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Abstract: Infrared and visible images of the same scene are fused to produce a fused image with
richer information. However, most current image-fusion algorithms suffer from insufficient edge
information retention, weak feature representation, and poor contrast, halos, and artifacts, and can
only be applied to a single scene. To address these issues, we propose a novel infrared and visual
image fusion algorithm based on a bilateral-least-squares hybrid filter (DBLSF) with the least-squares
and bilateral filter hybrid model (BLF-LS). The proposed algorithm utilizes the residual network
ResNet50 and the adaptive fusion strategy of the structure tensor to fuse the base and detail layers of
the filter decomposition, respectively. Experiments on 32 sets of images from the TNO image-fusion
dataset show that, although our fusion algorithm sacrifices overall time efficiency, the Combination
1 approach can better preserve image edge information and image integrity; reduce the loss of source
image features; suppress artifacts and halos; and compare favorably with other algorithms in terms
of structural similarity, feature similarity, multiscale structural similarity, root mean square error,
peak signal-to-noise ratio, and correlation coefficient by at least 2.71%, 1.86%, 0.09%, 0.46%, 0.24%,
and 0.07%; and the proposed Combination 2 can effectively improve the contrast and edge features
of the fused image and enrich the image detail information, with an average improvement of 37.42%,
26.40%, and 26.60% in the three metrics of average gradient, edge intensity, and spatial frequency
compared with other algorithms.
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1. Introduction

The aim of infrared and visible image-fusion technology is to extract and integrate
features from images captured by different sensors using specific algorithms, thereby
generating a complementary image that contains both rich detailed features of the vis-
ible image and target information of the infrared image [1,2]. This technology has a
wide-ranging impact on economic development, involving applications in fields such as
national defense, military [3], intelligent transportation [4], and power grid operation [5,6].
These applications require advanced electronic components and control systems, such as
high-performance sensors, image processors, and communication modules, which jointly
promote technological progress and economic development.

Currently, among the numerous infrared and visible image fusion algorithms, the widely
adopted approach is the image-fusion method based on multiscale transformation [7,8]. How-
ever, this method does not consider spatial inconsistencies well, which can lead to distortions
and artifacts near the edges [9]. Moreover, its transformation and inverse transformation
processes are time-consuming and complex, requiring a large amount of memory space and
computational resources [10,11]. To overcome these problems, image fusion is performed
using an edge-preserving smoothing filter [12], which can effectively avoid artifacts and
spatial inconsistencies generated by multiscale transformations by decomposing the image
into base and detail layers through filtering [13].
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Chetal. [14] proposed an image-fusion algorithm based on high-order discrete wavelet
components and guided filters, which can effectively smooth and enhance spatial infor-
mation, but halos still exist near the edges. Singh et al. [15] proposed an image-fusion
method based on a discrete wavelet transform and a bilateral filter to better preserve the
edges of the image, but it reduces the contrast of the infrared image in the fused image.
Li et al. [16] proposed an image-fusion algorithm based on a fast approximate bilateral filter
and local energy features, in which the algorithm utilizes a fast approximate bilateral filter
to decompose the source image five times, obtaining a base layer and several detail layer
images. However, the algorithm preserves edge features more efficiently at the expense of
time and reduces halos.

As the development of deep learning has progressed in fields such as object detection
and image restoration, various deep-learning-based algorithms have also been applied to
image fusion. These algorithms can extract significant features from source images, such as
convolutional neural networks (CNNs) [17] and generative adversarial networks (GANSs) [18].
Liu et al. [19] proposed a CNN-based fusion algorithm, that works with the result of the
last layer as image features, and the network structure is too simple, resulting in the loss
of useful information. To solve the issue of information loss caused by the increase of
convolutional networks, residual networks (ResNets) [20] and dense convolutional networks
(DenseNets) [21] make full use of and process deep features to ensure that more useful
information can be retained during feature extraction. However, the image-fusion algorithms
of these methods require the manual design of fusion layers and do not achieve true automatic
image fusion. To alleviate the complexity of engineering design, recently proposed approaches
utilize end-to-end network models for image fusion, such as Fusion2Fusion [22], ZMFF [23],
and SwinFuse [24]. However, these methods cannot fully utilize the complex characteristics
and face challenges in effectively preserving the original details.

In summary, although the smoothing filtering algorithms can provide edge protection,
they do not sufficiently enable the extraction of image features. Additionally, if only the deep
information of the image is extracted using the convolutional network during the fusion
process [25], it can effectively improve the similarity of the fused image. However, this ignores
important edge information, leading to drawbacks such as insufficient extraction of edges
or textures in the fused image. To better extract the feature information of source images,
enhance image contrast, and effectively preserve image edges, this paper is inspired by the
mixed filtering proposed by Liu et al., and proposes an infrared and visible image fusion
algorithm based on second-order bilateral-least-squares mixed filtering [26]. In this algorithm,
a quadratic bilateral-least-squares mixed filtering model is used to decompose the source
images into detail layer 1. The amplified detail layer 1 and the source image are then fused
using a second decomposition to obtain detail layer 2 with sharper boundaries and more edge
information, as well as a base layer. Multiple feature layers are extracted using ResNet50 and
a high-quality saliency map is generated for weighted fusion with the base layer. Additionally,
an adaptive weighted method based on the structure tensor is used to fuse the two detail
layers obtained from the two decompositions. Finally, different combinations of the fused
base layer, detail layer 1, and detail layer 2 are used to obtain the desired fusion image for
multiple scenes. The contributions of this work are summarized as follows.

(1) This work proposes an infrared and visible image fusion algorithm based on a dual
bilateral-least-squares hybrid filter. The hybrid filter achieves spatial consistency,
edge preservation, and texture smoothing to solve halo artifacts around the edges
and reduce noise in the fusion of infrared and visible images. Meanwhile, this paper
provides two different layer combination methods, which can better adapt to the
engineering application requirements.

(2) The proposed image-fusion method applies a two-stage decomposition method with
a bilateral-least-squares hybrid filter to obtain enhanced edge details from the source
image. The adaptive weighting strategy based on the structure tensor is more effective
in preserving the contour features present in the detail layer.
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(3) The proposed method utilizes the residual network’s strong feature preservation
and extraction capabilities to fuse the base layer, which contains many pieces of
fundamental information in the image. This approach effectively retains essential
information in the base layer and enhances the image’s feature similarity.

(4) The effectiveness and adaptability of a novel dual bilateral-least-squares hybrid filter
(DBLSEF)-based method for fusing infrared and visible images have been validated
through experiments on 32 TNO datasets. The results indicate that Combination 1 can
better maintain the image edge information and integrity while reducing the loss of im-
portant information features from the source images. On the other hand, Combination
2 is more proficient in enhancing contrast and edge features.

The remaining sections of the paper are presented as follows. Section 2 provides a brief
overview of the fundamental principles behind the bilateral filter and least-squares filter.
Section 3 outlines the proposed image-fusion method. Section 4 describes the experimental
results and analysis. Lastly, Section 5 presents the conclusions.

2. Principle of the Bilateral-Least-Squares Filtering Algorithm

The bilateral-least-squares filtering algorithm is a hybrid filtering method that com-
bines the ideas of bilateral filtering and the least-squares method, considering both the
spatial and pixel value domain correlation. It effectively enhances image contrast while
preserving edge information. Specifically, bilateral filtering is a non-linear filtering method
that preserves edge information while removing noise, while the least-squares method is a
mathematical optimization technique that uses the best-fitting of the curve to minimize the
error between predicted and true values.

2.1. Bilateral Filter

A key issue in image smoothing filtering is effectively preserving edge information, as
it greatly impacts the quality of the resulting fused image. Bilateral filters use functions
composed of spatial and color information to effectively smooth images while preserving
edge information [27]. For a given input image, with s as the central point and ¢ as the
image of any point in s’s neighborhood N(s), the output image after being processed by a
bilateral filter is denoted as us, as shown in (1).

Us = z% Y Go, (s —1)Go,(gs — 8t)8t
teN(s) )

Zs= ), GUs(S_t)GUr(gs_gf)
teN(s)

where G, and Gy, are spatial and Gaussian kernel functions, respectively. o represents the
spatial proximity factor and grayscale similarity factor. G, (s — t) represents the spatial dis-
tance between point ¢ in neighborhood N(s) and other points, while G, (gs — g¢) represents
the difference in the gray value.

When it comes to image smoothing and edge preservation, bilateral filtering may cause
gradient reversal and halo effects, and it is difficult to effectively remove strong speckle
noise. In contrast, weighted least-squares filtering only performs smoothing filtering in flat
areas, achieving the effect of noise removal and edge preservation.

2.2. Least-Squares Filter

The least-squares method is a mathematical optimization technique that seeks the
best-fitting curve to minimize the error between predicted and true values. The weighted
least-squares filter is a filtering method based on the least-squares method, which can
efficiently extract background information and texture details from different spatial scales
of the source image [28]. In the weighted least-squares filter, the weight values in the weight
matrix depend on the local characteristics of the signal, such as the slope, curvature, and
second-order derivative of the signal. By adjusting the weight matrix, a balance between
noise suppression and edge protection can be achieved during the filtering process, and
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the quality of image filtering is further improved. The image gs of a center point s can be
obtained by minimizing the following objective function:

i (s — 802+ Mo Vit + (Vg ?) ) @

where the first minimizes the difference between u; and g; the second term is smoothed
by minimizing the partial derivative of us; A is a regular factor; and wys and wy s are
smoothing weights.

The wy,s and wy s value can be derived by the following formulas:

Wy,s = (’Vgx,s|a¢ + 5)71/

Wy,s = (‘ny,s ot S)il. (3)

where £ is the logarithmic luminance channel of the input image gs; that is, £ = log(gs). The
parameter « determines the sensitivity of the gradient of £ and ¢ (usually 0.0001) is a small
constant to prevent division by zero in constant regions of image gs.

Taking the derivative of the objective function (2) and setting it to zero yields the large
sparse linear system represented by (4):

(I+ALg)us = gs 4)

In(4), Ly = DzAxDx + DyT AyDy, where Ay and Ay are diagonal matrices containing
wy,s and wy s, respectively. Dy and Dy are forward difference operators, while DI and DyT
are backward difference operators. Therefore, L¢ is a nonhomogeneous Laplacian matrix
with five points.

The linear system of equations in (4) can be utilized to derive a vector u that minimizes
(2). The solution to this quadratic optimization problem, subject to linear constraints, can
be expressed as follows:

s = (1+ALg) g ®)

However, computing the nonhomogeneous Laplacian matrix in (4) incurs a high
computational cost and Lg causes (5) to be solved in the image domain, resulting in a very
large inverse matrix. Therefore, setting wy s = wy,s = 1in (2) can turn it into an unweighted
equation, as shown in (6).

min Y ((us — g5)* + A( (wx,s)”Z n (wy,s)z)) ®)

Since (6) is the unweighted least-squares method and L, is the Laplacian matrix in
(5), the smallest unique vector solution can be obtained in the Fourier domain. Then, the
output image us can be obtained by the following formula:

F(8s) )

us = F - < — @)
F(1) +A(F(9x) - F(9x) + F(9y) - F(3y))

where F(-) and F~1(-) are the fast Fourier transform (FFT) and inverse fast Fourier trans-
form (IFFT) operators, respectively. F(-) and F(-) are complex conjugates. F (1) represents
that the fast Fourier transform of the ¢ function is always 1. Addition, multiplication, and
division operations are all pointwise operations.

The advantage of unweighted least-squares filtering is the fast and efficient compu-
tation of the vector solution using FFT and IFFT operators. However, it lacks an edge-
preserving smoothing operator, leading to halo artifacts in the filtered image.




Electronics 2023, 12, 2292

50f17

2.3. Bilateral-Least-Squares Filtering Algorithm

This paper proposes a new method based on the approach presented in [24], called
bilateral least-squares filtering (BLF-LS), for smooth images. This method first uses bilateral
filtering to smooth the image gradient and then embeds the smoothed image gradient into
a least-squares framework, effectively smoothing the image while better preserving its
edges. Specifically, the smoothing framework is implemented as follows:

xe{xy}

min) ((Ms —8) HA Y (Vitas — (fBLF(Vg*))s)Z) 8)

where, when A is sufficiently large, the gradient of the output us, i.e., Vu,, will approach

feLr(Vgs), * € {x,y}.

Us :FBLF—LS(gs)

F(gs)+A L F(9«)-F((foLr(Vgx)) )
_ ]:71 we{xy}
FL)+A Y F(0+)-F(0+)
«c{x,y}

where fprr(Vg«), * € {x,y} represents smoothing of the gradient of the input image g in
the x and y axes directions using bilateral filtering, and Fgrr_1s(+) represents smoothing of
the input image using BLF-LS filtering.

Combining bilateral filtering and least-squares filtering can achieve complementary
effects, because bilateral filtering can preserve the structure of image information well
but may lose a lot of shadow distribution, while least-squares filtering can preserve the
shadow distribution of reference information well but may lose the edge structure and
detail information of image information. Therefore, combining the two filtering methods
can better preserve the edge structure and detail information of the image while preserving
the image structure information and shadow distribution, thus achieving a better image
filtering effect.

3. Dual Bilateral-Least-Squares Hybrid Filtering Model

The bilateral-least-squares hybrid filtering model is a filtering algorithm used for
image denoising. This algorithm combines the advantages of bilateral filtering and least-
squares filtering, and can effectively remove noise from images while preserving the details
and edge information. In this way, the dual bilateral-least-squares hybrid filtering (DBLSF)
model can simultaneously meet the requirements of image smoothing and denoising and
can be applied to many image processing tasks, such as digital image processing, computer
vision, and robot vision.

3.1. Image-Fusion Model

Given the input visible image Iy and infrared image Ij, the filtering models in this
paper are employed to decompose the visible and infrared input images into the base layer
B, and detail layer D, * € {V,I}. The fusion weighting strategy in the proposed model is
chosen based on the different contrast and detail features of the decomposed base layer
and detail layer. The base layer is deeply extracted with a residual network (ResNet50)
to obtain base layer features, and the corresponding weight map is calculated by local
L1-norm and average operation. The detail layer adopts an adaptive weighting strategy
based on structural tensor for fusion. The fusion algorithm presented in this study follows a
flowchart, as depicted in Figure 1, which involves combining the fused base layer and detail
layer to obtain the fused image F. Two combinations are defined based on the combination
of the detail layer and the base layer, namely Combination 1 (C1), which includes only
detail layer 1 and the base layer, and Combination 2 (C2), which includes detail layer 1,
detail layer 2, and the base layer.
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square filtering

Visible image decomposition
Figure 1. Flowchart of infrared and visible image fusion algorithm based on DBLSF.

The base layer B is obtained by filtering the input image with BLF-LS. The detail layer

D, is obtained by subtracting the basic layer B, from the input image I.. The calculation
formula is shown below.

B. = Fgrp-15(ls, 05, 07) (10)

D,=1,—B, (11)

3.2. Fusion Rules

The basic layer contains low-frequency content, including a large amount of basic
information about the image, and represents the overall appearance of the image in smooth
areas. Therefore, effectively extracting the features of the basic layer and preserving a
large amount of information from the source image can improve the similarity between the
fusion image and the source image. In this paper, DBLSF is used to decompose the source
image into a basic layer and a detail layer, as shown in Figure 2.

Figure 2. Base layers and detail layers obtained by BLF-LS decomposition of the source image.
(a) Visible image; (b) base layer of visible image; (c) detail layer of visible image; (d) infrared image;
(e) base layer of infrared image; (f) detail layer of infrared image.

To obtain more detailed information, this paper enhances the source image and obtains
the base layer through (12).
L' = L. + aD. (12)

where « is an adjustable parameter, which is used to amplify the detail layer and added to
the source image to obtain the enhanced image.
Finally, the base layer of the source image is enhanced using (13):

B, = PBLF—LS(I*//Us/Ur) (13)

In (12), when « is 0, it represents the original basic layer. Setting different values of «
to enhance the contrast of the base layer is necessary to ensure its correlation and visual
perception with the original basic layer. The enhanced basic layer was compared with the
original basic layer through objective evaluation metrics such as average gradient (AG),
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structural similarity (SSIM), visual information fidelity (VIF), and correlation coefficient
(CC). The decomposed images of infrared and visible obtained are shown in Figures 3 and 4,
respectively, and corresponding objective evaluation results with varying parameters are
shown in Table 1.

(b) (d)

Figure 3. By’ obtained by decomposition of different a. (a) a = 0.5; (b) & = 1.0; (¢) « = 1.5; (d) a« = 2.0;
(e) « = 3.0.

(b) (© (d) (e)

(a)
Figure 4. B/’ obtained by decomposition of different a. (a) « = 0.5; (b) & = 1.0; (c) & = 1.5; (d) a = 2.0;
(e) « =3.0.

Table 1. The image of the decomposition obtained by changing the variable a with the corresponding
objective evaluation.

Evaluation a=0.5 a=1.0 x=1.5 a=2.0 a=23.0
Index BV/ BI/ BV' BI' BV/ BI/ BV/ BII By BI/
AG 2.6408 2.0334 2.8705 2.1868 3.1073 2.3828 3.3692 2.6680 4.1045 3.4655
SSIM 0.9770 0.9805 0.9698 0.9759 0.9586 0.9663 0.9413 0.9486 0.8828 0.8821
VIF 0.7881 0.7649 0.7895 0.7722 0.7784 0.7603 0.7549 0.7422 0.6901 0.7037
CcC 0.9994 0.9996 0.9994 0.9996 0.9992 0.9994 0.9988 0.9990 0.9972 0.9973

Based on the results in Table 1, it was found that, when « > 1, the smoothed basic layer
showed a significant increase in AG, but noise severely affected the visual perception, and
the correlation coefficient between the original basic layer and the enhanced basic layer was
reduced. Therefore, a value of « = 1 was chosen, which provided a visually pleasing and
highly correlated basic layer, and effectively improved the overall brightness and contrast
of the image.

3.2.1. ResNet50-Based Fusion

The enhanced base layer B contains important image details, as well as the primary
contrast and brightness information. To better preserve the background features of the
source image and improve the similarity between the fused image and the source image,
ResNet50 trained on ImageNet was used to obtain deep features. Then, a multi-layer fusion
strategy was employed to obtain a weight map. Finally, the weight map and the base layer
were fused. The process of base layer fusion is illustrated in Figure 5.

The fusion strategy using ResNet50 for extracting deep features is described in detail
below. ResNet50 consists of 5 convolutional blocks and the output feature maps can be
represented as cpi, ie€{1,23,4,5}.

¢\, = @;(B) (14)
where ®;(-) represents the process of extracting the feature map by the i-th convolutional

block in ResNet50. The more convolutional blocks the input image passes through, the
more abstract image features are extracted, generating deeper and higher-semantic feature
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maps. Therefore, in this study, we chose the deep feature maps ¢. outputted from the
i =3, 4, 5 convolutional blocks. Among them, the feature maps <p;2’ and (/)jf withi=3, 4 are
saved during the extraction of deep feature maps ¢ with i = 5, rather than using different
networks for extraction (as in Li et al. [19]), thus saving time.

Base layer > Multilayer > Mlululayer |
A feature maps | A weight maps | |

et — e, ———_—_——— Weighted

Local fusion Fusion
ResNet -
eshe L1-norm Multilayer| base layer
maximum
Y | Multilayer Y .| Multilayer selection

Base layer > R
Y feature maps weight maps

Weight map of the visible base layer

Figure 5. Flowchart of base layers’ fusion.

The workflow diagram for generating deep feature maps using ResNet50 is shown
in Figure 6 and the corresponding time consumption is listed in Table 2, with the optimal
values highlighted in bold. The initial weights ¢ for calculating the feature map ¢’ using
local L1-norm and averaging are computed using the following formula:

p=x—tq=y—t .
| Et % | ¢%(p.9) II1
. = . (15)

(2t +1) x (2t +1)

where ||-||; represents the L1-norm, (p, q) represents the coordinates within the region, and
t = 2 is used in this paper.

: |
Convolution
block 3 I Feature map :
Convolution Convolution |
block3 | ™| block4 | | Feature map I
Convolution Convolution Convolution l
block3 [™| block4 [™] blocks [ [ Ftuemap |
. Convolution Convolution Convolution Multiple
Input image block 3 ™ block 4 ™ block 5 ™ feature maps

Figure 6. Flowchart of generating depth feature maps using ResNet50.

Table 2. Extraction of feature maps ¢. using ResNet50 network time consumed.

Methods Time/s
ResNet50-multiple 5.013
Proposed method 3.879

Due to the use of residual networks in extracting deep features, the number of channels
M in the feature map varies with the number of convolutional blocks 7, with the following
relationship: M = 64 x 2i~1. Therefore, it is necessary to perform bicubic interpolation on
the initial weight w to adjust it to the size of the input base layer and then calculate the final
weight map. The calculation formula is as follows:

_ dmn)
¢y (m,n) + §j(m,n)

wi/(m,n)

(16)
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, b (m, n
wll(m,n) — — ¢I( Ai)
Py (m,n) + 1 (m, n)
The fusion of the input base layer Br with the weight map §%, (i € {3,4,5} and
* € {V,I}) obtained is calculated as shown in (18):

(17)

Bi(m,n) = wi,(m,n) x By (m,n) + wh(m,n) x By(m,n) (18)

Finally, the maximum modulus method is used to fuse the base layer. The maximum
value of the base layer is calculated by (19).

Bp(m,n) = max[Bp(m,n)|i € {3,4,5}] (19)

3.2.2. Structure Tensor-Based Fusion

The gradient values of an image are closely related to its visual effects and, the larger
the gradient values of the image, the more obvious its fine texture and edge features [29].
Using a structure tensor-based adaptive weighting strategy [30,31] can better preserve
the spatial information and detail layer features of the image. As shown in Figure 2, the
decomposed detail layer contains high-frequency content, mainly including edge, contour,
and sharp detail information. To construct the structure tensor gradient S., * € {V, I} of
the input detail layer D, the partial derivatives D y and D, y along the x and y axis are
computed. The specific calculation formulas are as follows:

D? Dy Dy
Sy = A 5 20
V= |Dy.Dv, D}, (20)
D? D; Dy
Si=1p Y 21
= |DyDy, D2, @

The matrix Sy and S; are both symmetric positive definite matrices, so they can be
decomposed as:
A 0] 7a }
S« = QAQ" = ' * 22
Q" = [pana) gt 0 | 1 @
where A,j and A, are two non-negative eigenvalues of matrix S, and their corresponding
eigenvectors are 77,1 and #,7, respectively.

Assuming that the larger eigenvalue is A,; and the smaller one is A,y, a larger A,q
value indicates stronger edge intensity at that pixel in the image. Meanwhile, in terms of
the Frobenius norm, the fused image should preserve the properties of the original images
and its S’, should be closest to S,, that is, S’ = QA’QT, where A’ is the following matrix:

A = [)\*1 0:| (23)

According to the eigenvector 77,1 corresponding to the larger eigenvalue A1, it rep-
resents the gradient direction of the pixel point, which has the most obvious gray level
changes and stronger edge intensity, indicating richer spatial information. Therefore, the
weight matrices Wy and W for the detail layers of the visible and infrared images can be,
respectively, calculated using the proportion of the larger eigenvalue Ay and Apy.

Ayt
Wy = ——“~ 24
YT Avi+An @)
T p— (25)

T Avit+An
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Finally, the fused detail layer can be calculated using the weighted method, which is
expressed as
Dr = Wy.x Dy + Wr. x D; (26)

where Dr is the fused detail layer, Dy and Dj are the detail layers of the visible and
infrared images, respectively, and .* represents the dot product, which means multiplying
the numerical values at the same coordinate positions of two image matrices the same size.

4. Experiment Results and Analysis

The experimental simulation platform utilized in this study consists of a notebook
computer with an Intel(R) Core(TM) i7-8750H processor operating at 2.20 GHz and with
8.00 GB of RAM. The programming environment employed is MATLAB R2021b and the
operating system of the computer is 64-bit Windows 10.

4.1. Algorithm Comparison and Parameter Settings

The effectiveness of the proposed fusion algorithm was evaluated through experi-
ments conducted on infrared and visible images from the TNO image-fusion dataset [32].
To compare the performance of the proposed method, Combination 1 (C1) and Combi-
nation 2 (C2) with 13 existing infrared and visible image fusion algorithms, including
MDLatLRR [33], MGF [34], and multiscale transform enhancement (MST-TE) [35], were
tested. The experimental parameters for these 14 algorithms were set based on their original
papers. In the proposed algorithm of this article, small values of o5 and ¢, may lead to
gradient reversal, while larger values of s and ¢, enhance the smoothing ability, but may
generate halos. In this article, we set 051 =2, 0,1 = 0.04, 052 = 2, 02 = 3031 = 0.12 to preserve
the regions with large intensity differences and to better retain the edge information of the
images, thus improving the smoothing ability of the algorithm.

4.2. Fusion Results

As there are too many fusion image results of the infrared and visible light, we cannot
display all of them. Therefore, this paper selects three sets of the TNO image-fusion dataset
(the 14th image of Nato_camp_sequence, soldier-behind_smoke_3, and Kaptein_1123) to
show the output results. Figure 7 illustrates the three sets of infrared and visible images,
and Figures 8-10 demonstrate the resulting output for each set. Red rectangular boxes are
used to help distinguish the quality of the fused images.

Figure 7. The three sets of infrared and visible images. (a) The 14th image of Nato_camp_sequence;
(b) soldier-behind_smoke_3; (c) Kaptein_1123.

4.3. Subjective Evaluation

For the first set of experiments depicted in Figure 8, all 14 methods demonstrated the
ability to effectively combine the details of the infrared images with the context information
of the visible images. However, images (a) and (e) contain more noise, resulting in a visually
blurry image and relatively poor visual effects. Image (b) has overall brightness that is too
high, losing important information in the visible image and containing more noise. In the
case of images (c), (f), and (i), the comparison between the objects and the background is
relatively low. In particular, image (f) shows a lack of texture near the figure, which hinders
the observation of the fence. Image (d) has an obvious block effect and the detail part of
image (g) has good performance, but the wavelet transform produces a residual shadow,
and image (1) has partial distortion due to the convolution process. In images (h) and (j),
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the significant features of grass, trees, and fences are not obvious, and the background
information is severely lost. When compared to images (k) and (m), image (n) effectively
retains the grass information from both the infrared and visible images and accurately
represents the source image’s characteristic features. Meanwhile, image (0) enhances the
details of the fence and grass, resulting in higher overall contrast and sharper edges.

0] (n) (0)

Figure 8. The first set of experiments results. (a) NSCT; (b) MDLatLRR; (c) MGF; (d) MST-SR;
(e) FPDE; (f) GTF; (g) CBF; (h) IFEVIP; (i) Hybrid-MSD; (j) NSCT-SR; (k) TIF; (1) CNN; (m) MST-TE;
(n) proposed method (C1); (o) proposed method (C2).

Figure 9. The second set of experiments results. (a) NSCT; (b) MDLatLRR; (c¢) MGF; (d) MST-SR;
(e) FPDE; (f) GTF; (g) CBF; (h) IFEVIP; (i) Hybrid-MSD; (j) NSCT-SR; (k) TIF; (1) CNN; (m) MST-TE;
(n) proposed method (C1); (o) proposed method (C2).
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Figure 10. The third set of experiments results. (a) NSCT; (b) MDLatLRR; (c¢) MGF; (d) MST-SR;
(e) FPDE; (f) GTF; (g) CBF; (h) IFEVIP; (i) Hybrid-MSD; (j) NSCT-SR; (k) TIF; (1) CNN; (m) MST-TE;
(n) proposed method (C1); (o) proposed method (C2).

In the second set of experimental results, Figure 9, images (a), (g), and (j) contain a
large number of artifacts, which make the task target unclear and not conducive to human
recognition. When images (b) and (1) retain relatively complex detail, they fail to highlight
distinctive traits of the image, such as the loss of detail in the tree above the person on
the right side of the image. Images (c), (d), and (k) do not produce halos but lack some
details. Images (e), (f), and (m) contain more noise and severely lose their texture features
in dense smoke areas. Image (h) lacks visible image texture information due to the minimal
incorporation of visible image features. In contrast, image (i) is better at identifying the
target but shows image discontinuity. The results obtained using Combination 1 of the
proposed fusion algorithm, represented by image (n), highlight the target clearly, contain
fewer artifacts, and do not exhibit double images or visual blurs. Meanwhile, image (o)
successfully retains the overall message of the original image and the salient features of the
objects are distinctly visible.

The results of the third set of experiments in Figure 10 show that images (a), (g), and
(j) contain a significant amount of artifacts and noise in the background, resulting in poor
visual perception. The overall brightness of images (d) and (e) is poor, and the contrast is
not high. In image (1), the target person stands out prominently but the grass details are
lost. Image (c) and image (i) have artifacts around the target person. Image (f) has low
contrast and unclear edge information. Images (b) and (k) have circular artifacts around
the edge of the target, resulting in lost edge details and poor visual perception. The details
in Figure (m) and Figure (h) are not prominent enough. Relatively speaking, image (n) has
less noise and effectively integrates valuable information from both infrared and visible
images. On the other hand, image (o) presents sharper edge information, finer details, and
higher contrast, indicating a better expression of these image features.

4.4. Objective Evaluation

The subjective evaluation of image quality is predicated on the subjective perception
of the observer, which may be affected by differences in individual visual sensitivity and
may lead to biased conclusions. Therefore, this paper combined quantitative indicators to
comprehensively evaluate the quality of fusion images, whereas, as we all know, a single
evaluation index cannot reflect the quality of the fused image well in quantitative evaluation.
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To evaluate the fusion performance of various fusion technologies more objectively, this
paper selects nine commonly used fusion evaluation indicators, namely peak signal-to-noise
ratio (PSNR), structural similarity (SSIM), feature similarity (FSIM), multiscale structural
similarity (MS_SSIM), correlation coefficient (CC), root mean square error (RMSE), average
gradient (AG), edge intensity (EI), and spatial frequency (SF). Among them, the first six
indicators are used to evaluate the fusion quality of algorithm Combination 1 in this
paper and the last three indicators are used to evaluate the fusion quality of algorithm
Combination 2, mainly to reflect the contrast, clarity, and edge preservation of the fused
image. With the exception of the RMSE index, the fusion performance improves with
higher values of the other eight indicators. The stacked bar chart used for evaluating the
fusion effect of three sets of images is shown in Figure 11, and Table 3 presents the objective
evaluation results for 32 sets of image fusion using both infrared and visible light. The
evaluation metric’s optimal value is indicated in bold within the table.
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Figure 11. Stacked histogram of the selected three sets of image-fusion effect evaluation.
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Table 3. Objective evaluation of 32 sets of infrared and visible image fusion.

Method PSNR SSIM FSIM MS_SSIM  CC RMSE AG EI SF
NSCT 59.2182 1.3406 0.8014 0.5708 0.9897 0.0844 4.3634 44.9597 11.4674
MDLatLRR 58.8037 1.3725 0.8230 0.6973 0.9908 0.0887 5.0169 51.0229 13.5584
MGF 60.0671 1.4231 0.8281 0.6964 0.9899 0.0685 4.5755 46.8729 11.4333
MST_SR 59.6733 1.3962 0.8475 0.6562 0.9894 0.0762 4.2616 43.5127 11.4014
FPDE 60.2972 1.4170 0.8428 0.7080 0.9917 0.0659 3.4882 34.9287 8.4659
GTF 59.6888 1.3755 0.8405 0.6478 0.9893 0.0746 3.2456 32.6837 8.2322
CBF 59.7341 1.2437 0.7818 0.5901 0.9875 0.0753 4.8686 50.1314 12.9980
IFEVIP 58.7348 1.3900 0.8290 0.6589 0.9911 0.0915 3.9985 41.1881 10.2313
Hybrid-MSD 59.9826 1.4162 0.8476 0.6839 0.9898 0.0704 4.4093 44.8363 11.8175
NSCT-SR 59.4302 1.2970 0.7942 0.5741 0.9882 0.0806 4.5678 47.0693 11.8939
TIF 60.1643 1.4249 0.8417 0.7014 0.9901 0.0676 3.8678 40.1911 10.4407
CNN 59.5243 1.3972 0.8496 0.6733 0.9888 0.0782 4.2069 42.9240 11.2546
MST-TE 60.0012 1.4490 0.8478 0.6877 0.9912 0.0709 3.7813 37.6361 10.6385
Proposed C1 60.3114 1.4883 0.8504 0.7212 0.9924 0.0656 2.8472 29.3550 6.7037
c2 60.1142 1.1919 0.8239 0.6777 0.9895 0.0679 6.8926 64.4937 17.1653

The evaluation presented in Figure 11 demonstrates that the algorithm proposed
in this paper outperforms Combination 1 and other algorithms in terms of RMSE and
SSIM, indicating a reduction in image noise and better preservation of structural similarity.
However, the low brightness of the third set of visible images makes it difficult to evaluate
FSIM and MS_SSIM. Additionally, the feature similarity between Combination 1’s low
brightness image and the source image is limited. The evaluation of AG, EI, and SF in
the last row suggests that Combination 2 achieves optimal edge detail and contrast across
various environments.

In Table 3, it can be seen that the algorithm proposed in this paper effectively preserves
a large amount of information from the source image and improves the similarity with the
source image by utilizing ResNet50 to fuse the base layers. Additionally, by adopting an
adaptive weighting strategy based on the structural tensor model to process the multi-layer
detail layers of the enhanced image after secondary decomposition, the algorithm can
effectively fuse the texture features of the image details, highlighting its advantage in
overall brightness and edge information in Combination 2. The following is a detailed
analysis of the two combined effects of the proposed algorithm: (1) Combination 1 of this
paper’s algorithm does not perform well in the AG, EI, and SF metrics, but it is the best in
six metrics, including SSIM, FSIM, MS_SSIM, RMSE, PSNR, and CC, improving by 2.71%,
1.86%, 0.09%, 0.46%, 0.24%, and 0.07% compared with the other algorithms, respectively.
This indicates that the fusion image of Combination 1 contains more effective information,
has higher similarity to the characteristics of the source image, and contains less artificial
noise in the fusion image. (2) The fusion image of Combination 2 improved by 37.42%,
26.40%, and 26.60% in the AG, EI, and SF metrics, respectively. The experimental results
show that the fusion image of Combination 2 significantly improved in terms of contrast,
preserving image edges and textures. In summary, this paper’s algorithm provides two
combination methods that can be used to meet different needs in the engineering application
of infrared and visible light image fusion.

Finally, two combinations of the algorithms in this paper were compared with 13 other
algorithms in terms of time efficiency and the results are shown in Table 4.
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Table 4. Comparison of time efficiency of 14 image-fusion algorithms.
Methods NSCT MDLatLRR MGF MST_SR FPDE GTF CBF
Time/s 11.97063 49.58172 1.521063 2.411188 2.869656 7.012563 12.74681
Methods IFEVIP Hybrid-MSD NSCT-SR TIF CNN MST-TE Proposed Method
Time/s 1.418563 5.938344 72.07547 0.521719 62.24306 4.997781 11.1226/11.3512

Since the algorithm proposed in this paper combines four modules, bilateral filtering,
the least-squares model, the ResNet50 network, and the structure tensor model, it can
better preserve high-quality images and adapt to the requirements of both scenes. The
proposed algorithm is definitely more time efficient than MDLatLRR, NSCT_SR, and
CNN. It sacrifices more time and fuses higher-quality images than other algorithms with
multiscale transform and simple filter decomposition.

5. Conclusions

To improve the quality of fusion images and meet the application requirements of
different scenes, in this article, we propose a novel fusion algorithm for infrared and visible
images based on DBLSEF. This article achieves the following objectives:

(1) The hybrid filter is utilized in this paper to address the issues of halo artifacts around
edges and noise reduction in the fusion results of infrared and visible images by
achieving spatial consistency, edge preservation, and texture smoothing.

(2) The algorithm presented in this paper offers two distinct combinations (C1 and C2) of
the base layer and the multi-layer detail layer. Through experiments conducted on 32
TNO datasets, the effectiveness of both combinations in meeting the requirements of
engineering applications is demonstrated.

(8) Compared with the 13 existing algorithms, it is verified that C1 provides significant
advantages in terms of similarity with the features and structure of the source image,
as well as removing noise. The six indexes of SSIM, FSIM, MS_SSIM, RMSE, PSNR,
and CC are improved by 2.71%, 1.86%, 0.09%, 0.46%, 0.24%, and 0.07%, respectively.
On the other hand, C2 has more pronounced effects in preserving edge information
and improving contrast. The AG, EI, and SF indexes increase by 37.42%, 26.40%, and
26.60%, respectively.

In addition, the algorithm described in this paper can also be applied to other image-
fusion tasks, such as medical images, multi-focus images, remote sensing images, and
multiple exposure images. In future research, we will consider combining more efficient
edge smoothing filters with lightweight deep-learning algorithms to further improve the
quality and speed of fused images.
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