
Citation: Sotiropoulos, P.; Mathas,

C.-M.; Vassilakis, C.; Kolokotronis,

N. A Software Vulnerability

Management Framework for the

Minimization of System Attack

Surface and Risk. Electronics 2023, 12,

2278. https://doi.org/10.3390/

electronics12102278

Academic Editor: Seokjoo Shin

Received: 10 March 2023

Revised: 2 May 2023

Accepted: 15 May 2023

Published: 18 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Software Vulnerability Management Framework for the
Minimization of System Attack Surface and Risk
Panagiotis Sotiropoulos † , Christos-Minas Mathas † , Costas Vassilakis *,† and Nicholas Kolokotronis †

Department of Informatics and Telecommunications, University of the Peloponnese, 221 31 Tripoli, Greece;
panossot@uop.gr (P.S.); mathas.ch.m@uop.gr (C.-M.M.); nkolok@uop.gr (N.K.)
* Correspondence: costas@uop.gr; Tel.: +30-2710-372203
† These authors contributed equally to this work.

Abstract: Current Internet of Things (IoT) systems comprise multiple software systems that are
deployed to provide users with the required functionalities. System architects create system blueprints
and draw specifications for the software artefacts that are needed; subsequently, either custom-
made software is developed according to these specifications and/or ready-made COTS/open
source software may be identified and customized to realize the overall system goals. All deployed
software however may entail vulnerabilities, either due to insecure coding practices or owing to
misconfigurations and unexpected interactions. Moreover, software artefacts may implement a much
broader set of functionalities than may be strictly necessary for the system at hand, in order to serve
a wider range of needs, and failure to appropriately configure the deployed software to include only
the required modules results in the further increase of the system attack surface and the associated risk.
In this paper, we present a software vulnerability management framework which facilitates (a) the
configuration of software to include only the necessary features, (b) the execution of security-related
tests and the compilation of platform-wide software vulnerability lists, and (c) the prioritization of
vulnerability addressing, considering the impact of each vulnerability, the associated technical debt
for its remediation, and the available security budget. The proposed framework can be used as an
aid in IoT platform implementation by software architects, developers, and security experts.

Keywords: IoT systems; software vulnerabilities; risk management; technical debt; system design;
system security

1. Introduction

The Internet of Things (IoT) concept involves devices with Internet connectivity, which
can exchange data, information, and services, obtain data from their environment through
sensors, and initiate changes to it through actuators. The building blocks for IoT systems
exhibit considerable diversity, ranging from specialized industrial or enterprise products,
such as production line robots [1,2], smart grid devices including smart meters [3], con-
nected and autonomous cars [4,5], or consumer products including wrist bands and smart
watches, smart air conditioners, and smart TVs. IoT systems are expected to proliferate
over the next years: Statista projects that the number of connected IoT devices will double
from 2023 to 2030 [6], while IHS Markit predicts that the number of connected IoT devices
will exhibit an annual increase of 12%, escalating to 125 billion devices in 2030 [7].

A critical factor for the operation of existing IoT systems and the proliferation of
new ones is security. Multiple studies e.g., refs. [8–11] have identified a number of key
security areas, spanning across physical aspects, the network layer, the edge layer and the
application layer. These include physical device protection, architectural concerns, authen-
tication, encryption, trust, secure routing protocols, privacy concerns, and so forth. A major
factor affecting the security of IoT systems, at virtually any layer, is the software. All
deployed software (either custom-made to serve the requirements of the particular system,

Electronics 2023, 12, 2278. https://doi.org/10.3390/electronics12102278 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12102278
https://doi.org/10.3390/electronics12102278
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9669-7401
https://orcid.org/0000-0002-4761-5833
https://orcid.org/0000-0001-9940-1821
https://orcid.org/0000-0003-0660-8431
https://doi.org/10.3390/electronics12102278
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12102278?type=check_update&version=2

Electronics 2023, 12, 2278 2 of 21

or ready-made “Commercial off-the-Shelf (COTS)”/open-source software that has poten-
tially been customized) may entail vulnerabilities, which may be exploited by attackers.
Characteristically, the study reported in [12] reports that after security tests were conducted
on thirteen routers and network attached storage (NAS) devices for small office/home
office (SOHO) environments, a number of vulnerabilities was discovered in each of them,
totalling 125 common vulnerabilities and exposures (CVEs). Ref. [12] also reports that
manufacturers were notified about the vulnerabilities, however the number of responses
collected was very limited, and very few of the vulnerabilities were actually addressed.

The increased number of vulnerabilities in IoT devices, coupled with the large number
of these devices and their often unrestricted accessibility through the internet, has led to
some world-scale security incidents affecting millions of devices, including Hajime [13],
BASHLITE [14], and Log4Shell [15].

Software-rooted vulnerabilities occur either due to insecure coding practices due to
misconfigurations and unexpected interactions (e.g., race conditions). Moreover, deployed
software artefacts may be poorly customized, and offer a broader set of functionalities than
may be strictly necessary for the system at hand: for instance, if the OpenLiberty server [16]
is deployed at some system, the Java Message Service 2.0 [17] feature may be left at an
enabled state, although it is not needed in the particular installation. In such a case, the
attack surface of the system increases (all APIs/endpoints of the Java Message Service 2.0
can be used by attackers), and any vulnerabilities present in the code realising the Java
Message Service can be targeted for exploitation.

Addressing software-rooted vulnerabilities in an IoT system is thus a complex, multi-
faceted issue, involving (a) the minimization of the vulnerabilities present in the code,
through the inclusion of only the necessary features, (b) the identification of the remaining
vulnerabilities, and (c) the fixing of these vulnerabilities. However, fixing the vulnerabilities
incurs a cost—in both time and human resources—and the time available or the budget
allocated to this task may be limited, not permitting the tackling of all issues. In such cases,
the effort of the developer team should be directed to fixing the errors that would minimize
the overall residual risk, i.e., the risk owing to the vulnerabilities that will not be fixed, due
to security budget constrains.

To the best of our knowledge, no commercial system or research proposal offers
prioritization of software components’ vulnerability addressing the associated technical
debt for its remediation and the available security budget (considering the impact of each
vulnerability); developers are not adequately supported to prioritize fixes and deploy
platforms with minimized residual risk.In this paper, we present a software vulnerability
management framework which supports all the stages of a pipeline for the management
of IoT platform software vulnerabilities, i.e., (a) the configuration of software to include
only the necessary features (b) the execution of security-related tests and the compilation
of platform-wide software vulnerability lists, (c) the estimation of the impact and the
associated fixing cost for each vulnerability, and (d) the prioritization of vulnerability
addressing the associated technical debt for its remediation and the available security
budget, considering the impact of each vulnerability. The proposed framework can be
used as an aid in IoT platform implementation, by software architects, developers, and
security experts.

The work presented in this paper advances the state-of-the-art by (a) proposing
a statistics-based method for the estimation of impact of detected vulnerabilities, (b) propos-
ing an integer programming-based algorithm for prioritizing security fixes with the goal
of minimizing the residual risk level, and (c) harnessing the power of a test management
framework [18] and static code analysis [19], and combining them with the estimation
of impact of detected vulnerabilities and the integer programming-based prioritization
algorithm to synthesize a comprehensive framework for the security analysis of platform
software which formulates proposals on the prioritization of addressing security issues,
taking into account the software components to be included and their features, the impact of

Electronics 2023, 12, 2278 3 of 21

each vulnerability within the source code, the associated technical debt for its remediation,
and the overall available security budget.

In the remainder of this section we initially present the landscape of software-rooted
security issues in IoT systems, as reported in papers where the authors exploited (a) security
testing tools, (b) lists of known vulnerabilities, and (c) catalogues of common weaknesses
found in IoT software (Section 1.1). Note that these works aim to identify the issues
that may be present in the software without providing tools for assessing their impact
on specific configurations or platform deployments and without providing any means
for prioritizing fixing issues. Subsequently, we present the state-of-the-art in the security
assessment of IoT software code (Section 1.2). In this subsection, we focus on static code
analysis techniques [20], which are employed by the proposed framework. We also briefly
cover other techniques, including dynamic testing and fuzzing, to provide a more complete
picture of the software security assessment methods.

In Section 2 we present the proposed method for the management of vulnerabilities in
IoT platform software, while in Section 3 we demonstrate the application of the framework
in IoT platform software. Finally, in Section 4 the practical and theoretical implications of
the proposed framework are discussed, and future work is outlined.

1.1. Software-Related Security Issues in IoT Software

According to OWASP [21], a large percentage of the vulnerabilities present in ap-
plications can be linked to insecure coding practices followed by software developers.
Even though extensive research has been published on the analysis of IoT vulnerabili-
ties, it is focused mainly on black-box methods such as penetration testing and fuzzing
[sachidanada][samtani][geneiatakis][overstreet]. There is limited research available on the
white-box testing of open-source software for IoT devices, which involves examining the
source code to identify vulnerabilities. Source code reviews could be significantly beneficial
for vulnerability research in the IoT field, as they often detect different vulnerabilities than
those revealed through black-box techniques. Additionally, the detailed documentation
of vulnerabilities in open-source software constitutes useful information for preventing
similar coding mistakes from occurring in the future [22].

In Schiller et al. [23], the authors discuss the landscape of IoT security by first providing
some background information on IoT in general, on the concept of security, IoT networking,
and the available IoT architectures. Furthermore, they discuss challenges in achieving IoT
security and propose a threat taxonomy. The authors composed the taxonomy by reviewing
the available research and by integrating the threats and attack methods identified. The
classification system used organizes the threats according to a three-level architecture
model of the IoT which includes the sensing, network, and application layers. In the threats
against IoT classified under the application layer, we can find several that can be traced
back to insecure coding practices, some on a higher level and some on a lower level: data
modification, elevation of privilege, DoS, password change, password guessing, buffer
overflow, memory corruption, code execution, SQL injection, XSS, and CSRF.

In Calatayud et al. [24], the authors utilize the Raspberry Pi hardware platform as
a base to test operating systems used in high-end IoT devices against a multitude of buffer
overflow attack forms. The attacks were carried out using the RIPE tool [wilander]modified
accordingly for the ARM architecture. The operating systems were tested with and without
buffer overflow protections in place. The outcomes offer valuable information about com-
mon buffer overflow vulnerabilities found in IoT operating systems along with a persistent
pattern of the preventive measures that are used to protect against this type of attack.
The target operating systems are RPi OS, Xubuntu, Alpine Linux, Arch Linux ARM, and
Chromium OS. RPi OS v10 was found vulnerable to 12 attacks with the vulnerable functions
being memcpy and homebrew. Xubuntu v18.04 and Alpine Linux v3.14 were found to be
vulnerable to 50 attacks with the vulnerable functions being memcpy, strcpy, sprint, and
fscan. Arch Linux ARM v5.10 was vulnerable to 10 attacks with vulnerable functions being

Electronics 2023, 12, 2278 4 of 21

the same ones as with RPi OS. Lastly, in Chromium OS v5.4, 59 attacks were successful
with the set of vulnerable functions being the same as with Xubuntu and Alpine Linux.

In Al-Boghdady et al. [19], the authors investigate the security posture and the vulnerabilities
present in the source code of four popular IoT operating systems through static analysis.
They utilize three static analysis tools—Cppcheck, Flawfinder, and RATS—to analyze
sixteen different versions of the four C/C++ IoT OSs with the research goals being the
identification of vulnerabilities from the common weakness enumeration (CWE) scheme
and to find out if the security errors and their density (errors per 1K source lines of code)
increase or decrease over time. Furthermore, the last research question posed by the authors
asks what the relationship between the vulnerabilities of the IoT OSs and their evolutionary
properties is. The tool CodeScene is utilized to that end. The results showed that while
the total number of security errors increases with each version, the error density decreases
over time for all examined operating systems, with few exceptions. The most prevalent
vulnerabilities in the OSs examined for Cppcheck were CWE-561 (dead code), CWE-398
(7PK—code quality), and CWE-563 (assignment to variable without use), while CWE-119
(improper restriction of operations within the bounds of a memory buffer), CWE-120
(buffer copy without checking zize of input (”classic buffer overflow’)), and CWE-126
(buffer over-read) for Flawfinder. For RATS, it was CWE-119, CWE-120, and CWE-134 (use
of externally-controlled format string).

Mathas et al. [22] evaluate the vulnerabilities in IoT software used mainly in smart
grid applications through static analysis of the source code. The authors have analyzed
open-source software which could be used at any level of the software stack, including
operating system level, application level, and library level, in order to obtain a compre-
hensive understanding of the relevant vulnerability landscape. The assessed software
includes jSML, lib60870, libiec61850, JavaSMQ, Pymodbus, Modbus4j, Minnow server, Boa
Webserver, thttpd, MicroWebSrv 2, and Busybox. The static application security testing
(SAST) is performed by utilizing the SonarCloud (https://sonarcloud.io, accessed on 14
May 2023) and Codacy (https://app.codacy.com, accessed on 14 May 2023) platforms.

The results of the two platforms are manually reviewed to discern between true
and false positives. The final results are categorized based on a customized vulnerability
categorization scheme which was created by combining the OWASP Top 10 list and the
MITRE common weakness enumeration (CWE) scheme. Based on the results received
from the static analysis, the custom categorization scheme includes improper certificate
validation, buffer overflow, weak cryptography, sensitive data exposure, race condition,
and broken access Control. Furthermore, the frequency and the potential impact of the
identified vulnerabilities is considered. The article provides a detailed examination of true
and false positives which can assist both researchers and practitioners to better focus on
the areas requiring review. The vulnerabilities results report 2 for the improper certificate
validation category, 6 for buffer overflow, 23 for weak cryptography, 59 for sensitive data
exposure, 8 for race condition, and 3 for broken access control. Additionally, the results
show numerous false positives reported by the SAST tools utilized.

1.2. Assessing the Security of IoT Software

Static code analysis [20] is a part of the security development lifecycle [25] and is
performed with the code review of static code, which can also be realized running static
code analysis tools to detect possible security vulnerabilities by analyzing the code of the
tested software. Static analysis can be used with both source and compiled code. While
the development flaws detected through static analysis may include non-security-related
issues as well, in this work, we focus only on security issues. Static analysis with a focus
on security issues is usually referred to as static application security testing (SAST). SAST
identifies problematic patterns by checking the code statically rather than inspecting it
during runtime. Depending on the implementation, SAST can be simple or complex, and
can detect patterns in the code, produce control graphs, or analyze data flow logic to
identify user input that reaches sensitive code segments [26].

https://sonarcloud.io
https://app.codacy.com

Electronics 2023, 12, 2278 5 of 21

SAST has become an easy and efficient practice that has gained widespread accep-
tance in recent years. It is available in various forms, including IDE plugins, standalone
applications, online services, and solutions integrated into continuous integration/contin-
uous delivery (CI/CD) pipelines [27]. SAST tools are available in both open-source and
commercial formats, offering different functionalities that cater to specific needs. Various
techniques are employed by static analyzer tools, such as data flow analysis, control flow
graphs (CFGs), taint analysis, and lexical analysis [28]. However, even with recent advance-
ments in SAST, tools still have high false-positive rates, necessitating human intervention
for results evaluation [26]. One basic limitation of SAST solutions is that they suffer from
a high rate of false positives in their results [22]. To that end, we begin this section by
presenting one of the latest works towards improving SAST for IoT by utilizing machine
learning. SAST is an invaluable way of assessing the security of IoT but not the only one
needed as it is meant to be complementary (but necessary) to the more traditional black-
box techniques used. Black-box methods used for vulnerability detection in IoT systems
include, among others, fuzzing, taint-analysis, symbolic execution, homology analysis, and
penetration testing [29–33]. In the remainder of this section, we discuss some of the latest
scientific work conducted on these methods.

Kotenko et al. [34] propose an intelligent framework concept for the static analysis
of IoT systems utilizing machine learning techniques. They systematize the fundamental
components of static analysis and machine learning areas to form two models: the SA
(static analysis) model and the ML (machine learning) application model for SA. SA is
broken down into stages and ML into tasks. The models are represented as matrices with
rows corresponding to the tasks and columns to the stages.

The SA stages considered are data collection, data preparation, data processing, and
result formation (the columns of the SA model matrix). For the assignment of each activity
to the stages of SA, they utilize the following formalization: any given data is represented
in terms of its content (C), which refers to the information it contains, and its form (F),
which pertains to its appearance. Thus, data stored within the IoT system and modified
during the SA process can be expressed as a tuple <F|C>. Based on this, a formalized
description of each stage is defined.

The ML tasks were chosen based on both the general theory and a large number of
scientific papers and their reviews. The ML tasks considered are classification, anomaly
detection, regression, clustering, and generalization (the rows of the SA model matrix). The
tasks are described through formalized definitions as well. The resulting matrix contains
in its cells a formalized record of stage actions based on the solution of one of the ML
tasks. The authors note that non-ML statements will precede and succeed the ML ones,
since apart from the intelligent component, each step comprises strictly defined rules
(e.g., unpacking archives with files, ranking documents by their size, etc.). The matrix’s
validity was confirmed through expert analysis.

For the second part, an analysis of research papers relevant to analyzing IoT systems
is conducted. Each study is categorized and assigned based on its attributes to one or
more SA stages and one or more ML tasks. The second matrix has the same types of
rows and columns, but the cells are the research papers that were categorized under the
corresponding stage-task couple.

The two models make it possible to create methodological solutions that are theoret-
ically and practically sound in order to provide information security in the IoT systems
domain. This, of course, necessitates the development of a suitable framework that can
ensure the execution of all phases utilizing the wide range of ML methods available for
big data and heterogeneous data. The novelty of this work resides in the fact that it takes
into consideration the phases of data collection and preparation that precede the code
analysis. Thus, this work defers from previous ones in that it covers the entirety of the SA
process. Additionally, this review is the first to consider the full range of ML solutions,
both theoretically and practically, for each stage of SA. Finally, not only is SA divided
into stages, but it is also suggested to represent the actions of these stages in a formalized

Electronics 2023, 12, 2278 6 of 21

manner, which involves transforming the form and content of the data being studied in the
IoT system.

He et al. [33] propose a homology detection method based on a clonal selection
algorithm for detecting vulnerabilities in IoT firmwares. The proposed problem indicates
that methods utilizing machine learning for detecting vulnerabilities in IoT firmwares
need sample data of firmware vulnerabilities. This sample data is very scarce for some
types of vulnerabilities. The authors characterize the results achieved by machine learning
algorithms on this matter as “not ideal” and attribute this to their need for a large set of
sample data. To that end, this work proposes a firmware vulnerability homology detection
method based on the clonal selection algorithm combined with the simulated annealing
algorithm. Unlike preexisting machine learning methods, this method relies solely on the
affinity between the objective function and the detector, eliminating the need for extensive
sample data sets. In the clonal selection algorithm of biology, the immune system identifies
antigens and creates a variety of plasma cells to produce antibodies that are customized
based on the specific characteristics of each antigen. Antibodies that have a high affinity
to their respective antigens are retained, while those with low affinities are discarded.
When applied to the method in question, the optimization problem is the antigen, the
feasible solution to the optimization problem is the antibody, and the quality of the feasible
solution is represented by affinity. Essentially, the antigen is a vulnerability function, and
affinity represents the similarity between the sample function and the original one. The
simulated annealing algorithm is a general optimization algorithm. It begins from a high
initial temperature and randomly explores the solution space to find the global optimal
solution of the objective function. The main idea is to use the probability of a local optimal
solution for obtaining the global optimal solution. This work combines the efficient local
search capability of simulated annealing with the rapid convergence of the clonal selection
algorithm. The proposed method is tested against a neural network algorithm that attempts
to tackle the same issue. The evaluating indicators are recall rate and accuracy. The recall
rate is the ratio of the number of actual vulnerabilities in the algorithm’s vulnerability set
and the total number of vulnerabilities that should be detected. The accuracy indicator is
the ratio of the number of actual vulnerabilities in the algorithm’s vulnerability set and
the total number of vulnerabilities predicted by the algorithm. The proposed method was
found to be faster than its counterpart, as well as having a significantly higher recall rate,
improving it by about 13%. There is a slight improvement in accuracy as well.

In Akhilesh et al. [35], the authors describe an automated penetration testing frame-
work for smart home IoT devices. The goal and novelty of the work lies in the full automa-
tion of the framework and the ease of use by both technical and non-technical users so that
anyone can assess the security of the devices deployed in her/his smart home network.
The authors begin by reviewing and comparing the relevant research discussing differences
and limitations in order to choose the most suitable work to adopt. The method selected
[luis costa] is based on the penetration testing execution standard (PTES). The framework
is designed to detect the five most common vulnerabilities for smart home IoT devices.
The five most common vulnerabilities were chosen by the authors based on the OWASP
IoT Top 10, the work they adopted [luis costa], and the OWASP Top 10. The resulting list
includes insecure web interface, remote access vulnerability (improper authentication),
insecure network services, lack of transport encryption, and insecure Firmware/Software.
The framework can be divided into five consecutive parts: reconnaissance, check for remote
access vulnerability, check for insecure web interface, automated traffic capture, and vul-
nerability detection through traffic analysis. The framework is written as a Python program
which executes a combination of tools in a specific order at the user’s discretion. Each vul-
nerability is assigned a corresponding method and one or more tools used to detect it. The
tools utilized by the framework are Net Discover, Nmap, OWASP ZAP (zap-cli), Medusa,
WhatWeb, Wireshark (t-shark and pyshark), Binwalk, and Firmwalker. The framework was
executed in a home network with the following devices connected to it: Tp-Link SmartPlug,
Tp-Link Smart bulb, Tp-Link Smart Camera, Google Home Mini, and LIFX Smart Bulb. For

Electronics 2023, 12, 2278 7 of 21

the Tp-Link SmartPlug, a probable network services vulnerability was reported. Lack of
transport encryption and insecure firmware vulnerabilities were reported for the Tp-Link
Smart Bulb and Smart Camera, while no vulnerabilities were reported for Google Home
Mini and LIFX Smart Bulb. The execution time varied from 1 to 8 s for each device scan.
Additionally, the authors calculated the CVSS scores of the detected vulnerabilities. The
base scores were summarized to form a total score for each device. The Tp-Link Smart Bulb
and Smart Camera were found to be the most vulnerable. Google Home Mini had the same
score as LIFX Smart Bulb (zero), but further analysis conducted by the authors showed that
Google Home Mini employs more secure mechanisms than its counterpart and is therefore
the most secure.

Zheng et al. [36] propose a novel approach to greybox fuzzing for Linux-based IoT
devices. Greybox fuzzing is a very effective vulnerability discovery technique but when
applied to IoT devices it faces various limitations. The basic limitation occurs from the IoT
application’s high reliance on specific system environments and hardware. Some techniques
use full-system emulation to bypass that limitation, but this technique has a high overhead.
To that end, some works, such as Firm-AFL, propose to combine full-system emulation with
user-mode emulation in order to provide full compatibility in user emulation. Firm-AFL
executes the application in user-emulation mode until a system call is needed to continue
the execution. When that occurs, the emulation shifts to full-system emulation to execute the
system call. This approach proved to be less efficient than full-system emulation, especially
in the cases of applications that make frequent system calls. To that end, the authors
propose EQUAFL, a greybox fuzzing framework with enhanced user-mode emulation.
EQUAFL first executes the application in a full-system emulation and observes the key
points, such as the setting of launch variables, the generation of configuration files, and
network setup, etc. Next, EQUAFL sets up the execution environment for the application
by replaying the observed behaviors. This called an observe–replay strategy by the authors.
The framework’s performance is evaluated on compatibility, efficiency, and vulnerability
discovery. Two different datasets were used as benchmarks. The first dataset comprises two
standard benchmarks and the other dataset comprises 70 embedded firmware images from
D-Link, TRENDnet, and NETGEAR. The first dataset is small and does not contain bugs, so
it is used for the evaluation of efficiency and compatibility. The second dataset is used for
vulnerability discovery as well. The baselines used are simple user-mode emulation, full-
system emulation, and Firm-AFL. Additionally, experiments are conducted 5 times each
to mitigate the randomness of the fuzzers. The compatibility results show the successful
execution of the first dataset and 66 out of 70 applications in the second (real world) dataset.
EQUAFL’s results are much better than simple user emulation and comparable to full-
system emulation in terms of compatibility. In terms of efficiency EQUAFL was found to be
26 times faster than full-system emulation and 14 times faster than Firm-AFL in real-world
applications. The overhead of EQUAFL on the benchmark data was marginal compared to
user-mode emulation. It discovered 10 vulnerabilities, for 6 of which CVEs were assigned
after reporting them to the corresponding vendors. Finally, EQUAFL was shown to detect
vulnerabilities much faster than its counterparts.

2. Materials and Methods

In this section we present the proposed framework. Firstly, in Section 2.1 we describe
the overall framework architecture, while in the remaining subsections we provide details
on the operation of each architectural component.

2.1. Architecture of the Proposed Framework

The overall architecture of the proposed framework is illustrated in Figure 1. The pro-
cessing pipeline begins by gathering the software components that will be deployed on the
IoT platform. The source of each such software component is stored in the corresponding
code repository. This step is instrumented by the additional testsuite framework [18] and
detailed in Section 2.2.

Electronics 2023, 12, 2278 8 of 21

Figure 1. Proposed framework architecture.

Subsequently, feature selection is applied to each software component, producing the
respective tailored software. Recall from the introduction that feature selection is a step
that assists in limiting the attack surface and the associated risk, while it can also lead to
configurations with smaller memory footprint and resource requirements. The outcome
of the feature-selection step is a set of software components that are tailored to the needs
of the specific IoT platform deployment. In order to perform feature-based tailoring of
software components, the proposed framework utilizes the relevant capabilities of the
additional testsuite framework [18]; the additional testsuite framework is summarized in
Section 2.2, while Section 2.3 provides details on the feature selection capabilities of the
additional testsuite framework.

Afterwards, each software component is analyzed to identify security issues, forming
a list of software-related vulnerabilities related to the individual software component. In
this context, the additional testsuite framework submits the relevant projects to the Sonar-
Qube static code-analysis platform, and for each project, it gathers the results through the
SonarQube API https://sonarqube.inria.fr/sonarqube/web_api/api/ (accessed on 14 May
2023). Project-specific lists are then merged to formulate a comprehensive vulnerability
list for the whole of the platform. Security analysis is presented in Section 1.2.

Each vulnerability in the comprehensive platform-wide list is assessed to estimate its
impact on the platform. To this end, a statistical approach is used. Vulnerability impact
estimation is discussed in Section 2.5.

Finally, the vulnerabilities are prioritized, taking into account the impact of each
vulnerability and the cost to fix it, as well as the overall security budget, producing the final
list of vulnerabilities to be remedied. This is accomplished through an integer programming-
based optimization scheme, which is detailed in Section 2.6.

This list can guide developers to the process of maintaining the software so as to
minimize the overall residual risk, i.e., the risk owing to the vulnerabilities that will not be
fixed, due to security budget constrains.

2.2. The Additional Testsuite Framework: An Overview

The additional testsuite framework (ATF) [18] is novel approach for the management
of code testsuites, providing relevant structures and instrumentation. ATF supports a mul-
titude of features, including management of tests for multi-version applications, test-driven
development, dynamic/selective program builds, feature-based builds, testing in different
environments, and source code analysis. ATF utilizes annotations to associate tests with
specific application characteristics, and dynamically matches these characteristics against
build specifications and/or deployment environment attributes to (a) retrieve from the
source code repositories the relevant sources to be used for the specific build, (b) create the
executable image of the tailored software component according to the build specifications,
and (c) deploy the executable image to the designated deployment environment.

The benefits stemming from the introduction and use of ATF include the following:

https://sonarqube.inria.fr/sonarqube/web_api/api/

Electronics 2023, 12, 2278 9 of 21

1. Tests are written once, and can be flexibly associated with any number of software
programs and versions, limiting the effort and complexity needed for the maintenance
of test cases.

2. It supports dynamic/selective program builds that include only the portions of the
software that match some designated functionality.

3. For software applications that are developed or organized according to the featured-
based development paradigm [37], builds can be tailored to create executables that
only support a subset of the available features.

4. It can underpin the localization of bugs introduced during software evolution, includ-
ing regression bugs, through the comparison of code in versions producing erroneous
results against the code in versions yielding correct results.

5. It can facilitate documentation compilation, since functionality-oriented and feature-
based tests can be included in documentation on the functionality/feature they pertain
to, serving as examples of the specific functionality/feature as well as providing
examples of usage.

For more information regarding the capabilities and functionality of the ATF, the
interested reader is referred to [18]. In the next subsection, we describe the feature man-
agement functionality of ATF, which are utilized in the context of the proposed software
vulnerability management framework.

2.3. Feature Management Using the ATF

A software program can be defined as the unit of code parts that implement a set of
features that are intended as the provided functionalities of the software [37]. Each feature of
a software system is an optional or incremental unit of functionality, and is associated with
relevant code that realizes this functionality [38,39]. While software programs constantly
evolve to accommodate an increasing number of features, specific deployments of these
programs in the context of IoT platforms may necessitate and utilize only a limited number
of the available features. Configuring the software program so as to only include the code
that realizes the actually needed features may contribute to decreasing the attack surface
and minimizing the memory footprint.

ATF provides support for the testing of programs that are dynamically tailored to
specific needs through the usage of the FEATURE_LIST tailoring specification and the
@ATFeature code annotation. In more detail, when execution tailoring commences:

1. ATF consults the environment variable FEATURE_LIST, which includes the path to
a feature-tailoring configuration file listing the features that should be enabled in the
specific software build; for each feature, the relevant version that should be enabled
is also specified, as illustrated in Listing 1. Then, ATF arranges so that the tailored
software bundle includes the relevant code realizing the specific features, retrieving
the respective code from relevant repositories.

2. ATF scans the code for instances of the @ATFeature annotation; this annotation is
associated to methods and specifies the features that need to be enabled for the
method to be included in the final executable, effectively thus providing an advanced
conditional compilation mechanism. More specifically, the @ATFeature annotation
lists the program features that the specific method is dependent on, and during
the tailoring procedure the ATF matches these features against the feature tailoring
configuration specified via the FEATURE_LIST environment variable, and arranges
so that the method implementation code is included in the tailored version of the
software if all the specified features are enabled via FEATURE_LIST and the version
of each enabled feature also matches the designated version range. Listing 2 presents
an example of the usage of the @ATFeature annotation.

Electronics 2023, 12, 2278 10 of 21

Listing 1. Example FEATURE_LIST file contents.

jaxrs,2.3.1
jaxb,2.4.0
jsonp,1.2
cdi,2.1
localConnector,1.1
servlet,4.1.34

Listing 2. Example usage of the @ATFeature.

@ATFeature(feature ={"jaxrs, jaxb, jsonp, cdi, localConnector, servlet"},
minVersion ={"2.1, 2.2, 1.1 ,2.0, 1.0, 4.0"},
maxVersion ={"null, null, null, null, null, null"})
public void doJaxRs () throws Exception {// Feature-dependent code}

2.4. Static Code Analysis for Vulnerability Detection

In the context of the proposed software vulnerability management framework, the
facilities of the additional testuite framework are used to gather the tailored software
components and submit them to static code analyzers. In our current configuration, the
SonarQube static code analyzer is employed; in particular, the SonarQube API (https:
//sonarqube.inria.fr/sonarqube/web_api/api, accessed on 14 May 2023) is used to submit
tailored software components for analysis and retrieve the analysis results, which are
filtered to contain only vulnerabilities, by setting the types REST API parameter to the
value VULNERABILITY.

The SonarQube analyzer returns for each security issue identified numerous informa-
tion items which include:

• A textual description of the issue;
• A designation of the estimated severity of the issue, which may be INFO, MINOR,

MAJOR, CRITICAL, or BLOCKER;
• The component (directly identifying the source file) and the range of the code lines

where the security issue was found;
• the SonarQube security rule that triggered the vulnerability flagging;
• An estimate of the technical debt associated with the vulnerability, i.e., the time needed

to modify the code in order to eliminate the security issue.

2.5. Vulnerability Impact Estimation

Once the vulnerability management framework has determined the list of vulnera-
bilities present in the software, the next step is to estimate the impact that each of these
vulnerabilities will have on the IoT platform. Recall (from Section 2.4) that the list of
vulnerabilities contains, for each vulnerability, a reference to the SonarQube security rule
that triggered the vulnerability flagging. This information is exploited by the vulnerability
management framework to compute an estimate of the vulnerability impact, according to
the following process:

1. The rule is looked up in the SonarQube rules database (https://rules.sonarsource.co
m/, accessed on 14 May 2023) and its full record is retrieved. This record includes:

• Common weakness enumeration (CWE) identifiers. CWE identifiers are codes
assigned to typical security-related code anti-patterns, i.e., patterns of code that
are known to lead to vulnerabilities. For instance the java/RSPEC-6437 SonarQube
security rule (https://rules.sonarsource.com/java/RSPEC-6437, accessed on 14
May 2023) is linked to the CWE-798—use of hard-coded credentials (https://cwe.
mitre.org/data/definitions/798.html, accessed on 14 May 2023) and the CWE-
259—of hard-coded password weaknesses (https://cwe.mitre.org/data/definitions
/259.html, accessed on 14 May 2023). These identifiers are saved and used in the
vulnerability impact estimation, as described below.

https://sonarqube.inria.fr/sonarqube/web_api/api
https://sonarqube.inria.fr/sonarqube/web_api/api
https://rules.sonarsource.com/
https://rules.sonarsource.com/
https://rules.sonarsource.com/java/RSPEC-6437
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/259.html
https://cwe.mitre.org/data/definitions/259.html

Electronics 2023, 12, 2278 11 of 21

• A detailed description of the vulnerability, including an explanation of the mechanics
of the code anti-pattern, a substantiation of why the anti-pattern leads to vulner-
abilities, and recommendations on how the code can be transformed to eliminate
the vulnerability. This information is saved, to be presented to software security
experts and to assist them in their vulnerability remediation tasks.

2. Subsequently, the vulnerability management framework applies a statistical approach
to compute an estimate of the security issue. More specifically, the vulnerability
management framework utilizes the information present in the common vulnerability
enumeration (CVE) database (https://cve.mitre.org/data/downloads/, accessed on
14 May 2023) to identify known vulnerabilities that owed to the exact same code
anti-patterns to which the current security issue is associated to. This database will
be denoted as VulDB. For each vulnerability vul ∈ VulDB, the following fields
are retrieved:

• id(vul), which corresponds to the id of the vulnerability
• weak(vul), which denotes the set of common weaknesses to which the vulnerability

is associated. For instance, for the vulnerability with an ID equal to CVE-2009-0003 it
holds that weak(CVE-2009-0003) = CWE-119, i.e., vulnerability CVE-2009-0003
is associated with the CWE having an ID equal to CWE-119, corresponding to the
anti-pattern of improper restriction of operations within the bounds of a memory
buffer (https://cwe.mitre.org/data/definitions/119.html, accessed on 14 May
2023), commonly referred to as buffer overflow.

• impact(vul), which corresponds to the impact of the vulnerability, i.e., a measure
of the adverse effects that the exploitation of the vulnerability by attackers may
have on the platform. The value of impact(vul) is assigned by human experts,
after careful review of the application code.

If the current security issue Si is associated to weaknesses W(Si) = CWE1, CWE2, . . . CWEn,
then the impact estimate of Si, which will be denoted as IE(Si), is computed, as shown
in Equation (1):

IE(Si) = max
cwe∈W(Si)

1
|Vuls(cwe)| ∗ ∑

vul∈Vuls(cwe)
impact(vul) (1)

where Vuls(cwe) = v ∈ VulDB : cwe ∈ weak(v), i.e., the set of all vulnerabilities in VulDB
that are rooted to the particular CWE. Effectively, for each weakness that is associated
with the current security issue, the average impact values of all known and human expert-
assessed vulnerabilities rooted to the particular weakness are calculated, and finally the
maximum of these values is used as the impact assessment for the security issue under
the premise that attackers may pursue the weakness path that will result in the maximum
possible damage to the system.

2.6. Prioritizing Security Fixes

Following the stages of (a) security issue identification and (b) extraction of attributes
for each security issue (potential for remote exploitation; impact on confidentiality, in-
tegrity and availability; time required for fixing the vulnerability), the framework executes
a security issue prioritization step. The goal of this step is to consider a security budget
allocation (which is expressed in terms of working hours), and arrange for assigning por-
tions of the budget to the correction of security issues, in order to minimize the residual
risk, i.e., the risk owing to the impact of security issues that cannot be fixed, due to security
budget constraints.

The security issue prioritization step is performed using linear programming [40].
More specifically, the framework formulates an integer programming optimization problem,
where the optimization goal is the minimization of the residual security risk, whereas
the available security budget is modeled as a constraint. The formulation of the integer

https://cve.mitre.org/data/downloads/
https://cwe.mitre.org/data/definitions/119.html

Electronics 2023, 12, 2278 12 of 21

programming optimization problem is presented in detail in the following paragraphs. The
notations used in the integer programming problem formulation are listed in Table 1.

Table 1. Notations used in the integer programming problem formulation.

Notation Description

Si The ith security issue
N The number of security issues detected
SB The available security budget, expressed in available working hours
REi 1 if Si is remotely exploitable, otherwise 0

Icon f (Si) The impact of Si on confidentiality
Iinteg(Si) The impact of Si on integrity
Iavail(Si) The impact of Si on availability

I(Si)
The overall impact of Si on the IoT platform, considering all security

dimensions (confidentiality, integrity, and availability)
FTi The time needed to fix Si, expressed in working hours

xi
An output variable of the problem; xi is set to 1 if security budget is

allocated to fixing Si, otherwise xi is set to 0.

At this stage, we consider that no detailed information is available for the following:

• The importance of each security dimension, either globally or per specific software deployment.
For instance, a web server may be used to make a public database available, and the
integrity of the database records may be deemed more important than the availability
of the service, while confidentiality may be considered of low importance (since the
database is public). On the contrary, for a web server managing a health record
database, all the security dimensions (confidentiality, integrity, and availability) may
be deemed of high importance.

• The importance of each software deployment. In the previous example, the impact of any
demotion of the value of the public database may be deemed to be lower than the
impact of a corresponding demotion in the value of the medical record database.

Under the absence of the information listed above, the algorithm will operate under
the assumption that (a) all security dimensions are of equal importance and (b) all software
deployments are of equal importance. Extensions that will consider potential sources of
additional information that will enable the algorithm to take into account variations in the
importance of security dimensions and resources are considered part of our future work.

The formulation of the integer programming problem proceeds as follows:

• Firstly, the optimization target is formulated. Since the goal of the optimization is
the minimization of the residual risk, which is mapped to the impact of the software
vulnerabilities that remain unfixed, the objective function of the integer programming
problem is

minimize
N

∑
i=1

REi ∗ (1− xi) ∗ I(Si) (2)

where I(Si) is the security impact of vulnerability Si. The impact can be directly drawn
from the vulnerability impact assessment step, as detailed in Section 2.5; if the vul-
nerability impact assessment step produces separate assessments of the vulnerability
on the different security dimensions (confidentiality, integrity, and availability), the
overall impact of the vulnerability can be estimated as the sum of its individual impact
on each security dimension, i.e.,:

I(Si) = Icon f (Si) + Iinteg(Si) + Ii, avail(Si) (3)

Note that in Equation (2) the impact of each vulnerability impact(Si) is multiplied
(a) by the quantity REi, positioning it so that only the impact of remotely exploitable

Electronics 2023, 12, 2278 13 of 21

vulnerabilities is considered, and (b) by the quantity (1− xi), positioning it so that only the
impact of security issues that remain unfixed is taken into account.

• Subsequently, the cost of implementing fixes to the security issues is calculated using
the formula

Cost =
N

∑
i=1

xi ∗ FTi (4)

In Equation (4) the cost FTi of fixing a security issue Si is multiplied by variable xi
positioning it so that only the cost of fixes that are selected to be applied is considered.

• Finally, the security budget constraint is applied, which is formulated as follows:

Cost ≤ SB (5)

The solution of the integer programming optimization problem is a set of value
assignments to variables xi

Solution = {x1 = v1, x2 = v2, . . . , xN = vN}

where vi =

{
1 if security issue Si is selected to be fixed,
0 otherwise

(6)

3. Results

To validate our approach, we conducted experiments to (a) provide a proof of concept
for the proposed software vulnerability management framework and (b) gain insight on the
quality of the vulnerability prioritization recommendations produced by the framework.

In these experiments, we used the following software components and platform setups:

1. Software components implementing the five most widely used technologies in IoT
networks [41], both individually and as elements of an IoT platform;

2. An indicative small office/home office (SOHO) configuration.

Since, to the best of our knowledge, no commercial system or research proposal
offers prioritization of addressing the vulnerability software components, considering the
impact of each vulnerability, the associated technical debt for its remediation, and the
available security budget, the following baselines were used to assess the effectiveness of
the prioritization mechanism:

1. BCMM, i.e., an approach according to which vulnerabilities are processed according
to the characterization assigned by the SonarQube analysis [42], and more specifically
blocker vulnerabilities are handled first, followed by vulnerabilities characterized
as critical, major, and minor, in that order. Considering that for the vulnerabilities
reported by Sonar, only the technical debt (fix time) is available, three variants of
BCMM are considered, namely (a) BCMMSFT , where within each categorization,
vulnerabilities with the shortest fix time are handled first, (b) BCMMLFT , where within
each categorization vulnerabilities with the largest technical debt are handled first,
and (c) BCMMRand, where vulnerabilities within each categorization are considered
in random order.

2. IMM: According to the descriptions given for SonarQube vulnerability characteriza-
tions [42], blocker issues are bugs with a high probability to impact the behavior of the
application in production, and should be fixed immediately and critical issues are bugs
with a low probability to impact the behavior of the application in production or issues
that represent security flaw vulnerabilities and must also be fixed immediately. Since
both classes are designated to require immediate handling, in the IMM approach they
are merged to a single class, immediate, while issues in the major and minor classes
are retained in their original characterization. Similarly to the BCMM approach, three
variants are considered, namely IMMSFT , IMMLFT , and IMMRand.

Electronics 2023, 12, 2278 14 of 21

3.1. Experiments for the Commonly Used IoT Technologies

In this subsection we present our experiments concerning a configuration which
comprises the five most widely used technologies in the IoT. As reported by [41], the five
most widely used technologies in IoT networks are:

1. The advanced message-queuing protocol (AMQP), an open standard protocol used for message
exchange, including publish/subscribe and point-to-point, as well as queues [43],

2. Bluetooth and Bluetooth low-energy (BLE), a short-range communication protocol and
its low-energy variant [44],

3. Cellular communications, i.e., implementation of communication through cellular tele-
phony netowrks (2G, 3G, 4G/LTE, and 5G),

4. The constrained application protocol (CoAP) [45], a specialized internet protocol for devices
with constrained resources (e.g., wireless sensors), which enables both (a) pairs or groups
of devices running CoAP and (b) devices running CoAP and the internet.

5. The data distribution service for real-time systems (DDS) [46], a networking middleware
for realtime systems specified by the object management group (OMG), realizing
data-centric publish-subscribe mechanisms which can be easily integrated in the
application layer.

Following these data, an IoT system configuration was formulated, running instances
of software implementing the above listed technologies as follows:

• AMQP was implemented using RabbitMQ v. 3.4.0 (https://github.com/rabbitmq/ra
bbitmq-server/tree/rabbitmq_v3_4_0, accessed on 14 May 2023),

• Bluetooth/Bluetooth LE was implemented using the Android 13 drivers (https://andr
oid.googlesource.com/kernel/msm/+/refs/tags/android-13.0.0_r0.1/drivers/blueto
oth/, accessed on 14 May 2023)

• Cellular communications were implemented using Open5GS v. 2.1.3 (https://github
.com/open5gs/open5gs/releases/tag/v2.1.3, accessed on 14 May 2023)

• CoAP was implemented using the CoAP library in Arm Mbed OS 5.14.0 (https:
//github.com/ARMmbed/mbed-os/releases/tag/mbed-os-5.14.0, accessed on 14
May 2023)

• DDS was implemented using OpenDDS v. 3.16.1 (https://github.com/OpenDDS/O
penDDS/releases/tag/DDS-3.16.1, accessed on 14 May 2023)

The software listed above was analyzed and was found to entail 47 vulnerabilities,
accounting for a total technical debt of 967 min, with an overall risk equal to 273.34. In
the prioritization experiments we considered the security budget values of 50, 125, 250,
and 500 min. Table 2 lists indicative results from applying the security issue prioritization
method described in Section 2.6 to the identified security issues. As shown in Table 3, the
recommendation in all cases consumes (almost) all the available budget, and manages to
effectively direct the available budget to the mitigation of the issues having the highest
impact, since the percentage of the total impact mitigated in the recommendation list is
consistently higher than the ratio of the available budget to the total technical debt.

Table 2. Results of applying the security issue prioritization to the commonly used IoT technolo-
gies’ configuration.

Security
Budget

Issues
Mitigated

Consumed
Budget

Impact
Mitigated

% of Total Budget
Available

% Issues
Mitigated

% Impact
Mitigated

50 8 47 58.95 5.17% 17.02% 21.57%
125 15 122 98.25 12.93% 12.62% 35.94%
250 23 247 144.13 25.85% 48.94% 52.73%
500 33 497 210.52 51.71% 70.21% 77.02%

https://github.com/rabbitmq/rabbitmq-server/tree/rabbitmq_v3_4_0
https://github.com/rabbitmq/rabbitmq-server/tree/rabbitmq_v3_4_0
https://android.googlesource.com/kernel/msm/+/refs/tags/android-13.0.0_r0.1/drivers/bluetooth/
https://android.googlesource.com/kernel/msm/+/refs/tags/android-13.0.0_r0.1/drivers/bluetooth/
https://android.googlesource.com/kernel/msm/+/refs/tags/android-13.0.0_r0.1/drivers/bluetooth/
https://github.com/open5gs/open5gs/releases/tag/v2.1.3
https://github.com/open5gs/open5gs/releases/tag/v2.1.3
https://github.com/ARMmbed/mbed-os/releases/tag/mbed-os-5.14.0
https://github.com/ARMmbed/mbed-os/releases/tag/mbed-os-5.14.0
https://github.com/OpenDDS/OpenDDS/releases/tag/DDS-3.16.1
https://github.com/OpenDDS/OpenDDS/releases/tag/DDS-3.16.1

Electronics 2023, 12, 2278 15 of 21

Table 3. Results of applying the security issue prioritization to the SOHO configuration.

Security
Budget

Issues
Mitigated

Consumed
Budget

Impact
Mitigated

% of Total Budget
Available

% Issues
Mitigated

% Impact
Mitigated

250 13 245 107.46 8.63% 13% 14.88%
500 22 500 185.899 17.61% 22% 25.74%
1000 38 980 308.05 34.51% 38% 42.65%
1500 55 1490 437.78 52.46% 55% 60.61%

The results in Table 2 demonstrate that especially when the security budget is very
limited, the scarce resources can be efficiently allocated to the mitigation of security issues
with a very high impact, which is testified by the fact that for the case of having a security
budget equal to 50, the ratio of the mitigated impact percentage is 21.57%, approximately
4 times higher than the percentage of the available budget. When the available security
budget increases, this performance margin narrows, declining to the value of approxi-
mately 1.5 times higher when the security budget is equal to 500 (or 51.71% of the total
available budget).

Figure 2 depicts the effectiveness of the proposed approach against the baseline
algorithms concerning the configuration including the commonly used IoT technologies.
We can observe that under all security budgets, the proposed approach achieves the
highest percentage of the mitigated impact, with a margin ranging from 0.51% to 23.14%
against the runner-up (which is the IMMSFT algorithm in all cases) when comparing
absolute magnitudes (i.e., impactMitigated(proposed)− impactMitigated(baseline)); when
considering relative improvements (i.e., impactMitigated(proposed)−impactMitigated(baseline)

impactMitigated(baseline)), the
effectiveness margin of the proposed algorithm ranges from 0.87% to 12.35%. When the
security budget is very small (50, i.e., approximately 5% of the total technical debt), the
performance edge of the proposed algorithm is small (relative improvement equal to 0.87%),
due to the fact that many vulnerabilities with small fix times with “blocker” and “critical”
characterizations have high impacts; hence the IMMSFT algorithm is circumstantially led
to “close to optimal” decisions, due to the combined distribution of the impact, criticality
level, and technical debt of the software vulnerability dataset.

Figure 2. Effectiveness of security issue fix prioritization algorithms for the commonly used IoT
technologies’ configuration.

This distribution is depicted in Figure 3; in this figure, we can partition vulnerabilities
into four quartiles, with Q1 including vulnerabilities with a low cost to fix and their reme-
diation results to high gains in the residual risk of the overall configuration. The presence
of numerous “blocker” and “critical” vulnerabilities in this quartile is the reason that leads
to the “close to optimal” performance of the IMMSFT for the constrained security budget.

Electronics 2023, 12, 2278 16 of 21

Figure 3. Distribution of the impact, criticality level, and technical debt of the software vulnerabilities
in the “commonly used IoT technologies” configuration.

The margin between the proposed approach and other algorithms is larger, ranging
from 2.72% to 32.40% in absolute magnitudes, while the corresponding relative improve-
ment ranges from 4.84% to 496.18%. This performance margin is attributed to the capability
of the proposed algorithm to direct the security budget to issues whose fixing will lead
to the largest reductions in the residual risk. The “largest fix times first” approach again
produces the worst results, because each fix applied consumes a large amount of security
budget, leading to its depletion without necessarily achieving a respectively high reduction
of the residual risk.

3.2. Experiments for the SOHO Configuration

In this subsection we present our experiments concerning a small office/home office
(SOHO) configuration, whose architecture follows the typical SOHO architectural style, i.e.,
the platform a is configured as a “flat” network, where network connectivity is realized
by a single device acting both as (a) a layer 2 switch accommodating both wired and
wireless protocols for internal nodes (which are few), and (b) as a router providing internet
connectivity [47,48]. The specific topology used in the experiment comprises:

1. A router running PFsense (https://github.com/pfsense/pfsense/tree/a81a848e7565
cf4b5e1679fe6d08c39d13ab7a6f, accessed on 14 May 2023),

2. A NAS appliance running the Minnow Server (https://github.com/RealTimeLogic
/MinnowServer, accessed on 14 May 2023)

3. A smart air-conditioning appliance running the Pymodbus software (https://github
.com/pymodbus-dev/pymodbus, accessed on 14 May 2023)

4. A mobile phone and a PC which include Modbus4j software (https://github.com
/MangoAutomation/modbus4j, accessed on 14 May 2023) in order to control the
air-conditioning appliance.

The SOHO topology corresponding to this configuration is illustrated in Figure 4.
The source code for the software components listed above was collected and processed

through the software vulnerability management framework pipeline illustrated in Figure 1
and detailed in Sections 2.1–2.6. In the security fix prioritization step, multiple values
were used for the security budget to gain insight on the effect of this parameter in the
recommendations formulated, regarding the list of software issues to be mitigated.

The analysis of the software identified 100 security issues with the code, with a total
impact equal to 722.24 and an estimated technical debt equal to 2840 min, i.e., a security
budget of 2840 developer working minutes is required to mitigate all security issues. Table 3
lists indicative results from applying the security issue prioritization method described

https://github.com/pfsense/pfsense/tree/a81a848e7565cf4b5e1679fe6d08c39d13ab7a6f
https://github.com/pfsense/pfsense/tree/a81a848e7565cf4b5e1679fe6d08c39d13ab7a6f
https://github.com/RealTimeLogic/MinnowServer
https://github.com/RealTimeLogic/MinnowServer
https://github.com/pymodbus-dev/pymodbus
https://github.com/pymodbus-dev/pymodbus
https://github.com/MangoAutomation/modbus4j
https://github.com/MangoAutomation/modbus4j

Electronics 2023, 12, 2278 17 of 21

in Section 2.6 to the identified security issues. As shown in Table 3, the recommendation
in all cases consumes (almost) all the available budget, and manages to effectively direct
the available budget to the mitigation of the issues having the highest impact, since the
percentage of the total impact mitigated in the recommendation list is consistently higher
than the ratio of the available budget to the total technical debt.

Figure 4. SOHO topology used in the evaluation (adapted from [48]).

In Table 3, we can also notice that especially when the security budget is limited, the
constrained resources can be efficiently allocated to the mitigation of security issues with
a very high impact, which is demonstrated by the fact that for the case of having a security
budget equal to 250, the ratio of the mitigated impact percentage is 1.72 times higher than
the percentage of the total available budget. When the available security budget increases,
this performance margin narrows, declining to the value of 1.15 times when the security
budget is equal to 1500 (or 52.46% of the total available budget).

Figure 5 illustrates the effectiveness of the proposed approach against the baseline
algorithms. We can observe that under all security budgets, the proposed approach achieves
the highest percentage of mitigated impact, with a margin ranging from 1.42% to 6.78%
against the runner-up (which is the IMMSFT algorithm in all cases) when comparing
absolute magnitudes (i.e., impactMitigated(proposed)− impactMitigated(baseline)); when
considering relative improvements (i.e., impactMitigated(proposed)−impactMitigated(baseline)

impactMitigated(baseline)), the
effectiveness margin of the proposed algorithm ranges from 10.63% to 12.59%. The margin
between the proposed approach and other algorithms is larger, ranging from 6.15% to
12.73% in absolute magnitudes, while the relative improvement ranges from 14.06% to
88.45%. This performance margin is again attributed to the capability of the proposed
algorithm to direct the security budget to issues whose fixing will lead to the largest
reductions in the residual risk. The “largest fix times first” approach again produces
the worst results, because each fix applied consumes a large amount of security budget,
leading to its depletion, without necessarily achieving a, respectively, high reduction of the
residual risk.

Detailed information on the security issues identified, the integer programming prob-
lem formulations used for the prioritization of security issue mitigations and the solutions
of these problems is available at https://github.com/costasvassilakis/vulnerability-mana
gement-framework, accessed on 14 May 2023.

https://github.com/costasvassilakis/vulnerability-management-framework
https://github.com/costasvassilakis/vulnerability-management-framework

Electronics 2023, 12, 2278 18 of 21

Figure 5. Effectiveness of security issue fix prioritization algorithms for the SOHO configuration.

4. Discussion

The framework presented in this paper and the methods proposed to realize the constituent
components of the related workflow can be used by practitioners and researchers alike.

As far as the practical implications of this work are concerned, the proposed framework
can be used as an aid in IoT platform implementation by software architects, developers,
and security experts, supporting the task of minimizing the overall residual risk. The
proposed framework may be also utilized to support different code development and
maintenance tasks; for instance, issues of type BUG can be extracted from the results of
the analysis performed by SAST tools, and the prioritization step could be applied to the
bug list in order to guide developers in addressing bugs, or—more generally—improving
code quality. Under the design-by-contract approach [49,50], the proposed framework
may automatically perform security assessments of alternative implementations of the
same contract, and automatically bundle into the executable the implementation providing
higher security levels, or issue relevant recommendations to the developers.

In the research domain, starting from the proposed framework, a number of as-
pects may be further analyzed and elaborated on. THe first topic that can be explored
is the exploitation of attack graphs [51,52] to fully consider all possible attack paths to
the IoT infrastructure and their repercussions, since remote attacks with low impacts
may act as stepping stones for additional attacks that may expose the infrastructure to
more serious adverse effects, e.g., by combining a remotely exploitable attack offering
to the attacker low privileges with an attack that can be executed locally only and offers
privilege escalation [53].

Static security code analysis may be complemented with dynamic security code
analysis [54] to uncover a complex flaws or vulnerabilities that cannot be identified by
SAST tools due to their perplexed nature.

The estimation of the impact of security issues may be further refined by considering
the similarity of the code entailing each particular security issue with code fragments that
are rooted to the same weakness and for which the impact has been assessed by human
experts. Approaches that assess the functional similarity of code [55] may be used to
that effect.

Concerning the prioritization of security issue fixing, a number of extensions are
envisioned. The current algorithm assumes the equal importance of all resources in the
IoT platform, however this may not hold in all environments; for instance, in the example
presented in Section 3, the air-conditioning appliance can be deemed of lower importance
than the PC or the NAS appliance, hence software issues with the software running in the
air-conditioning appliance may be assigned a lower fixing priority. The business importance
of each appliance could be provided externally by human experts and subsequently be
considered by the algorithm. Similarly, the prioritization algorithm could be extended to

Electronics 2023, 12, 2278 19 of 21

accommodate diverse importance and could be applied to different security dimension
of each appliance or resource: for instance, a public information database may have low
requirements for confidentiality and high requirements for integrity and availability, while
a health record database would have high requirements for all security dimensions.

Finally, this work may be adapted and used in numerous areas of the software en-
gineering domain, including performance/stress testing and identification of hotspots,
testing in different deployment environments, etc.

5. Conclusions

In this paper, we have presented a software vulnerability management framework
which supports all the stages of a pipeline for the management of IoT platform software
vulnerabilities. More specifically, the framework supports (a) the configuration of software
to include only the necessary features, (b) the execution of security-related tests and
the compilation of platform-wide software vulnerability lists, (c) the estimation of the
impact and the associated fixing cost for each vulnerability, and (d) the prioritization
of vulnerability addressing (considering the impact of each vulnerability) the associated
technical debt for its remediation and the available security budget.

The work presented in this paper advances the state-of-the-art by (i) proposing
a statistics-based method for the estimation of impact of detected vulnerabilities, (ii) propos-
ing an integer programming-based algorithm for prioritizing security fixes with the goal
of minimizing the residual risk level, and (iii) proposing a comprehensive framework for
the security analysis of platform software which formulates proposals on the prioritiza-
tion of security issue addressing, taking into account all the aspects (a)–(d) listed in the
previous paragraph.

Our future work will focus on the incorporation of dynamic security code analysis and
attack graphs into the workflow, as well as the refinement of vulnerability impact estimation.

Author Contributions: Conceptualization, P.S., C.-M.M., C.V. and N.K.; methodology, P.S., C.-M.M.,
C.V. and N.K.; software, P.S., C.-M.M., C.V. and N.K.; validation, P.S., C.-M.M., C.V. and N.K.; investi-
gation, P.S., C.-M.M., C.V. and N.K.; data curation, P.S., C.-M.M., C.V. and N.K.; writing—original
draft preparation, P.S., C.-M.M., C.V. and N.K.; writing—review and editing, P.S., C.-M.M., C.V. and
N.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research has received funding from the European Union’s Horizon 2020 research and
innovation program under grant agreement no. 833673. The work reflects only the authors’ view and
the Agency is not responsible for any use that may be made of the information it contains.

Informed Consent Statement: Not applicable.

Data Availability Statement: The results from applying the framework processing pipeline on the
software of the SOHO configuration listed in Section 3 are available at https://github.com/costasvas
silakis/vulnerability-management-framework/tree/main, accessed on 14 May 2023.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Grau, A.; Indri, M.; Bello, L.L.; Sauter, T. Industrial robotics in factory automation: From the early stage to the Internet of

Things. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China,
29 October–1 November 2017. [CrossRef]

2. Grau, A.; Indri, M.; Bello, L.L.; Sauter, T. Robots in Industry: The Past, Present, and Future of a Growing Collaboration With
Humans. IEEE Ind. Electron. Mag. 2021, 15, 50–61. [CrossRef]

3. Barai, G.R.; Krishnan, S.; Venkatesh, B. Smart metering and functionalities of smart meters in smart grid—A review. In
Proceedings of the 2015 IEEE Electrical Power and Energy Conference (EPEC), London, ON, Canada, 26–28 October 2015.
[CrossRef]

4. Coppola, R.; Morisio, M. Connected Car. ACM Comput. Surv. 2016, 49, 1–36. [CrossRef]
5. Hussain, R.; Zeadally, S. Autonomous Cars: Research Results, Issues, and Future Challenges. IEEE Commun. Surv. Tutor. 2019,

21, 1275–1313. [CrossRef]

https://github.com/costasvassilakis/vulnerability-management-framework/tree/main
https://github.com/costasvassilakis/vulnerability-management-framework/tree/main
http://doi.org/10.1109/iecon.2017.8217070
http://dx.doi.org/10.1109/MIE.2020.3008136
http://dx.doi.org/10.1109/epec.2015.7379940
http://dx.doi.org/10.1145/2971482
http://dx.doi.org/10.1109/COMST.2018.2869360

Electronics 2023, 12, 2278 20 of 21

6. Number of Internet of Things (IoT) Connected Devices Worldwide from 2019 to 2021, with Forecasts from 2022 to 2030. 2022.
Available online: https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/ (accessed on 4 February 2023).

7. The Internet of Things: A Movement, Not a Market. 2017. Available online: https://cdn.ihs.com/www/pdf/IoT-ebook.pdf
(accessed on 4 February 2023).

8. binti Mohamad Noor, M.; Hassan, W.H. Current research on Internet of Things (IoT) security: A survey. Comput. Netw. 2019,
148, 283–294. [CrossRef]

9. Ali, R.F.; Muneer, A.; Dominic, P.D.D.; Taib, S.M.; Ghaleb, E.A.A. Internet of Things (IoT) Security Challenges and Solutions:
A Systematic Literature Review. In Communications in Computer and Information Science; Springer: Singapore, 2021; pp. 128–154.
[CrossRef]

10. HaddadPajouh, H.; Dehghantanha, A.; Parizi, R.M.; Aledhari, M.; Karimipour, H. A survey on internet of things security:
Requirements, challenges, and solutions. Internet Things 2021, 14, 100129. [CrossRef]

11. Omolara, A.E.; Alabdulatif, A.; Abiodun, O.I.; Alawida, M.; Alabdulatif, A.; Alshoura, W.H.; Arshad, H. The internet of things
security: A survey encompassing unexplored areas and new insights. Comput. Secur. 2022, 112, 102494. [CrossRef]

12. Evaluators, I.S. SOHOpelessly Broken 2.0. 2019. Available online: https://www.ise.io/casestudies/sohopelessly-broken-2-0/
(accessed on 4 February 2023).

13. Herwig, S.; Harvey, K.; Hughey, G.; Roberts, R.; Levin, D. Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet.
In Proceedings of the 2019 Network and Distributed System Security Symposium, San Diego, CA, USA, 24–27 February 2019;
Internet Society: Reston, VA, USA, 2019. [CrossRef]

14. Bastos, G.; Marzano, A.; Fonseca, O.; Fazzion, E.; Hoepers, C.; Steding-Jessen, K.; Chaves, C.M.H.P.C.; Cunha, I.; Guedes, D.;
Meira, W. Identifying and Characterizing Bashlite and Mirai C&C Servers. In Proceedings of the 2019 IEEE Symposium on
Computers and Communications (ISCC), Barcelona, Spain, 29 June–3 July 2019. [CrossRef]

15. Hiesgen, R.; Nawrocki, M.; Schmidt, T.C.; Wählisch, M. The Race to the Vulnerable: Measuring the Log4j Shell Incident. arXiv
2022, arXiv:2205.02544.

16. OpenLiberty Group. Open Liberty. 2023. Available online: https://openliberty.io/ (accessed on 4 February 2023).
17. OpenLiberty Group. Open Liberty: Feature Overview. 2023. Available online: https://openliberty.io/docs/latest/reference/fea

ture/feature-overview.html (accessed on 4 February 2023).
18. Sotiropoulos, P.; Vassilakis, C. The additional testsuite framework: Facilitating software testing and test management. Int. J. Web

Eng. Technol. 2022, 17, 296–334. [CrossRef]
19. Al-boghdady, A.; Wassif, K.; El-ramly, M. The presence, trends, and causes of security vulnerabilities in operating systems of iot’s

low-end devices. Sensors 2021, 21, 2329. [CrossRef] [PubMed]
20. Kaur, A.; Nayyar, R. A Comparative Study of Static Code Analysis tools for Vulnerability Detection in C/C++ and JAVA Source

Code. Procedia Computer Science 2020, 171, 2023–2029. [CrossRef]
21. OWASP. OWASP Code Review Guide v2; Technical Report; OWASP: Wakefield, MA, USA, 2017.
22. Mathas, C.M.; Vassilakis, C.; Kolokotronis, N.; Zarakovitis, C.C.; Kourtis, M.A. On the design of IoT security: Analysis of software

vulnerabilities for smart grids. Energies 2021, 14, 2818. [CrossRef]
23. Schiller, E.; Aidoo, A.; Fuhrer, J.; Stahl, J.; Ziörjen, M.; Stiller, B. Landscape of IoT security. Comput. Sci. Rev. 2022, 44, 100467.

[CrossRef]
24. Calatayud, B.M.; Meany, L. A comparative analysis of Buffer Overflow vulnerabilities in High-End IoT devices. In Proceedings

of the 2022 IEEE 12th Annual Computing and Communication Workshop and Conference, CCWC 2022, Las Vegas, NV, USA,
26–29 January 2022; pp. 694–701. [CrossRef]

25. de Vicente Mohino, J.; Higuera, J.B.; Higuera, J.R.B.; Montalvo, J.A.S. The Application of a New Secure Software Development
Life Cycle (S-SDLC) with Agile Methodologies. Electronics 2019, 8, 1218. [CrossRef]

26. SAFECode. Fundamental Practices for Secure Software Development; Technical Report 3rd; SAFEcode: Wakefield, MA, USA, 2018.
27. Rashid, A.; Chivers, H.; Danezis, G.; Lupu, E.; Martin, A. CyBok Version 1.0; Technical Report; CyBok: Bristol, UK, 2019.
28. Dewhurst, R. OWASP Static Code Analysis; Technical Report; OWASP: Wakefield, MA, USA, 2023.
29. Sachidananda, V.; Bhairav, S.; Ghosh, N.; Elovici, Y. PIT: A Probe Into Internet of Things by Comprehensive Security Analysis. In

Proceedings of the 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communica-
tions/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), Rotorua, New Zealand,
5–8 August 2019; pp. 522–529. [CrossRef]

30. Samtani, S.; Yu, S.; Zhu, H.; Patton, M.; Chen, H. Identifying SCADA vulnerabilities using passive and active vulnerability
assessment techniques. In Proceedings of the 2016 IEEE Conference on Intelligence and Security Informatics (ISI), Tucson, AZ,
USA, 28–30 September 2016; pp. 25–30. [CrossRef]

31. Geneiatakis, D.; Kounelis, I.; Neisse, R.; Nai-Fovino, I.; Steri, G.; Baldini, G. Security and privacy issues for an IoT based smart
home. In Proceedings of the 2017 40th International Convention on Information and Communication Technology, Electronics and
Microelectronics (MIPRO), Opatija, Croatia, 22–26 May 2017; pp. 1292–1297. [CrossRef]

32. Overstreet, D.; Wimmer, H.; Haddad, R.J. Penetration Testing of the Amazon Echo Digital Voice Assistant Using a Denial-of-
Service Attack. In Proceedings of the 2019 SoutheastCon, Huntsville, AL, USA, 11–14 April 2019; pp. 1–6. [CrossRef]

33. He, D.; Yu, X.; Li, T.; Chan, S.; Guizani, M. Firmware Vulnerabilities Homology Detection Based on Clonal Selection Algorithm
for IoT Devices. IEEE Internet Things J. 2022, 9, 16438–16445. [CrossRef]

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://cdn.ihs.com/www/pdf/IoT-ebook.pdf
http://dx.doi.org/10.1016/j.comnet.2018.11.025
http://dx.doi.org/10.1007/978-981-16-8059-5_9
http://dx.doi.org/10.1016/j.iot.2019.100129
http://dx.doi.org/10.1016/j.cose.2021.102494
https://www.ise.io/casestudies/sohopelessly-broken-2-0/
http://dx.doi.org/10.14722/ndss.2019.23488
http://dx.doi.org/10.1109/iscc47284.2019.8969728
https://openliberty.io/
https://openliberty.io/docs/latest/reference/feature/feature-overview.html
https://openliberty.io/docs/latest/reference/feature/feature-overview.html
http://dx.doi.org/10.1504/IJWET.2022.127876
http://dx.doi.org/10.3390/s21072329
http://www.ncbi.nlm.nih.gov/pubmed/33810605
http://dx.doi.org/10.1016/j.procs.2020.04.217
http://dx.doi.org/10.3390/en14102818
http://dx.doi.org/10.1016/j.cosrev.2022.100467
http://dx.doi.org/10.1109/CCWC54503.2022.9720884
http://dx.doi.org/10.3390/electronics8111218
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2019.00076
http://dx.doi.org/10.1109/ISI.2016.7745438
http://dx.doi.org/10.23919/MIPRO.2017.7973622
http://dx.doi.org/10.1109/SoutheastCon42311.2019.9020329
http://dx.doi.org/10.1109/JIOT.2022.3152364

Electronics 2023, 12, 2278 21 of 21

34. Kotenko, I.; Izrailov, K.; Buinevich, M. Static Analysis of Information Systems for IoT Cyber Security: A Survey of Machine
Learning Approaches. Sensors 2022, 22, 1335. [CrossRef] [PubMed]

35. Akhilesh, R.; Bills, O.; Chilamkurti, N.; Chowdhury, M.J.M. Automated Penetration Testing Framework for Smart-Home-Based
IoT Devices. Future Internet 2022, 14, 276. [CrossRef]

36. Zheng, Y.; Li, Y.; Zhang, C.; Zhu, H.; Liu, Y.; Sun, L. Efficient greybox fuzzing of applications in Linux-based IoT devices via
enhanced user-mode emulation. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and
Analysis, Virtual, 18–22 July 2022; pp. 417–428. [CrossRef]

37. Prehofer, C. Feature-oriented programming: A new way of object composition. Concurr. Comput. Pract. Exp. 2001, 13, 465–501.
[CrossRef]

38. Zave, P. Requirements for evolving systems: A telecommunications perspective. In Proceedings of the Fifth IEEE International
Symposium on Requirements Engineering, Toronto, ON, Canada, 27–31 August 2001. [CrossRef]

39. Apel, S.; Batory, D.; Kästner, C.; Saake, G. Feature-Oriented Software Product Lines; Springer: Berlin/Heidelberg, Germany, 2013.
[CrossRef]

40. Dantzig, G.B. Linear Programming. Oper. Res. 2002, 50, 42–47. [CrossRef]
41. TechTarget. Top 12 Most Commonly Used IoT Protocols and Standards. 2022. Available online: https://www.techtarget.com/iot

agenda/tip/Top-12-most-commonly-used-IoT-protocols-and-standards (accessed on 14 May 2023).
42. SonarQube. Issues. 2023. Available online: https://docs.sonarqube.org/latest/user-guide/issues/ (accessed on 14 May 2023).
43. AMQP group AMQP v1.0. 2011. Available online: https://www.amqp.org/sites/amqp.org/files/amqp.pdf (accessed on 14

May 2023).
44. Heydon, R. Bluetooth Low Energy; Prentice Hall: Philadelphia, PA, USA, 2012.
45. Bormann, C.; Castellani, A.P.; Shelby, Z. CoAP: An Application Protocol for Billions of Tiny Internet Nodes. IEEE Internet Comput.

2012, 16, 62–67. [CrossRef]
46. Yang, J.; Sandstrom, K.; Nolte, T.; Behnam, M. Data Distribution Service for industrial automation. In Proceedings of the 2012

IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012), Krakow, Poland, 17–21
September 2012. [CrossRef]

47. IPCisco. Small Office/Home Office (SOHO) Architecture. 2018. Available online: https://ipcisco.com/lesson/network-topolog
y-architectures/ (accessed on 14 May 2023).

48. Penz, R. Ready Your Home Network for IoT. 2016. Available online: https://robert.penz.name/1341/ready-your-home-networ
k-for-iot/ (accessed on 14 May 2023).

49. Ozkaya, M. Teaching Design-by-Contract for the Modeling and Implementation of Software Systems. In Proceedings of the
14th International Conference on Software Technologies, Prague, Czech Republic, 26–28 July 2019; SCITEPRESS—Science and
Technology Publications: Setúbal, Portugal, 2019. [CrossRef]

50. Silva, C.; Guérin, S.; Mazo, R.; Champeau, J. Contract-based design patterns. In Proceedings of the 15th International Conference
on Availability, Reliability and Security, Virtual, 25–28 August 2020. [CrossRef]

51. Wang, B.; Gong, N.Z. Attacking Graph-based Classification via Manipulating the Graph Structure. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, London, UK, 11–15 November 2019. [CrossRef]

52. Ghazo, A.T.A.; Ibrahim, M.; Ren, H.; Kumar, R. A2G2V: Automatic Attack Graph Generation and Visualization and Its
Applications to Computer and SCADA Networks. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 3488–3498. [CrossRef]

53. O’Leary, M. Privilege Escalation in Linux. In Cyber Operations; Apress: Berlin, Germany, 2019; pp. 419–453. [CrossRef]
54. Rangnau, T.; Buijtenen, R.v.; Fransen, F.; Turkmen, F. Continuous Security Testing: A Case Study on Integrating Dynamic Security

Testing Tools in CI/CD Pipelines. In Proceedings of the 2020 IEEE 24th International Enterprise Distributed Object Computing
Conference (EDOC), Eindhoven, The Netherlands, 5–8 October 2020. [CrossRef]

55. Zhao, G.; Huang, J. DeepSim: Deep learning code functional similarity. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Lake Buena Vista, FL,
USA, 4–9 November 2018. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s22041335
http://www.ncbi.nlm.nih.gov/pubmed/35214237
http://dx.doi.org/10.3390/fi14100276
http://dx.doi.org/10.1145/3533767.3534414
http://dx.doi.org/10.1002/cpe.583
http://dx.doi.org/10.1109/isre.2001.948535
http://dx.doi.org/10.1007/978-3-642-37521-7
http://xxx.lanl.gov/abs/.
http://dx.doi.org/10.1287/opre.50.1.42.17798
https://www.techtarget.com/iotagenda/tip/Top-12-most-commonly-used-IoT-protocols-and-standards
https://www.techtarget.com/iotagenda/tip/Top-12-most-commonly-used-IoT-protocols-and-standards
https://docs.sonarqube.org/latest/user-guide/issues/
https://www.amqp.org/sites/amqp.org/files/amqp.pdf
http://dx.doi.org/10.1109/MIC.2012.29
http://dx.doi.org/10.1109/etfa.2012.6489544
https://ipcisco.com/lesson/network-topology-architectures/
https://ipcisco.com/lesson/network-topology-architectures/
https://robert.penz.name/1341/ready-your-home-network-for-iot/
https://robert.penz.name/1341/ready-your-home-network-for-iot/
http://dx.doi.org/10.5220/0007950904990507
http://dx.doi.org/10.1145/3407023.3409185
http://dx.doi.org/10.1145/3319535.3354206
http://dx.doi.org/10.1109/TSMC.2019.2915940
http://dx.doi.org/10.1007/978-1-4842-4294-0_9
http://dx.doi.org/10.1109/edoc49727.2020.00026
http://dx.doi.org/10.1145/3236024.3236068

	Introduction
	Software-Related Security Issues in IoT Software
	Assessing the Security of IoT Software

	Materials and Methods
	Architecture of the Proposed Framework
	The Additional Testsuite Framework: An Overview
	Feature Management Using the ATF
	Static Code Analysis for Vulnerability Detection
	Vulnerability Impact Estimation
	Prioritizing Security Fixes

	Results
	Experiments for the Commonly Used IoT Technologies
	Experiments for the SOHO Configuration

	Discussion
	Conclusions
	References

