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Abstract: The use of automated methods for log analysis is unavoidable in any large company;
therefore, it has attracted attention from engineers and researchers. As a result, the number of articles
in the field grows yearly and new approaches are frequently proposed. Unfortunately, published
research works only sometimes meet the needs of engineers wishing to apply the methods in real-life
systems. A common issue is that the method’s benefits often do not compensate for the effort required
for its implementation and maintenance. Therefore, engineers must understand the pros and cons
of full-scale applications, including the implementation details and the required effort. This work
provides a comprehensive review of automated log analysis methods and aims to offer a guide for
software engineers who fix integration and production failures. The article categorizes and provides
an overview of existing methods and assesses their implementation and maintenance costs, as well
as the feasibility of the methods. The article also identifies and describes the shortcomings of existing
methods, including concept drift, which is not addressed with sufficient attention, as well as the
lack of online benchmarks and the interpretation of the log sequence as a language, without an
in-depth analysis of its properties. Despite growing efforts to provide feasible and widely adopted
solutions, many reference implementations are unavailable. Consequently, the time and computation
complexities differ between various implementations of the same approaches, making the results of
research work difficult to replicate in real-life scenarios.

Keywords: software engineering; software failures; log mining; log analysis; implementation; engineer

1. Introduction

When an engineer wishes to apply a scientific principle, they need precise information
on the available methods and who can use them. At this stage of the software lifetime, their
performance, requirements, and costs of implementation are crucial. This point of view
needs to be improved in the automated log analysis field.

Logs are the most common source of information available for analysis when a system
failure occurs. In the world of growing software systems, logs have thousands of lines. A
failure can be indicated by a fatal, error, or even info log message, which adds another level
of complexity [1]. Consequently, the manual extraction of information from logs is infeasible
for human operators, and automatic methods are needed. Unfortunately, universal and
scalable methods still need to be developed or have too many limits. For example, static
methods are quickly outdated, are prone to noise, and have a large computation overhead.
Machine learning (ML) and deep learning (DL) methods can overcome these difficulties.
Unfortunately, a universal ML or DL method has yet to be proposed, and engineers need to
search across different approaches and solutions.

One reason for the lack of universal methods is the nature of system failures, which
may have various causes. Runtime errors may be due to a software fault or bug, the
incorrect configuration of software components, or missing functionality. The reason for
failure and the time at which the failures are encountered may differ. Some errors are
detected during tests in the software development stage, while others go undetected in the
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testing procedures and manifest themselves in production. Depending on the reasons and
the time at which failures are detected, the amount of information available to the software
engineer and test engineer changes and the complexity of the task to find the cause of the
failure grows.

The information for errors detected in integration tests is usually limited to logs, the
source code, and the execution history. The situation is even more difficult for errors
detected in production because, in such a case, usually only the execution logs are available
for analysis.

Another reason for the need for a universal method is that error-related logs are an-
alyzed by several groups of people in the company, each having different expectations
regarding the required information details. The test engineer and manager require infor-
mation on the high-level root cause of the failure and the responsible group of software
engineers who should address the error. The engineer wishes to restrict the log to the most
relevant parts and obtain more detailed information on the root cause of the failure, ideally
connected to the source code line. Existing methods can provide the engineer with much
different information. Methods based on anomaly detection allow the engineer to focus on
the parts of the logs that are the most likely to contain the failure. There are also methods
allowing them to reconstruct the execution path and find the root cause by identifying
faulty components or tasks. They can also give a sequence of API calls to reproduce the
failure or generate a unit test with failure reproduction.

These methods require various input data. Most of the time, methods utilize only
logs collected during faulty execution. However, some methods also need logs of past
executions. The outcome of the methods is often quite generic and unclear to engineers.
To obtain more meaningful results, they need further processing—the output data have
to be grouped and labeled, a unit test has to be provided, or a history of the same test
is needed.

Despite many research efforts, the existing approaches need to be revised to allow
the adoption of log analysis tools [2]. The reason might be that engineers’ expectations
differ from those presented in the literature. The accuracy might need to be improved,
and the cost of implementation may be too high. The consensus among embedded software
engineers is that existing solutions do not provide information on software components’
data flow and interactions. There is a need for a tool to identify meaningful differences
between executions. They also report the need for a top-down approach, where a high-level
hypothesis is verified by a lower level of analysis [3].

Regarding accuracy, when methods were applied to split data chronologically, a typical
real-world scenario achieved lower accuracy than in original papers [4].

Most methods are tested on open-source systems, which may differ significantly from
commercial systems. Finally, the cost of implementation is difficult to assess. Not all papers
publish their source codes and data; many have implicit assumptions about the data and
system. Only some present the pseudo-code and time and memory performance measures.

This article addresses the research question of the applicability of log analysis methods
to real-life situations and practical applications without the need for frequent intervention
or retraining. The main contributions of the article include

• a broad review of existing methods for automated log analysis focusing on approaches
applicable to real-life systems;

• classification of the methods into categories important for software engineers: avail-
able implementation, algorithms and approaches used, applicable stage, robustness to
concept drift, and their performance, including the F1 score.

We refer the reader to [5] for a systematic review of automated log analysis.
The remaining parts of the article are organized as follows. Section 3 defines software

failures and categorizes them according to the moment of detection in the software’s
lifetime, the information available for analysis, and the localization of errors. In Section 4,
anomaly detection methods are described, along with retrieval-based and execution replay
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methods. Section 5 summarizes the review and presents the assessment of the reviewed
methods, while Section 6 draws conclusions and presents further investigation areas.

2. Review Methodology

We consulted the Mendeley Library to systematically collect and revise publications
for this review. We first searched relevant papers in online digital libraries and extended the
repository by manually inspecting all references in these papers. To begin with, we explored
several popular online digital libraries (e.g., IEEE Xplore, ACM Digital Library, Springer
Online, Elsevier Online, and ScienceDirect) with the following keywords: “log + automated
analysis”, “log + automated analysis + industry”, “log + automated analysis + engineer”,
“log + automated analysis + production”, “log + automated analysis + software develop-
ment”. Then, we manually inspected each reference of these papers to collect additional
publications related to the survey topics. This article focused on publications studying the
reliability issues with software system logs applied in the industry. We took taxonomy
from [6] and followed the search in three additional categories: anomaly detection with
keywords “log + anomaly detection + production”; retrieval-based methods with keywords
“logs + retrieval based + production”, “log + failure category+production”, “log + failure
classification + production”; and execution replay methods with keywords “log + execution
replay + production”, “log + execution path+production”. We collected 43 publications in
the automated log analysis area from 2002 to 2022. We found that automated log analysis
has been continuously and actively investigated in the past two decades. In particular, we
observed (Figure 1) steady growth in the number of publications emphasizing industry
implementation since 2018, indicating that the log analysis field has attracted increasing
interest since then.

Figure 1. Paper distribution for each topic and the publication trend regarding industrial application
of log analysis.

Furthermore, we classified these publications into three categories by research focus:
anomaly detection, retrieval-based, and execution replay methods. The reason for this is
that, from a practical point of view, the engineer must complete three steps to solve the
problem: to find the place where the anomaly originated (anomaly detection), to categorize
the failure (failure categorization), and to analyze the execution path (execution replay
methods) to find the solution. This is consistent with findings from an interview study
of industry developers [3]. The distribution shows that a large portion (18 papers) of
the research efforts were devoted to anomaly detection. The reasons are two-fold. First,
anomaly detection is the most straightforward binary decision task that can be performed
on logs. Second, it can give informative insights into the nature of log sequences and drive
more sophisticated machine learning tasks, such as failure categorization. Among the
reviewed papers, only 12 mention industrial/practical implementation. Furthermore, we
were aware of several existing surveys on automated log analysis. Zhao et al. [2] reviewed
158 log analysis papers and pointed out some challenges in 2022. They analyzed papers
in five categories: logging, log compression, log parsing, log mining, and empirical study.
Other existing surveys [6–8] focused on log anomaly detection. However, there needs to
be more research and implementation. Unlike these studies, our survey mainly targets
automated log analysis from a practical point of view.



Electronics 2023, 12, 2260 4 of 21

3. Research Problem

Software failures are deviations in one or more states of the system. This deviation
is called an error [9]. The reason for the error is a fault that may be internal or external.
Internal faults are software bugs, while external faults include problems with the operating
environment, an incorrect configuration, or incorrect input. To deduce the root cause of
the error and identify and locate the fault, the engineer needs information on the failed
execution of the software. The information might include logs, the history of execution
of the test scenarios, the history of commits, debugger and execution traces, input data,
and the configuration. The amount of data available to an engineer in a large system
is overwhelming.

3.1. Software Lifetime and Fault Diagnosis

Without loss of generality, one can assume that software failures can be detected in
one of the three stages of the software lifetime: during unit testing, integration testing [10],
or production [11]. Failures encountered in production are the most critical because they
are often related to contractual penalties and are associated with high pressure to identify,
locate, and solve problems quickly. Production failures relate to the most significant
pressure from the company management [11], as they relate to contractual penalties. Unit
test failures are on the other end of the spectrum. The engineer often encounters them
on the local machine while developing a new feature or regression. Consequently, there
is little pressure regarding the time to diagnose and correct the failure. Faults can also
be detected during continuous integration tests when part of the functionality is ready.
Because functionalities include modifications in many components, it is reasonable to test
the behavior of all modifications at once [12]. Consequently, the pressure to solve these
issues is relatively high.

The type and amount of data available are different at different stages of the lifetime
of the software. Unit testing failures have the richest data available, from the debugging
results, through execution traces, to the history of the execution, as shown in Table 1. They
are often caused by the latest changes in the current software components, which drastically
reduces the search space. They can also be easily rerun with additional flags/additional
local logs. This makes them very easy to fix. Automatic methods are limited here, con-
centrating mostly on spectrum-based failure detection [13,14], which compares executed
lines in passing and failing tests to determine which are the most common in failure tests.
However, unit tests, even when covering code with a high percentage, cannot verify all
possible inputs and paths of execution due to the state explosion problem [15]. It is still
visible despite using AI methods to improve unit testing [16,17]. This is why failure in later
stages of development is inevitable and must be tackled, especially when modifications
in several components, delivering new functionality, are ready, and integration tests are
performed to ensure the correctness of the delivered implementation on a multi-component
level. The available data are logs, the history of execution, and information on the latest
changes. Compared to failures detected in the unit test, the analysis here is more complex,
because the cause of the failure may be spread among the different components and parts
of the software that have been changed. However, the engineer can rerun the integration
tests and analyze the results for a different set of parameters and different configurations to
check for a possible root cause and collect additional logs.

The most challenging are failures that occur in production, as they might result from
changes made in several components. The failure of one component does not necessarily
mean that this component contains the error, as the failure may have occurred elsewhere and
is merely observable here. Failure analysis is based mainly on logs containing information
on all components’ behavior, and additional data collection for debugging purposes are
challenging or impossible to obtain. For these reasons, we will focus only on integration
tests and production.
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Table 1. Failure at different stages with different data available.

Stage Logs Source Code History of Execution Debugging

Unit Test Failure X X X X
Int. Test Failure X X X
Production Failure X X

3.2. Data Available for Error/Failure Analysis

The type and amount of data available are different at different stages of the lifetime
of the software. Unit testing failures have the richest data available, from the debugging
results, through execution traces, to the history of the execution, as shown in Table 1. They
are often caused by the latest changes in the current software components, which drastically
reduces the search space. They can also be easily rerun with additional flags/additional
local logs. This makes them very easy to fix. Automatic methods are limited here.

When modifications in several components, delivering new functionality, are ready,
integration tests are performed to ensure the correctness of the provided implementation
on a multi-component level. The available data are the logs, the history of execution,
and information on the latest changes. Compared to failures detected in the unit test,
the analysis here is more complex, because the cause of the failure may be spread among
the different components and parts of the software that have been changed. However,
the engineer can rerun the integration tests and analyze the results for different parameters
and other configurations to check for a possible root cause and collect additional logs.
The engineer performs failure analysis by inspecting the logs using regular expressions or
by comparing normal and failed case logs. Studies of the latest changes in the software can
be helpful; however, they span many components and can be non-trivial.

The most challenging are failures that occur in production, as they might result from
changes made in several components. The failure of one component does not necessarily
mean that this component contains the error, as the failure may have occurred elsewhere and
is merely observable here. Failure analysis is based mainly on logs containing information
on all components’ behavior. Additional data collection for debugging purposes is highly
difficult or even impossible to obtain. Once again, the engineer usually relies on a manually
prepared set of regular expressions and experience in log analysis. The number of logs
to analyze is even greater than in the case of integration testing, and the set of the latest
changes in the software is also more significant. For these reasons, we will focus only on
integration tests and production.

3.3. Industrial Approach to Log Analysis

Nowadays, the fixing of software failures is based on scripts that automate log pro-
cessing and some analysis steps. Nonetheless, the process significantly depends on the
engineers’ experience and knowledge. Scripts are relatively simple as they are based on
regular expressions or rules that are built individually by each engineer or stored in large
rule- based systems. When they fail to explain the error, the only approach left is a te-
dious search through thousands of lines of logs and source code. Through great effort,
the engineer applies his knowledge and experience to detect suspicious instances that may
signal the cause of the error. The above approach has two main areas for improvement.
First, such scripts, regular expressions, and rules may become outdated as the logs and
software constantly change. Second, when an experienced engineer leaves the company,
his knowledge is lost to others.

3.4. Scientific Methods

Because the manual examination of thousands of log lines produced by today’s sys-
tems is not feasible, researchers seek scientific solutions. Log anomaly analysis is growing in
popularity in this research area. There are standardized benchmarks available [18], and ad-
vanced machine learning and deep learning methods are used [19,20]. A log sequence
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is often treated as a natural language [21–24]. Methods can find log lines or segments of
lines that are anomalous. The abstraction of a log sequence as a language is also popular.
Some researchers go further and classify anomalies [25]. The execution path can also be
extracted from the logs [26,27]. One can extract higher- level information on execution,
which includes relevant API calls [28]. These methods use an algorithmic approach. Some
rely on integration testing [28], while others are applicable on all levels [21]. As a result,
the number of publications on the topic grows yearly, but their results are not easily applied
to real-life commercial systems [29].

AI Methods

It is worth mentioning that the most successful of the above approaches is the use
of AI methods, specifically deep learning [19,30]. It started, however, from rule-based
systems such as Logsurfer [31], where the system expert has to input the necessary regular
expressions and maintain them, which is a known limitation. Then, the use of machine
learning methods allowed the automatic extraction of features, such as the TFIDF method,
where logs are firstly parsed into log templates with invariant parts, and the frequency of
their appearance in each line and document is used to represent them in the fixed dimension
vector. Machine learning methods such as Support Vector Machines, Logistic Regression,
and Decision Trees can determine whether feature vectors represent a failure or normal
behavior. The limitation here is that the extraction method is fixed, and the model has to be
retrained whenever there is a change in input. Ultimately, deep learning methods solve
this problem by learning features from log sequences in an NLP manner. This allows them
to be more flexible and return sufficient results for previously unseen input. We provide
more details in Sections 4.1.1, 4.2.1 and 4.3.1.

3.5. Research Problem

There is a clear gap between research and industry. Methods that achieve good F1
scores are not feasible for implementation because they require frequent retraining. Others
present very complex algorithms with no reference implementation, making them challeng-
ing and time-consuming to apply in reality. In some cases, available implementations are
not complete or lack essential components. It is also challenging for a software engineer to
find appropriate methods, as some are suitable for production failures and log analysis,
while others can only be applied to integration failures. This article aims to support engi-
neers and address the question of which methods proposed so far are most promising and
of practical use, being easy to implement without frequent intervention after training.

4. Approaches to Automated Log Analysis

This section presents different approaches to automated log analysis. We distinguish
three main approaches: anomaly detection (Figure 2), retrieval-based methods (Figure 3),
and execution replay methods (Figure 4). Each approach is discussed in three parts: first, we
discuss the available approaches, followed by how they deal with concept drift, and, finally,
the implementation details presented in original papers. Concept drift is a well-known
definition [6,8] describing situations whereby log lines are added, deleted, or modified
during the software development lifetime. Without proper online learning capability,
frequent model retraining is required. The main problem with concept drift is that when
the model is trained on historical data that are not sorted by date, it will have access to
log patterns from the whole period of time. Meanwhile, in real life, it will have to behave
correctly on unseen log patterns. Utilizing a train/test split in this way has the consequence
of falsely providing high-precision and -recall results, which was described in [4].

An anomaly is extracted in many proposed approaches, and anomaly detection meth-
ods are a fast-growing field of research. The most successful methods make use of ML
and DL algorithms. An anomaly can be helpful for the engineer to reduce the number
of logs to analyze by selecting a log segment with the anomaly. However, information
about the anomaly is more valuable in many contexts, or it can be misleading when looking
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for the root cause in a complex system. Researchers make an effort to extract as much
information as possible from the logs to ease the work of the manual log analysis. As a
consequence, there are methods to extract the execution path or classify the failure category.
The execution path is essential for the developer engineer in finding the root cause. At the
same time, file categorization helps the test engineer to assign the encountered failure to
the correct developer group.

Anomaly detection

Detect 
anomaly

Log file historical
failures

learn the model

Figure 2. Anomaly detection method consists of learning the model and applying it to detect the
anomaly in the log.

Failure category
  classification

Failure 
category

Log file historical
   logs

learn the model

Figure 3. Retrieval-based methods store historical logs along with failure categories and learn a
model from this. It is then used to make predictions about new logs.

Execution path
  extraction

Log file source
code

Determine
 execution

path

Code 
lines 

Labelled
  logs

API
calls

Figure 4. Execution paths process log lines and find the most probable execution path. This might
return exact code lines, API calls, or label code segments with the most similar test executions seen
during training.

4.1. Anomaly Detection

Systems are becoming increasingly more complex and thus prone to bugs and vul-
nerabilities. One can detect anomalous behavior from logs. An anomaly is a sequence of
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logs or a single log related to a bug or vulnerability. The methods of detecting anomalies
consist of log parsing (Figure 5), feature extraction, and classification. The results are
anomalous sequences of logs or single logs. Anomaly detection can restrict the number
of logs for the developer to analyze from thousands of lines to a few hundred or less. It
can refer the engineer to a specific API call, task, or log from a fixed time or window. This
method’s main challenge is distinguishing between normal variations in a log sequence
and an anomalous variation.

Process logs from free text to template form.

Load
logs lines.

Use parser
for template
extraction.

1. fs.defaultFS is hdfs://<:IP:>, [127.0.0.1]
2. No KeyProvider found., []
3. fsLock is fair:<:BOOL:>, [true]

1. fs.defaultFS is hdfs://127.0.0.1:0
2. No KeyProvider found.
3. fsLock is fair:true

Figure 5. Process of parsing logs from free text to log template and variables.

This method is not easy, mainly because software is constantly being developed, new
logs are added, and old ones are modified or deleted. Most of the methods learn from the
past, i.e., from previous releases. In contrast, most failures occur during the early stages
of new release development, where more data might be needed to learn release-specific
normal and anomalous sequences. The work by Le et al. [4], in which logs were split
chronologically, showed decreased performance in known methods. More work must be
carried out to test the existing approach on logs from consecutive software releases.

4.1.1. Approaches
Statistical

Contemporary anomaly detection uses statistical, machine learning, or deep learning
methods. Statistical methods can capture the relationship between log lines in one log
file. They need much human-expert effort to select important features. Once selected,
the elements are not portable to other systems when the process has to be repeated. Machine
learning methods ease this process. A specific set of features, such as the sequence of log
event IDs vectorized with the Term Frequency Inverse Document Frequency (TFIDF)
method, is uniformly selected for all logs. TFIDF [32] is a widely known method that uses
a fixed number of features to encode the importance of each word in a given text. Once the
features have been collected, the model can be trained. However, when there is a change in
the log event space, the length of the feature vector is also changed, and the model has to
be retrained. This happens every time a new log event is added; the old one is deleted or
modified. Deep learning models are more robust to changes in the log event space. Feature
vectors are trained from log events using word2vec or Autoencoder.

One of the first anomaly detection methods was based on the statistical analysis of the
features and rules. Xu et al. [33] proposed an unsupervised method that converts the log
sequence into a count vector. Using PCA, anomalies are detected by checking whether the
log sequence vector projected to a space spanning the first k PCA components is within
normal bounds. Normal bounds are determined by analyzing normal historical executions.
Invariant mining [34] uses program features observable in logs, which are always held
during normal execution. For example, if the file is opened, it must be closed. It can uncover
linear relationships between log events in an unsupervised manner. An event count matrix
is built, where each row is the event count vector of a log line. Logsurfer [31] clusters
log lines and applies predefined rules to them. Rule-based systems are not used today
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due to their well-known limitations, but clustering is still being developed [35]. Another
approach to leveraging statistical data is to build automata, and LogLens [36] keeps track of
timestamps, log event parameters, content, and the number of occurrences. It then creates
rules in an unsupervised manner, looking only at normal historical executions.

Machine Learning

Supervised machine learning (ML) methods including Support Vector Machines
(SVM) [37], Decision Trees [38], Logistic Regression [39], and Random Forest [40,41] and
unsupervised ML methods such as LogClustering [35], PCA [33], and invariant mining [34]
take logs as input, extract their features, and train the classifier to label anomalous se-
quences. The logs are parsed to extract the log event ID in all methods. Source code is not
used, but the line similarity is examined to determine log event templates. A fixed, sliding,
or session window is applied to extract log sequences. The size of the window impacts the
generalization capability of the model [41] and must be carefully selected. The final step
of feature extraction is performed using a count vector. For the supervised ML methods,
the model is trained on labeled vectors. The model will determine which one is anomalous
when used on unseen logs.

Deep Learning

Statistical and machine learning approaches cannot deal with the change in log event
space. Statistical methods use rules encoded by system experts or discovered from historical
executions, and this does not enable them to recognize novel system behavior changes and
distinguish normal from anomalous instances. Machine learning finds the relationships
between data and results but uses a fixed representation of sequences. Every change in
the log event space changes the dimensionality of the vector representation and forces
the model to be retrained. On the other hand, deep learning methods learn the vector
representation from raw data, which solves the problem of fixed feature representation in
ML in many areas. However, in anomaly detection, some deep learning methods are also
tightly coupled with feature representation [19,21,35,42,43]. Consequently, any change in
the log event space reduces its precision and recall [8]. LSTM-based solutions [21,24,42]
learn from the sliding window sequence of log events. If an unexpected log event ID is
found, it is an anomaly. LogCNN [19] uses a matrix with a dimension equal to the log
event space size. If the log event is absent during training, its value is undetermined.
LogCluster [35] builds vectors with the length of the log event space size. The advantage of
deep learning is the learned vector representation, which makes the model more robust
to log event space changes, reducing the amount of model retraining. Log events are
encoded not with the log event ID but with the vector that encodes the semantic meaning
of the log event text. ADA [44] uses one-hot vectors for every word in the log template
and learns to log event representations using LSTM. The distinction between normal and
anomalous log lines is based on the threshold, an auto-adjusted parameter learned online
during work. LogRobust [30] vectorizes log events with a weighted sum of word2vec
vectors. It utilizes free text from the log event and vectorizes it with a pre-trained word2vec
model. This approach was also adopted in [45]. Another application of word2vec can
be found in LightLog [46], where the word2vec model is used to compress the sequence
into a 300-dimension vector [47]. LogAnomaly [48] also combines words from log events
with its algorithm, named template2vec, which is especially trained to encode specific
synonyms and antonyms of log templates. LogBert [20] represents a log event as a sum of
a randomly generated log key embedding and a position embedding generated with the
sinusoid function.

4.1.2. Dealing with Concept Drift

The sophisticated, learned vector representations of words allow deep learning meth-
ods to deal with moderate log changes without model retraining. However, the log parsing
tool still needs to be retrained, which is usually a time- and resource-consuming process.
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Eventually, when the log event space is changed more significantly, the deep learning
model has to be retrained. We have yet to find exact criteria for this, as none of the re-
viewed papers provide clear criteria. The bottleneck for most methods mentioned above
is the log parsing algorithm. The number of open-source algorithms available online is
increasing; among them, the most popular are Drain [49], Spell [50], LogParse [51], and
nerlogparser [52]. To work well, they need fine- tuning and computational power. In addi-
tion, they cannot detect all the templates correctly, which propagates through the learning
model and influences the results. To increase the accuracy, LogPunk [53] selects candidates
based on punctuation marks; only then are templates extracted. There is also an effort
to build a log parser taking semantic features into consideration [54] so that information
about parameters is not omitted but is integrated into templates.

Some papers propose anomaly detection models without extracting log events.
Brown et al. [55] do not clean the log lines at all. Logs are split into words or characters and
fed into an RNN. Aussel et al. [56] use standard NLP techniques, including tokenization,
stemming, and stop word removal, to extract log templates. Unigram, bigram, and trigram
merge word2vec representations of words into one vector for a log line. Logsy [57] also
uses text preprocessing known from NLP and removes digits and stop words. The log text
is then tokenized and vectorized with the transformer encoder model. This also makes
the model more robust to log event space changes. Farzad et al. [58], after similar pre-
processing of the log text, proposed the usage of Autoencoder to vectorize the log text.
Although promising, for both solutions, the anomaly detection results are worse than those
of LogRobust and LogCNN, as presented in a survey [8].

4.1.3. Implementation

Most deep learning and machine learning methods are similar in implementation.
Firstly, data need to be collected, and a large amount of normal and anomalous logs must
be stored. Then, the data need to be labeled as normal and anomalous. The next step is
extracting features from the logs so the algorithms can process them. The goal is to convert
the log line text and variable lengths of log sequences into a fixed-length vector. The last step
is to train the machine learning or deep learning model. The most expensive part in terms
of implementation and computation is feature extraction. SVM [37], Decision Trees [38],
Logistic Regression [39], and DeepLog [21] process log lines with the use of open-source tool
Drain [49]. Then, log lines are converted into log event IDs, and a sliding window is used
to deal with the variable length of the sequence. LogRobust [30] extracts log events using
Drain, and then every line is vectorized separately, and every sequence is the weighted
sum of the vector representation of the lines. Bertero et al. [59] uses standard NLP tools
to remove all non-alphanumeric characters from logs. Every word in a line is vectorized
with word2vec, but barycentring elements acquire lines and sequences. The line is the
barycenter of every word, and the log sequence is the barycenter of all lines. LogLens [36]
uses regular expressions to extract patterns. It does not require previous configurations or
source code. LogLens uses finite-state automata to detect anomalies, and this also needs to
be implemented and maintained as it is not available online. LogBert [20] is one of the few
methods in which log parsing and model training and testing are available in the online
implementation. It uses Drain to parse the logs and its own implementation of Bert to
detect anomalies. The cost of implementation is low.

The implementation of [19,21,30,45,48] with log parsing is available online thanks
to the authors of an empirical evaluation of the five most popular anomaly detection
methods [4]. Thus, all these methods are easy to apply in a custom system. We wish
to determine at which stage of software development this method is applicable. We
consider two stages: integration testing and production. We will check if this is mentioned
in the original paper or papers using the original method as a baseline. As in most
cases, benchmark loghub is used [18]; we present reasoning about this benchmark, which
allows us to infer the software development stage from the fact that this benchmark was
used. The logs gathered there consist of logs from different applications deployed in
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a production-like environment. This leads to the conclusion that the method tested in
this benchmark suits production failures. As integration testing is aimed at simulating
the production environment, it generates similar output to production logs. Historical
data are also often stored and available. Thus, methods applicable to production logs
should also work for integration logs. Our assumption is supported by work conducted by
Yuan et al. [60], where Deeplog [21], designed as a production anomaly detection method,
was used in integration testing logs, along with dedicated integration testing methods
such as CAM [61]. The following methods [19,21,30,35,42,45,46,48,57,58] were tested on
a benchmark [18] by the authors or in surveys [4,6,8]. As described above, the usage of
benchmark loghub implies that the methods are suitable for logs from the production run
and integration testing.

4.2. Retrieval-Based Methods

In many situations, more than information about an anomaly is needed. Anomaly
detection can assign an anomaly label to a specific log file or log sequence but cannot
reveal any meaningful information about it. While restricting several anomalous logs to
analyze is beneficial for engineers, limiting the number of possible root causes would also
be helpful. In some cases, it is sufficient for an engineer to assign a class of problems to the
logs, and this information can be buried in logs but requires a different approach. Similarly,
in a natural language, a different approach is needed in spam detection and sentiment
analysis with more than two classes. In logs, failure categories are expected [62]. Such
categories allow us to assign the problem directly to the correct maintenance group or code
part. This approach is used during integration testing and performance issue resolution in
leading software companies [61,63,64].

4.2.1. Approaches

CAM [61] and LogFaultFlagger [63] work on the test logs generated by the testing
scripts. CAM was developed in Huaweii for integration test failures and assumes that the
failure category can be determined by assigning the failure category of most similar failures
from the past. The most similar historical failure is found by comparing the function
points of the tests and measuring the cosine similarity between logs. TFIDF performs the
vectorization of the test logs. CAM returns the failure category and the difference between
the new and historical tests. If the cosine similarity is above the threshold, CAM uses 1-NN
to determine the failure category; otherwise, KNN is used. The result indicates 58–65%
correctly classified categories, depending on the dataset.

LogFaultFlagger was developed in Ericson as their attempt to use CAM failed. In its
dataset, CAM achieved 50% accuracy. The developers use source code printing statements
to process logs to remove the variable parts of log lines. They assume that the failure is
visible in the difference between the normal and failed test log. Normal logs are found
similarly to CAM by identifying logs with similar (cosine similarity) vector representations.
This time, it is also TFIDF but is built on log event templates instead of English words.
The same approach of using TFIDF at the logline level, along with the textual data, was
used in Sarkar et al. [65] to assign the correct maintenance group at Ericsson. This has
the obvious flaw of being an invalid representation after a change in log event space.
Yuan et al. [60] and PerfSig [64] use standard NLP preprocessing techniques along with
word2vec vectorization. Yuan et al. [60] label logs related to separate system tasks as
failed or normal. Classifiers are ML methods implemented in the Scikit-learn library [66],
and Random Forest achieves the best results. This method is distinguished from the
previous solution because the classification results are the failed system tasks extracted
from the system log with regular expressions. The method’s accuracy is different from that
of other methods known in the literature. Yan et al.’s [25] results are similar to those of
the previous one study—namely, logs related to system tasks are labeled. The difference
is in the way in which tasks are defined. Here, the system expert has to define and create
system tests for them. The training dataset is created by running the set of created system
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tests multiple times. Logs are preprocessed to extract log events and log event IDs. Then,
similar log lines are clustered, where the timestamp is taken as a criterion. To vectorize
the sequence of log events, the ParagraphVector is used. In the end, Multinomial Logistic
Regression is used as a classifier.

4.2.2. Dealing with Concept Drift

CAM and LogFaultFlagger use TFIDF to vectorize log sequences. As mentioned
before, this is not robust to new log templates as the length of the extracted vector will
be changed, and the model would have to be retrained. Yuan et al. [25] use log events to
build the matrix for log clustering. As the dimensions of a matrix are equal to the number
of extracted events, it implies that the whole learning process has to be repeated after
any change in log events. Yuan et al. [60] and PerfSig [64] overcome the limitation of the
TFIDF vectorization of log lines and use standard NLP preprocessing techniques along
with word2vec vectorization. The log line is represented as the average of words. PerfSig
also clusters log lines that are semantically similar, which allows the grouping of logs
from different threads. CAM and LogFaultFlagger cannot deal with concept drift, while
Yuan et al.’s model [60] and PerfSig are more robust.

4.2.3. Implementation

CAM and LogFaultFlagger require a system expert to build the database with catego-
rized historical failures. There is no online implementation as they are commercial tools.
CAM achieved above 80% accuracy on their dataset, and LogFaultFlagger achieved 90%
accuracy but was able to use its approach only on 62% of the bug reports. Yan et al.’s
method [60], Yuan et al.’s method [25], and PerfSig are also based on the offline phase,
where data related to categories are collected and labeled. Despite using standard NLP
techniques and word2vec, all methods still need significant effort in implementing the
main algorithm as there is no online publication. The main flaw of Yuan et al.’s method [25]
is the effort needed from the system expert, who is required to build a knowledge base
and implement an algorithm to extract log events and a machine learning model. The
model achieved high precision and recall, above 97%. However, as in the previous method,
there was no baseline method. Regarding computational complexity, the CAM study
highlighted the inexpensive calculations, which could be counted in minutes. On the
contrary, the CAM algorithm implemented in Ericson took 7 h to complete. Meanwhile,
LogFaultFlagger needed 1 h to achieve the same task. Neither of these solutions is available
online as they are commercial tools. Computational comparisons are inconclusive, as the
datasets used differ from paper to paper. Yan et al.’s method [60] outpaces CAM and
LogFaultFlagger in computation time by limiting the analysis to exception logs only. Their
custom dataset’s log processing took 37 min, while, for CAM, it required several hours.
These methods can be used to detect integration test failures [61,63] and production and
integration failures [25,60].

4.3. Execution Replay Methods

Anomaly detection and retrieval-based methods are high-level methods that return
large parts of logs to the engineer labeled with anomaly or failure category class names.
A lengthy process is needed to find the root cause, and knowledge of what was executed
is crucial. The execution path is one of the most valuable pieces of information for the
developer when dealing with a software failure. However, obtaining it for production or
integration test failures is not easy. The usual method is to debug the process, but it is
often impossible because the issue might not be reproducible or the client setup may not
be accessible. This is the motivation for the exploration of other, noninvasive methods.
As logs are often available and generated by the code, they present a part of the execution
path. Several works seek to take advantage of this situation. This section will describe
methods that retrieve the full or part of the execution path from the log.
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The returned results have different levels of granularity, from execution statements [26,27]
and files [67], through API calls [28], to the names of unit tests with a similar execution
log [68]. Sometimes, it can be packaged with unit tests [28]. Reconstruction of the execution
path plays a vital role during failure analysis. When done with high precision, it can help
the developer to find the root cause of the failure. On the other hand, for long executions,
the path will consist of thousands or millions of operations, which makes it impossible to
use. This is a known flaw of SherLog [26].

4.3.1. Approaches

SherLog’s goal is to infer what must, must not, and may have happened during the
failed production run. It does so by combining information from the logs and source code.
The result consists of an exact path and a probable path. LogMap [27] works similarly but
uses only log fragments included in the bug report. This way, it overcomes the problem of
too much information being returned. Similarly, Pathidea [67] reconstructs the execution
path based on logs, but at the file level, using stack trace and textual information in a bug
report. Pensieve [28] selects only calls from the API from the execution path. Then, it further
reduces the number of API calls to a minimal subset of calls where the failure is reproduced
and returns it packaged with a unit test. All these methods have the clear advantage
of using source code and unit tests from failed releases. Our previous work [68] used a
different approach to describe the execution path. The main idea is that logs from unit tests
represent the underlying execution path. We can determine the execution path from the
runtime by matching the unit test suite logs to the runtime execution log segmented with a
sliding window or fixed window. In this way, the runtime receives meaningful labels and
unit test suite names, which can be treated as an approximation of the execution path for
the test suite coverage. On the other hand, logs from unit tests can be treated as labeled
sets of logs, which, in previous works, was done manually [69]. They are grouped into
categories by the originating test suite. Log preprocessing is done by Drain, and the log
event ID sequence is then vectorized by TFIDF and classified with Random Forest. It is
worth mentioning that this approximation is not as accurate as that of SherLog, but it is
much faster, because the most demanding part in terms of computation is the training,
which is done once; then, for every runtime, the log computation time is equal to the
processing and vectorization time of the runtime log and Random Forest classification time,
which is fast. Labeling a group of logs also means reducing the amount of information to
analyze by the programmer, and unit test suite names are more meaningful to the developer
than raw logs.

4.3.2. Dealing with Concept Drift

All mentioned methods depend only on the source code relevant to the release where
the failure is visible, and it is done directly or indirectly by using logs from unit tests. This
approach is robust to concept drift as it extracts all relevant information from the source
code, not from historical data.

4.3.3. Implementation

Sherlog, Pensieve, LogMap, and Pathidea do not have an online implementation;
they are non-trivial algorithms. Dobrowolski et al.’s implementation is available online
on GitHub. Sherlog has known the issue of state explosion by analyzing every possible
path of the execution. Other tools avoid this problem by reducing the search space to logs
included in the bug report [27] or changing the granularity of the result to a higher level,
such as API calls [28] or unit test suite names [68]. All methods can be used to deal with
production and integration test failures. Regarding the computation time, SherLog’s flaw
is that it suffers from state explosion, as it examines every possible execution path, which is
infeasible for an extensive software system. LogMap and Pensieve avoid this by reducing
the search space. Dobrowolski’s method relies on approximations made by the ML model
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so that the computation cost is almost entirely moved to the training phase. However, it
still requires parser computations to extract the log event ID sequence.

5. Discussion—A Cheat Sheet for Engineers

In this section, we gather all the information in the form of a Table 2 so that the the
engineer can easily identify an interesting algorithm and check and compare its features.

Table 2. Automated log analysis methods. The online column describes whether there is an online
implementation; algorithm (statistic, automated, machine learning, or deep learning) describes
which algorithm is used for classification. The applicable stage indicates at which stage of software
development the method can be used. The result is the type of returned value, and F1 is the score of
the method presented on a public dataset (if available) or a custom dataset.

Method Online Model Applicable Stage Concept Drift Result F1
Score

IM [34] X statistic features int&prod retrain anomaly 91%

PCA [33] X statistic features int&prod retrain anomaly 55%

LogSurfer [31] statistic features int&prod retrain anomaly N/A

SVM [37] X ML int&prod retrain anomaly 85%

LogEvent2vec [40] ML int&prod retrain anomaly 83%

Logistic Regression [39] X ML int&prod retrain anomaly 82%

DT [38] X ML int&prod retrain anomaly 74%

LogCluster [35] X ML production retrain anomaly 57%

LogLens [36] Automata int&prod relearn anomaly 97%

LogRobust [30] X DL int&prod robust anomaly 99.5%

LightLog [46] X DL int&prod robust anomaly 97%

LogBert [20] X DL int&prod robust anomaly 96.64%

CNN [19] X DL int&prod relearn anomaly 90.8%

Logsy [57] X DL int&prod robust anomaly 80%

Farzad et al. [58] X DL int&prod robust anomaly 80%

ClCLSTM [42] DL int&prod relearn anomaly 76%

PLELog [45] X DL int&prod relearn categories 74.4%

LogAnomaly [48] X DL int&prod robust anomaly 48.3%

DeepLog [21] X DL int&prod relearn anomaly 42.6%

Yuan et al. [25] ML int&prod relearn task name 97%

LFF [63] ML integration relearn category 88%

CAM [61] ML integration robust category 58%

SherLog [26] static int&prod relearn execution path N/A

Pensieve [28] static int&prod relearn API calls N/A

Dobrowolski et al. [68] X ML int&prod relearn labeled execution path N/A

We utilize categories important to the engineer: online availability, the model used,
the applicable stage of software development, robustness to log changes, and F1 score.
The methods are arranged in groups: anomaly detection, retrieval-based, and execution
replay methods. A bold line separates the groups. In every group, the methods are sorted by
the F1 score. The availability of online tools is one of the most important factors, as applying
the model to satsify customer needs is crucial. The model category is used to distinguish
between statistical, ML, and DL approaches. The appropriate stage category describes at
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which stage of software development the tool can be used. The methods included in this
survey can be applied to integration testing and production failures.

Concept drift is a well-known definition of the problem of log changes due to a normal
development process [8]. For commercial implementation, it is crucial to retrain the whole
process every time the log event space is changed or only once in a while; thus, a separate
category in the next column of the table takes two values: ‘retrain’ or ‘robust’. The ‘retrain’
value means that the method has to be trained from the beginning every time there is
a log change. On the other hand, ‘robust’ implies that it can operate to some degree
with such changes. It is worth mentioning that none of the present methods is entirely
immune to concept drift, and it always reduces the model’s performance and retraining is
needed eventually.

Finally, the result column shows what is returned to the end user, and the F1 score
column shows the performance result in this task. When possible, we use scores gathered in
review publications with their implementations [4,7,8], as they can be significantly different
from the ones presented in the original paper. For example, DeepLog is said to have an F1
score of 96% in the original article [21], while, in the implementation of LogADEmpirical [4],
it is only 42%. The reason for this is that training test selection was performing randomly in
the original paper, while, in real-life scenarios, we have to consider chronological features.
The same situation applies with LogAnomaly.

We should also note the approach presented in DeepLog and LogAnomaly, because
they detect features much faster than LogRobust and LogCNN [19]. It should be mentioned
that some methods within a group have the same features and similar F1 scores. This
area uses machine learning methods: SVM, LogEvent2Vec, and Logistic Regression (LR).
SVM is superior to LR when learning non-separable features linearly. On the other hand,
Logevent2Vec uses the computationally intensive word2vec to extract features, while still
being worse than SVM. While retraining is inevitable for log changes, it is a reason to use
lighter computations. Thus, LogRobust, LightLog, and LogBert are very similar methods
and it is difficult to determine which one is superior. Although LogRobust was often
implemented in review publications [4,8], the results of the original article were confirmed.
This is the reason that it is safer to rely on LogRobust’s results.

The engineer has to consider three parts of the implementation: log parsing, log se-
quence vectorization, and the model. Log parsing is mostly a choice between the Drain and
NLP preprocessing techniques. Drain processing introduces another level of uncertainty by
losing a small percentage of the information about log lines. Drain has to be trained before
usage and requires retraining every time there is a change in log events. It is important
to remember that training is very time-consuming; it can take hours when the size of the
log corpus is large, such as 20 GB of Windows logs; the current implementation needs to
be parallelized.

However, NLP techniques do not require any training. Meanwhile, they do not
provide information on log event templates. We believe thatt NLP techniques should be
preferred before log template extraction, as they are more generic and less time-consuming.
Log vectorization is semantic, as is count vectorization. Semantic vectorization keeps
the information about the sequence and is more robust to concept drift, so it should be
preferred whenever possible. Count vectorization is faster and can be chosen when log
events are not often changed, so there is a minimal risk of full model retraining. Count
vectorization can only be used when combined with extracted log event templates. Finally,
the choice of the model should be based on the available F1 score. In the reviews, it is
clear that recurrent neural networks with semantic vectorization achieve the best results.
For quantity vectorization, Random Forest is the first choice. It is important to remember
that there is no technique to prevent retraining so far. There are only techniques that require
less frequent retraining.

To summarize the difficulty of implementation, we propose a three-degree scale: easy,
medium, and hard. Easy implementation indicates a method with an existing complete
and working online implementation; medium reflects that the method does have partial
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online implementation or pseudo-code presented in the paper, and hard indicates that
there is only a description of the algorithm, without online implementation or pseudo-
code. Results are gathered in Table 3. For example, LogSurfer [31], as a system without
online implementation, requires great effort to implement, and a rule-based system requires
great effort to configure and maintain. IM [34] also does not have online implementation;
thus, the cost is high, although, by automatically retrieving features from logs, the cost
of configuration is lowered. This method retrieves invariants from relations between log
events; while there is no consideration of the concept of drift, this will increase the cost
of maintenance. In the case of PCA [33], there is a lack of online implementation. The
next developer must choose the features that he wishes to extract from the logs, which
increases the cost of configuration. The cost of maintenance is increased because such
features might have changed during the software’s lifetime. With regard to machine
learning methods, SVM [37], LR [39], and DT [38] require a carefully selected set of features.
Implementation of ML algorithms can be taken from well-known libraries such as [66].
Thus, their implementation is low, the configuration is high, and maintenance is high due to
a lack of concept drift consideration. In the case of deep learning methods, they are learned
to extract features for logs. However, the logs have to be preprocessed nonetheless. This
keeps the cost of configuration high as log preprocessing is based on a regular expression.
The implementation cost is set to medium, as they are rarely raw algorithms such as
Bi-LSTM, available in online libraries, but are more complicated and sophisticated. The
maintenance cost is low only in a few examples, such as [30,68], as they are robust to
concept drift.

Often, online implementations still need to be completed. For example, Ref. [4] lacks
the log parsing part; LogRobust [30] contains only the Jupyter notebook with the model,
without log parsing and log vectorization. The existing online solutions presented in Table 4
are proofs of concept and are not optimized for extensive data, so engineers should consider
building their implementation based on existing hints in online implementations.

Table 3. Cost of method implementation divided into three categories: cost of code implementation,
cost of the configuration, cost of maintenance. The cost of code implementation is low when there is
online implementation. On the other hand, there are methods with no online implementation or even
pseudo-code presented. The cost of the configuration is high when, for example, the expert must
create a set of regular expressions for Drain to work on their logs. The cost of configuration is low
when there is very little required besides running the code. The cost of maintenance is high when the
method is based on regular expressions, which need to be updated every time the logs are changed.
The overall cost is the average of the costs from the previous columns.

Method Impl. Cost Conf. Cost Mainten. Cost Overall Cost

IM [34] high low high medium

PCA [33] high medium high high

LogSurfer [31] high high high high

SVM [37] low high high high

LogEvent2vec [40] high high high high

Logistic Regression [39] low high high high

DT [38] low high high high

LogCluster [35] low high high high

LogLens [36] high high high high

LogRobust [30] medium high high high

LightLog [46] high high high high

LogBert [20] medium high high high

CNN [19] low high high high

Logsy [57] high high high high
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Table 3. Cont.

Method Impl. Cost Conf. Cost Mainten. Cost Overall Cost

Farzad et al. [58] low high high high

ClCLSTM [42] medium high high high

PLELog [45] low high high high

LogAnomaly [48] low high high high

DeepLog [21] low low high high

Yuan et al. [25] high high high high

LFF [63] high high high high

CAM [61] high high high high

SherLog [26] high high high high

Pensieve [28] high high high high

Dobrowolski et al. [68] low high low medium

Table 4. Online toolkits with method implementation.

Source Code Method(s) Access Date

https://github.com/logpai/loglizer SVM [37], DT [38], LogisticRegression [39], PCA [33],
IM [34], LogCluster [35] 15 May 2023

https://github.com/logpai/deep-loglizer DeepLog [21], LogAnomaly [48], Logsy [57],
Autoencoder [58], LogRobust [30], LogCNN [19] 15 May 2023

https://github.com/LogIntelligence/LogADEmpirical PLELog [45], DeepLog, LogAnomaly, LogCNN,
LogRobust 15 May 2023

https://github.com/Aquariuaa/LightLog LightLog [46] 15 May 2023

https://github.com/HelenGuohx/logbert/ LogBert [20] 15 May 2023

https://github.com/dobrowol/defects4all Dobrowolski et al. [68] 15 May 2023

6. Conclusions

Automated log analysis is a growing field of research and is attracting more attention
from the industry. Some practical features have to be taken into account.

Firstly, and most importantly, the tool has to be able to work with up-to-date releases
and return results for logs that are changed due to the normal development process.
Training, validation, and testing datasets should be split chronologically to ensure this.
The conclusion is that an online dataset should be built to reflect this need. Not all available
log data in the popular loghub [18] have a timestamp, and those that have timestamps do
not have explicit information about software updates during log collection.

Many methods treat log sequences as a type of language, and, on this basis, they apply
NLP methods. However, it is still unclear whether this abstraction is valid, as the features
of this language were not studied in any research paper. One feature of a log sequence
that is particularly uncommon for any language is the speed of changes in vocabulary.
Single log lines and all sequences might change from release to release, i.e., at least a few
times a year, which is unprecedented in natural languages. The method should detect
which changes in logs are due to normal development processes and which are anomalous.
The rate of change also puts historical logs into question. It would be very informative to
determine whether logs from previous years are valuable in determining anomalies in the
newest release.

The methods presented were also not tested against the different densities of log
statements in the source code. However, this is a crucial feature of the software when
dealing with anomalous behavior. Software with one log printing statement every 50 lines
differs from software with one in a thousand lines for automated log analysis.

https://github.com/logpai/loglizer
https://github.com/logpai/deep-loglizer
https://github.com/LogIntelligence/LogADEmpirical
https://github.com/Aquariuaa/LightLog
https://github.com/HelenGuohx/logbert/
https://github.com/dobrowol/defects4all
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The methods should be less dependent on preprocessing steps. Parsing logs to log
events to extract the execution path is costly in terms of time and memory complexity. They
are often system-specific. Deep learning can extract features from raw data. It should be
used when minimizing the impact of preprocessing logs. It can also reduce the dependency
of the method on expert knowledge.

To summarize, we propose the following directions for further research.
The first direction is to build a universal benchmark of logs from consecutive releases

that should be created for concept drift research; the second direction is to examine whether
it is possible to build an ideal, robust model requiring no retraining; this relates to the third
direction, the question of the relation between the age of the logs and future failures; the
fourth direction is the relation between the density of log printing statements in the code
and the result of the method; the last direction is minimizing the impact of log template
extraction on the inaccuracy of the method.
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