocks was
generalized to cover lost values. Furthermore, two new types of approximations were
introduced, global probabilistic approximations and saturated probabilistic approximations
based on maximal consistent blocks [19–21].

Several approaches for computing maximal consistent blocks: the brute force method [22],
the recursive method [22] and the hierarchical method [23] were introduced for incomplete
data sets with only “do not care” conditions. For incomplete data sets with only lost
values, the simplified recursive method based on the property that for such data sets, the
characteristic relation is transitive, was provided in [24]. In turn, in [17], the method for
computing maximal consistent blocks for arbitrary interpretations of missing attribute
values based on a characteristic relation was proposed.

Analysis of the published algorithms for constructing maximal consistent blocks, for
data with only “do not care” conditions, revealed two problems. Firstly, the obtained
blocks might not be maximal, especially for data sets for which a characteristic relation
is not transitive. The second problem is that, in some cases, the reported computational
complexity of the algorithms is underestimated [25]. Additionally, in papers [18,26], during
the comparison of characteristic sets with generalized maximal consistent blocks in terms
of an error rate and complexity of induced rule sets, the authors suggested that charac-
teristic sets can be computed in polynomial time, while computing maximal consistent
blocks is associated with exponential time complexity for incomplete data with “do not
care” conditions.

In this paper, we estimate the total number of maximal consistent blocks for incomplete
data sets. We define a special data set called a k-galaxy set, and we prove that the number of
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maximal consistent blocks grows exponentially with respect to the number of attributes for
incomplete data with all missing attribute values interpreted as “do not care” conditions.
Additionally, for the practical usage of this technique of incomplete data set mining, we
propose a performance improvement in the form of the parallelization of the maximal
consistent blocks construction method.

The paper is organized as follows. In Sections 2–4, an appropriate introduction to
the used approach for incomplete data mining is presented. In Section 5, the complexity
of computing maximal consistent blocks is estimated. Finally, a parallel solution for
determining maximal consistent blocks is proposed in Section 6.

2. Incomplete Data

We consider incomplete data sets with two interpretations of missing attribute values—
lost values and “do not care” conditions. Lost values, denoted by question marks, are
interpreted as values that are erased or not inserted. The “do not care” conditions, denoted
by stars, have another interpretation. Here, we assume that the original values are irrelevant
so that such values may be replaced by any existing attribute value [27]. The practice of
data mining shows that “do not care” conditions are often the results of the refusal to
provide a value. For example, some respondents refuse to provide a value of the salary
attribute, or, when asked for eye color during the collection of data about a disease, may
consider such an attribute as irrelevant and again refuse to specify the value. It is worth
noting that there are also other interpretations of missing attribute values, such as not
applicable. An example of such a situation can be the value of the salary attribute when
a respondent is unemployed. It is important to understand the reasons and distinguish
between various types of missing data, such as missing completely at random, missing at
random, and missing not at random. Examples can be found in the statistical literature on
missing attribute values [28,29].

The incomplete data set, in the form of a decision table, is presented in Table 1. The
rows of the decision table represent cases or objects. The set of all cases is called the universe
and is denoted by U. Table 1 shows U = {1, 2, 3, 4, 5, 6, 7, 8}. The independent variables
are called attributes and are denoted by A. In Table 1, Mileage, Accident and Equipment are
the attributes. The set of all values of the attribute a is called a domain of a and is denoted
by Va. In Table 1, VEquipment = {low, high}. The dependent variable Buy is called a decision.
The set of all cases with the same decision value is called a concept. In Table 1, there are two
concepts, the set {1, 2, 3, 4} of all cases, where the value of Buy is yes and the other set {5, 6,
7, 8}, where the value of Buy is no.

The value v of the attribute a for the case x is denoted by a(x) = v. A block of the
attribute–value pair, denoted by [(a, v)], is the set of all cases from U that for the attribute a
have the value v, {x ∈ U|a(x) = v}.

We consider two interpretations of missing attribute values: lost values denoted by ?
and “do not care” conditions denoted by ∗ in Table 1. The set of all cases from U that for
the attribute a have lost values {x ∈ U|a(x) = ?} is denoted by [(a, ?)], whereas the set of
all cases from U that for the attribute a have “do not care” conditions {x ∈ U|a(x) = ∗} is
denoted by [(a, ∗)].

For incomplete decision tables, the definition of a block of an attribute–value pair is
modified as follows [27]:

– If for an attribute a and a case x, a(x) = ?, then the case x should not be included in
any blocks [(a, v)] for all values v of the attribute a;

– If for an attribute a and a case x, a(x) = ∗, then the case x should be included in blocks
[(a, v)] for all specified values v of the attribute a.
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Table 1. An incomplete data set.

Attributes Decision

Case Mileage Accident Equipment Buy

1 medium yes low yes
2 ? no * yes
3 long no ? yes
4 medium * low yes
5 long yes ? no
6 * * high no
7 ? * low no
8 medium * high no

For Table 1, all the blocks of attribute–value pairs are as follows:

[(Mileage, medium)] = {1, 4, 6, 8},
[(Mileage, long)] = {3, 5, 6},
[(Accident, yes)] = {1, 4, 5, 6, 7, 8},
[(Accident, no)] = {2, 3, 4, 6, 7, 8},
[(Equipment, low)] = {1, 2, 4, 7},
[(Equipment, high)] = {2, 6, 8}.

3. Characteristic Relation

In an incomplete decision table, for B ⊆ A, the objects of the pair (x, y) ∈ U are
considered similar in terms of the B-characteristic relation R(B) defined as follows [12]:

(x, y) ∈ R(B) i f and only i f y ∈ KB(x),

where KB(x) is the characteristic set, i.e., the smallest set of cases that are indistinguishable
from x ∈ U, for all attributes from B ⊆ A. For incomplete decision tables, the characteristic
set is defined as follows [11]:

– If a(x) is specified, then K(x, a) is the block [(a, a(x))] of the attribute a and its value
a(x);

– If a(x) = ? or a(x) = ∗, then K(x, a) = U.

For the data set from Table 1 and B = A, the characteristic sets are as follows:

KA(1) = {1, 4},
KA(2) = {2, 3, 4, 6, 7, 8},
KA(3) = {3, 6},
KA(4) = {1, 4},
KA(5) = {5, 6},
KA(6) = {2, 6, 8},
KA(7) = {1, 2, 4, 7},
KA(8) = {6, 8}.
The characteristic relation is R(A) = {(1, 1), (1, 4), (2, 2), (2, 3), (2, 4), (2, 6), (2, 7), (2, 8),

(3, 3), (3, 6), (4, 1), (4, 4), (5, 5), (5, 6), (6, 2), (6, 6), (6, 8), (7, 1), (7, 2), (7, 4), (7, 7), (8, 6), (8, 8)}.

4. Maximal Consistent Blocks

Maximal consistent blocks were introduced for incomplete data sets, in which all
missing attribute values are “do not care” conditions, in [16]. The set X, X ⊆ U, is consistent
with respect to B, B ⊆ A, if (x, y) ∈ R(B) for any x, y ∈ X. Maximal consistent blocks were
defined as a maximal collection of objects, in which all objects are consistent. If there does
not exist a subset Y ⊆ U such that X ⊆ Y, and Y is consistent with respect to B, then X
is called a maximal consistent block of B. The set of all maximal consistent blocks of B is
denoted by C (B). Following [16], the set of all maximal B-consistent blocks, which include
an object x ∈ U, is denoted by C (B)(x).
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The definition of maximal consistent blocks, extended to two interpretations of missing
attribute values, lost and “do not care” conditions, was introduced in [18]. The set X, X ⊆ U
is consistent with respect to B, B ⊆ A, if (x, y) ∈ R(B) for any x, y ∈ X. If there does not
exist a consistent subset Y of U such that X is a proper subset of Y, the set X is called a
maximal consistent block of B.

For the data set from Table 1 and B = A, the set C (A) of all maximal consistent blocks
of A is {{1, 4}, {2, 6}, {2, 7}, {3}, {5}, {6, 8}}. The collections of maximal consistent blocks
with respect to objects determined by A are as follows:

C (A)(1) = {{1, 4}},
C (A)(2) = {{2, 6}, {2, 7}},
C (A)(3) = {{3}},
C (A)(4) = {{1, 4}},
C (A)(5) = {{5}},
C (A)(6) = {{2, 6}, {6, 8}},
C (A)(7) = {{2, 7}},
C (A)(8) = {{6, 8}}.
The relation S(B), B ⊆ A and x, y ∈ U, formed from all possible pairs (x, y) such that

x and y are members of the same maximal B-consistent block, is called implied by the family
C (B) of maximal consistent blocks. The relation S(B) is symmetric. For data sets with all
missing attribute values interpreted as lost, the relation S(B) is transitive [18]. For the data
set from Table 1, S(A)= {(1, 1), (1, 4), (2, 2), (2, 6), (2, 7), (3, 3), (4, 1), (4, 4), (5, 5), (6, 2), (6, 6),
(6, 8), (7, 2), (7, 7), (8, 6), (8, 8)}.

5. Estimation of the Number of Maximal Consistent Blocks

For a data set with all missing attribute values interpreted as lost, a family C (B) of all
maximal consistent blocks is a partition on U [18].

Properties of maximal consistent blocks for data sets with missing attribute values
interpreted as “do not care” conditions were explored in [16] and other papers [22,23].
However, the estimation of the number of possible maximal consistent blocks is an open
problem. In this paper, we show that such a number may exponentially grow with respect
to the number of attributes.

Proposition 1. For a data set in which all attribute values are missing and interpreted as “do not
care” conditions, the total number of maximal consistent blocks is equal to 1.

Proof. This follows directly from the definition of maximal consistent blocks.

Proposition 2. For a data set with |U| = 1, the total number of maximal consistent blocks is equal
to 1.

Proof. This follows directly from the definition of maximal consistent blocks.

In order to estimate the number of possible maximal consistent blocks for incomplete
data sets with all missing attribute values interpreted as “do not care” conditions, we
introduce a special data set, which we call a k-galaxy set. Let |A| = k, Va = {1, 2, . . . , k}
for all a ∈ A. The set is a k-galaxy set if aj(i) = j when k · (j− 1) < i ≤ k · j; otherwise,
aj(i) = ∗ for any i ∈ {1, 2, . . . , k2} and j ∈ {1, . . . , k}. ’·’ denotes a standard arithmetic
multiplication operation.

An example of a k-galaxy set (k = 3) is shown in Table 2.
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Table 2. An example of a k-galaxy set for k = 3.

Case Attribute 1 Attribute 2 Attribute 3 Decision

1 1 * * 1
2 2 * * 1
3 3 * * 1
4 * 1 * 2
5 * 2 * 2
6 * 3 * 2
7 * * 1 3
8 * * 2 3
9 * * 3 3

For the k-galaxy set (k = 3) from Table 2, the set of all maximal consistent blocks of A is
{{1, 4, 7}, {1, 4, 8}, {1, 4, 9}, {1, 5, 7}, {1, 5, 8}, {1, 5, 9}, {1, 6, 7}, {1, 6, 8}, {1, 6, 9}, {2, 4, 7}, {2, 4, 8},
{2, 4, 9}, {2, 5, 7}, {2, 5, 8}, {2, 5, 9}, {2, 6, 7}, {2, 6, 8}, {2, 6, 9}, {3, 4, 7}, {3, 4, 8}, {3, 4, 9}, {3, 5, 7},
{3, 5, 8}, {3, 5, 9}, {3, 6, 7}, {3, 6, 8}, {3, 6, 9}}.

For a set X, |X| denotes the cardinality of X.

Lemma 1. For a k-galaxy set, |C ({a})| is equal to k, where a ∈ A.

Proof. If a ∈ A and Va = {1, 2, . . . , k} then a(x) 6= a(y) for any x, y ∈ U, x 6= y. This means
that {x} is consistent with respect to a. Therefore, from the definition of maximal consistent
blocks, there are k maximal consistent blocks with respect to a.

For instance, in Table 2, the set of maximal consistent blocks with respect to Attribute 1
from the example of a k-galaxy set for k = 3 is {{1, 4, 5, 6, 7, 8, 9}, {2, 4, 5, 6, 7, 8, 9}, {3, 4, 5, 6,
7, 8, 9}}.

Lemma 2. For a k-galaxy set, let j, v ∈ {1, . . . , k}. The set C ({aj})(v) is equal to {x|aj(x) = v}
∪⋃k·(j−1)

x=1 {x} ∪⋃k2

x=k·j+1{x}, where aj ∈ A.

Proof. Let a ∈ A, v ∈ {1, . . . , k} and X(v) = {x|a(x) = v∨ a(x) = ∗}. For any x, y ∈ X(v),
x 6= y, x and y are consistent with respect to a; if a(x) = v, then a(y) = ∗, so X(v) is a
consistent block. Moreover, there does not exist z ∈ U\X(v) such that a(z) = v. This means
that objects with values belonging to Va are inconsistent. Therefore, X(v) is a maximal
consistent block with respect to the attribute a.

Any attribute of a k-galaxy set contains k inconsistent objects belonging to Va and
remaining k2 − k objects of the type [(a, ∗)]. Hence, each C ({a})(v) includes exactly one
object with a specified value v and k2 − k objects [(a, ∗)], and thus |C ({a})(v)| is equal to
1 + k2 − k.

In Lemma 3 and Proposition 3, provided below, we use Property 5 from [16] which
states that the set of maximal consistent blocks can be updated sequentially depending
on the currently analyzed set of attributes. Let a, b ∈ B ⊆ A, x ∈ U, va, vb ∈ {1, . . . , k},
Xa ∈ {x|a(x) = va} and Xb ∈ {x|b(x) = vb}, and from the definition of a k-galaxy set,
Xa ∩ Xb = ∅.

Lemma 3. For a k-galaxy set, the cardinality of each maximal consistent block of C (B) is the same,
equaling 1 + k2 − k− (k− 1) · (|B| − 1), B ⊆ A.

Proof. For any x, y ∈ U, x 6= y, {x, y} is consistent with respect to {a, b} if x ∈ Xa and
y /∈ Xa or y ∈ Xb and x /∈ Xb. From Lemma 2, the C ({a}) includes exactly one object
with a specified value va and k2 − k objects [(a, *)]. Thus, for {a, b}, the set of k2 − k objects
[(a, *)] is reduced by k objects belonging to Xb. Additionally, based on the construction of a
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k-galaxy set, the objects in Xa as well as in Xb are discernible, so the number of elements in
C ({a, b}) is k− 1 less than in C ({a}). Hence, increasing the number of attributes by one
reduces the number of elements of C (B) by k− 1. In consequence, if B = A, the number of
elements of all C (B) is reduced to k.

For instance, in Table 2, k = 3, XAttribute1 = {1, 2, 3}, XAttribute2 = {4, 5, 6} the sets {1, 4},
{1, 5}, {1, 6}, {2, 4}, {2, 5}, {2, 6}, {3, 4}, {3, 5} and {3, 6} are consistent with respect to {Attribute1,
Attribute2}, and all mentioned sets belong to R(Attribute1, Attribute2) (see Section 4). For the
set C ({Attribute 1}) is {{1, 4, 5, 6, 7, 8, 9}, {2, 4, 5, 6, 7, 8, 9}, {3, 4, 5, 6, 7, 8, 9}}, each block
contains one object with a specified value belonging to VAttribute 1 and six objects of the type
[(Attribute 1, *)], so |C ({a})| = 7 (see Table 3). The set C ({Attribute 1, Attribute 2}) is {{1,
4, 7, 8, 9} {1, 5, 7, 8, 9}, {1, 6, 7, 8, 9}, {2, 4, 7, 8, 9}, {2, 5, 7, 8, 9} {2, 6, 7, 8, 9}, {3, 4, 7, 8, 9}, {3,
5, 7, 8, 9}, {3, 6, 7, 8, 9}}, and each block contains two objects with a specified value—the
first belonging to VAttribute1 and the second belonging to VAttribute 2—and three objects
[(Attribute 1, *),(Attribute 2, *)]. Therefore, |C ({a, b})| = 5 (see Table 4). The number of
elements in C ({a, b}) is reduced by (k− 1) objects with respect to VAttribute 2. Finally, each
block of the C (A), presented above, contains three elements and is reduced again by k− 1
objects with respect to VAttribute 3.

Table 3. Visualization of objects belonging (X) to maximal consistent blocks with respect to Attribute
1 from the example of a k-galaxy set for k = 3.

Case MCB1 MCB2 MCB3

1 X
2 X
3 X
4 X X X
5 X X X
6 X X X
7 X X X
8 X X X
9 X X X

Table 4. Visualization of objects belonging (X) to maximal consistent blocks with respect to Attribute
1 and Attribute 2 from the example of k-galaxy set for k = 3.

Case MCB1 MCB2 MCB3 MCB4 MCB5 MCB6 MCB7 MCB8 MCB9

1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X X X
7 X X X X X X X X X
8 X X X X X X X X X
9 X X X X X X X X X

Proposition 3. For a k-galaxy set |C (A)| = kk.

Proof. For any a ∈ A from Lemma 1, |C ({a})| = k. For any x, y ∈ U, x 6= y, {x, y} is
consistent with respect to {a, b} if x ∈ Xa and y /∈ Xa or x ∈ Xb and y /∈ Xb. Additionally,
based on the construction of a k-galaxy set, the objects in Xa as well as in Xb are discernible,
so each of the k objects belonging to Xa is consistent with each of the k objects belonging to
Xb. Hence, there are k · k consistent blocks with respect to the attributes {a, b}. Objects such
that {x|a(x) = ∗ and b(x) = ∗} are added to every consistent block with respect to the set
of attributes {a, b}. From Lemma 3, all of the blocks have the same number of elements.
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There are no subsets that are consistent with respect to the set of attributes {a, b}. The
obtained blocks are maximal consistent blocks. Extending the set of analyzed attributes by
another attribute increases the number of maximal consistent blocks k times, and thus, the
number of maximal consistent blocks for the entire k-galaxy set is kk.

Therefore, in the worst case, the time complexity of computing maximal consistent
blocks is O(nn), where n is the number of objects in a data set. This result indicates that the
time complexity of some known algorithms for computing maximal consistent blocks was
underestimated so far, and their authors suggest that the mentioned problem is associated
with polynomial time complexity [22,23].

6. Parallelization of the Maximal Consistent Blocks Computations

The idea of the sequential update of the set of maximal consistent blocks based on
Property 5 from [16] proposed in [25] is more effective than the commonly used method
of constructing the blocks. However, the subsets merging, which removes subsets by
performing comparisons between two sets (the current set of maximal consistent blocks
obtained so far and the new one built for the next attribute), has a significant impact on
the overall performance. Thus, the usage of maximal consistent blocks in mining real
data with a large number of missing values or/and many attributes requires additional
improvements. Here, a solution based on parallel processing is proposed.

Due to the fact that the subset is a transitive relation, the merge procedure can apply
subset elimination in any order; in particular, merged sets of consistent blocks can be
processed in pairs at the same time.

Let A = {a1, . . . , an} and |C ({a1})| is equal to k1. Thus, the BuildProcedure splits the
set of all cases U into a set of k1 maximal consistent blocks with respect to the first attribute
(see Figure 1). Then the k1 blocks are divided in pairs into a batch of (b k1

2 c+ k1 mod 2)
separate tasks that are executed simultaneously. In the first batch, the BuildProcedure
is called for each block of the pair and the next attribute a2, then the resulting sets are
merged. The C1, . . . Ck1 sets of blocks, being the results of the entire batch, are divided in
pairs into (b k1

4 c+ k1 mod 2) separate merging tasks and the next batch is formed. The
merging continues until a single set of k2 maximal consistent blocks is obtained. Then the
set is divided in pairs into a batch of (b k2

2 c+ k2 mod 2) tasks and the computations are
performed for the attribute a3. The processing is repeated until all the attributes in the data
set are taken into account.

In the evaluation of the parallel computation, two aspects should be considered:
speedup—the improvement in running time due to parallelism; and efficiency—the ratio
of work done by a parallel algorithm to work done by a sequential algorithm [30]. As
indicated above, in the worst case in the sequential algorithm, the time complexity of
computing maximal consistent blocks is O(nn), where n is the number of objects in a
data set. The proposed approach is a synchronized parallel algorithm [31]. The tasks are
parallelized in batches. The results of each task from the given batch are not independent
and have to be merged. This merging continues in subsequent batches of parallelized tasks
until a single set of maximal consistent blocks is obtained. The processes are synchronized
at the end of each batch. In the most optimistic scenario, in which all tasks in a batch are
executed at the same time, the total number of batches (which can be estimated as k/2 for
each attribute) determines the efficiency. In practice, however, the efficiency is reduced by
the fact that p− 1 processes have to wait for the processes executing the slowest task in a
batch. Therefore, in the worst case, the relative improvement compared to the sequential
algorithm is O(n

n
2 ).
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Figure 1. Parallelization of the maximal consistent blocks computations. Cl
x denotes x-th maximal

consistent block with respect to attributes l, BP denotes BuildProcedure.
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For the demonstration of the real values of the efficiency, the abalone data set with all
missing attribute values interpreted as “do not care” conditions was selected, due to the
fact that during the experiments performed, using the sequential algorithm, this set turned
out to be the most demanding one [25]. The analysis was conducted using 4, 6, 8, 12, 16,
20 and 32 processors. The abalone data set contained 4177 observations and 8 attributes.
The “do not care” conditions data sets were prepared by randomly replacing 5%, 10%,
15%, 20% of existing specified attribute values with the “*”s. Results of the analysis are
presented in Figures 2 and 3. The speedup does not increase linearly with the number of
processors; instead, it tends to saturate. The efficiency drops as the number of processors
increases. For parallel systems, this observation is called Amdahl’s law [32]. However,
the results show a general increase in the speed (performance) of the parallel approach
compared to the sequential computing of maximal consistent blocks. The proposed parallel
algorithm includes operations that need to be executed sequentially and the increase in
processing speed obtained due to the parallelization of the algorithm is limited by these
sequential operations.
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7. Conclusions

The idea of a maximal consistent block is adopted from discrete mathematics and
describes the maximal collection of objects, in which all objects are similar [16]. In this
paper, we prove that the total number of maximal consistent blocks for incomplete data
with all missing attribute values interpreted as “do not care” conditions, in the worst
case, depends exponentially on the number of attributes. More specifically, the time
complexity of computing these blocks may be estimated as O(nn). The results of our
work indicate that the time complexity of some known algorithms for computing maximal
consistent blocks has been underestimated so far. Furthermore, taking into account the
complexity of maximal consistent block calculations, adapting the implementation for
parallel computing is proposed. Our experiments show an overall increase in speed
(performance) of the parallel approach compared to sequential computations of maximal
consistent blocks. However, due to the definition of the blocks, full parallelism does
not seem possible. The proposed parallel algorithm consists of operations that must be
performed sequentially—synchronized batches of parallel tasks. However, none of the
algorithms for calculating maximal consistent blocks available in the literature is ready to
be used in parallel computing. The presented solution is the first approach.

It is also worth mentioning that the problem of the complexity of computing maximal
consistent blocks has not yet been studied in the available literature. The estimation of the
worst-case of such calculations makes it possible to determine their impact on a system’s
performance and indicates the upper limit of resources required in practical applications. In
the future, we would like to apply this approach in the module of incomplete data mining
of a fall detection system [33]. In systems based on sensors, various types of disturbances
may occur, caused, for example, by power failure or battery depletion. Due to the fact that
the FRSystem, created in cooperation with the Elderly Care Home in Rzeszow, is dedicated
to elderly monitoring, such an extension is required.
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