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Abstract: In recent years, the number and scale of malicious codes have grown exponentially,
posing an increasing threat to cybersecurity. Hence, it is of great research value to quickly identify
variants of malware and master their family information. Binary code similarity detection, as a
key technique in reverse analysis, plays an indispensable role in malware analysis. However, most
existing methods focus on similarity at the function or basic block level, ignoring the modular
composition of malware. Implementing similarity detection among malware modules would greatly
improve the efficiency and accuracy of homology detection. Inspired by the successful application
of deep-learning techniques in program analysis, we propose a binary code module similarity
detection method called ModDiff. It abstracts malware into attribute graphs, clusters functions using
graph-embedded clustering algorithms to decompose malware into function-based modules, and
calculates module similarity using graph-matching algorithms and natural language processing-
based function similarity detection algorithms. The experimental results indicated that ModDiff
improves the accuracy of module partitioning by 10.8% compared with previous work, and the
highest F1 score of 89% is achieved in malware homologation detection. These results demonstrate
the effectiveness of ModDiff in detecting and analyzing malware with important application value
and development prospects.

Keywords: binary code; graph embedding; graph matching; modularization; similarity detection

1. Introduction

Malware is one of the most prevalent security threats today, capable of stealing sen-
sitive information, disrupting systems and networks, and causing significant damage to
users and businesses. According to the AV-ATLAS Institute, the number of malwares has
reached 1.253 billion as of April 2023, with over 252,000 new ones being added every day [1].
With such a staggering number of malwares, cyber security has become an increasingly
pressing concern [2]. Malware homology detection is a crucial technology in this regard, as
it can effectively identify malware families [3] and attacks [4] to avoid unnecessary losses
to users and enterprises.

However, existing homology detection methods have some limitations. For instance,
polymorphic malware can change its appearance and behavior to evade detection, and
modified or obfuscated malware can be difficult to detect. Additionally, these methods
may have difficulty identifying homologous malwares that share similar functionality
but belong to different families. Currently, one widely used method is based on binary
code similarity [5]. However, this approach suffers from a high rate of false positives and
missing positives. False positives occur because functions with similar code structures
and semantics may have different purposes and behaviors, such as functions that handle
different types of inputs. On the other hand, underreporting is mainly caused by binary
programs coming from different compilers and optimization levels, which can cause the
same source code to behave differently in different binary programs.
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To improve the accuracy of binary code similarity detection, various solutions have
been proposed, including finer-grained approaches based on basic blocks [6–8] and deeper
semantic approaches based on natural language processing [9–12]. However, none of these
approaches fully leverage the information about the modular structure of the program. In
fact, malwares of the same family often reuse the same functional modules, such as network
communication, encryption, and Trojan horses, to improve development efficiency and
quality. This provides a crucial basis for the homology determination of malicious codes.
Therefore, we can identify similar functional modules in malwares to detect homology.
Based on this idea, this paper proposes a coarse-grained module-based code similarity
detection method, ModDiff. This method first uses graph embedding to classify a binary
malicious code into function-based modules and then detects the homology of the mali-
cious code by comparing the similarity between modules. Compared with function-level
similarity detection, module similarity analysis has higher granularity and a more com-
prehensive view, which can effectively identify members of malware families and quickly
categorize new malwares into known malware families when they are discovered.

The main contributions of the paper are summarized as follows:

• We propose a binary program modularity algorithm that decomposes programs into
function-based modules.

• We propose a method for detecting function similarity using Siamese BERT networks.
• We propose a module similarity detection method for detecting the similarity of binary

program modules.

1.1. Motivating Example

This section aims to highlight the crucial role of module similarity analysis in homology
detection with a real-world example of two IoT botnets: Mirai [13] and Gafgyt [14], the basic
information of which is presented in Table 1. These botnets are notorious for launching
distributed denial of service (DDoS) attacks on a massive scale. Recent research reveals
that several variants of Gafgyt reuse some of the Mirai modules, including HTTP flooding,
UDP flooding, TCP flooding, STD, and the Telnet brute force module. It indicates that
malware developers often adopt existing code modules while designing new attack tools to
lower developmental costs and improve attack efficiency. This underlines the importance
of module similarity analysis in detecting homologous malware.

Table 1. Information of samples.

Family Mirai Gafgyt

MD5 cd3b462b35d86fcc
26e4c1f50e421add

4b94d1855b55fb26
fc88c150217dc16a

Popular threat label
(VirusTotal) Trojan.linux/mirai Trojan.linux/gafgyt

File size 160.84 KB 95.79 KB

Furthermore, analyzing malware modules can provide researchers with a better un-
derstanding of how the malware operates and attacks, which can help in targeting and
improving preventive measures to enhance network security. For instance, if security
experts identify that the code module of malware is similar to that of a previously known
malware, they can anticipate how the malware will attack and take defensive measures to
reduce the harm caused by the attack. Additionally, program module similarity analysis can
enable security vendors to create more precise and effective malware detection and analysis
tools that assist users in identifying and addressing potential security threats promptly,
further enhancing network security. The technology of program module similarity analysis
can be utilized by security vendors to classify and recognize malware, enhancing the ability
to prevent and combat it.
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1.2. Background Information

This section presents a brief background to the paper.
Binary Code Modularization. In software reverse engineering, binary code modular-

ization techniques can assist analysts in obtaining a better understanding of the structure
and function of a program. Generally, a program is composed of numerous code segments,
each of which performs a particular function. Partitioning a binary program into multi-
ple modules allows each code segment to correspond to a module, making the program
easier to comprehend and analyze. Analysts can examine the code of each module to
identify potential vulnerabilities or security issues in the program. This technique also
allows developers to better organize and manage the code of their programs, improving
the maintainability and reusability of the code.

The Siamese Framework. The Siamese network framework [15] is a deep learning-
based framework that facilitates the comparison and matching of input data. In contrast
to traditional single neural networks, the Siamese network framework comprises two
identical neural network models with shared weights and parameters, resulting in greater
efficiency and reduced overhead during training. In the Siamese network framework,
the two neural network models process the two input data points separately, producing
the corresponding feature vectors. These feature vectors can be compared for supervised
learning, allowing comparison and matching of the input data. The strength of the Siamese
network lies in its excellent generalization capability, enabling it to produce good results
even when confronted with limited data sets.

The BERT Network. BERT [16] is a pre-trained language model that utilizes the
transformer architecture and is widely employed for natural language processing tasks,
such as text classification, named-entity recognition, and question-answering. By fine-
tuning BERT, it can be tailored to specific downstream tasks. Fine-tuning entails adding new
output layers or adapting existing output layers to a BERT model to suit the requirements
of a specific task, and enhancing the model’s accuracy in that task with a small amount
of training. It enables BERT to be better adjusted to particular linguistic contexts and
task specifications, thereby improving its efficiency in practical applications. In this paper,
the BERT network is fine-tuned to capture the deep semantic information of assembly
instructions and compute function similarity using Siamese networks.

2. Related Work

This section discusses work related to program modularization and code similar-
ity detection.

2.1. Program Modularization

In the field of program analysis, software modularization refers to the division of
a complex program into several relatively independent, cohesive, and loosely-coupled
local parts via clustering basic units such as functions or classes [17]. These partial parts
are named modules, which communicate and collaborate through interfaces between
modules and eventually combine to complete the functionality of the entire software
system. Depending on the object of the division, it can be divided into two ways: source
code modularization and binary code modularization.

Source code modularization. Hong Xia et al. [18] proposed a hierarchical clustering
combination method for clustering software modules. They used principal component
analysis to combine the results of multiple hierarchical clusters, and the combined results
retained as much basic information of each clustering algorithm as possible to achieve the
best clustering results. Marios Papachristou [19] employed the Doc2Vec algorithm and call
relations at the module level to construct a network graph and discover the community
structure within it using the Louvain algorithm. Similarly, Weifeng Pan et al. [20] proposed
a generalized Kernel based on a weighted directed graph to represent software topology,
as traditional software module clustering using undirected unweighted graphs can result
in a loss of information. They applied a decomposition method based on the weighted
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directed graph to represent the software topology and ranked the classes according to the
generalized core of the module to identify the key classes in the software.

Binary code modularization. A significant amount of program semantics is lost when
the software source code is compiled into an executable file. Therefore, the first step in
binary code module partitioning is to extract any remaining semantic information from
the code and then apply a clustering algorithm to reasonably decompose the executable
file into several components. BCD [21] is a method that uses static analysis techniques to
decompose executables into modules. It takes functions as nodes and constructs decompo-
sition graphs through three relationships: code location, data references, and function calls.
Then, Newman’s generalized community detection algorithm [22] is applied to divide the
executable file into independent components. ModX [23] proposes a module quality metric
based on specific program tuning, which can provide an accurate portrayal of the code
structure, function calls, and other features in the program, thereby providing a reference
for subsequent module division. The fast-unfolding Louvain algorithm [24] with heuristic
bias is then used to decompose the binary file into modules.

2.2. Binary Code Similarity Detection

Binary code similarity involves comparing two or more binary codes to determine
their similarities and dissimilarities. Several methods have been proposed for detecting
binary code similarity.

Early research mainly tended to use bytecodes to compute similarity. IDA FLIRT [25]
identified library functions via extracting bytecodes to generate fingerprints for library
functions. DiscovRe [26] represented basic blocks via extracting statistical features and
computed similarity based on the maximum common subgraph isomorphism problem.
Bindiff [27] and Genius [28] extracted code features from control flow graphs and measured
the similarity of binary functions based on graph isomorphism. BinGo [29] and IMFSim [30]
captured the behavior of binary functions by sampling them with random values.

The graph-embedding approach enables the projection of a graph into a low-dimensional
vector space while preserving the intrinsic structural properties of the graph, offering a less
complex method for processing graph data. Gemini [31] extracts the attribute control flow
graph of the function and trains the graph-embedding network to generate the embedding.
VulSeeker [32] first constructs the semantic flow graph of the token and extracts the basic
block features as the two vectors of functions. Finally, it generates the embedding vectors
of the entire binary functions via the use of semantic-aware DNN models.

Recent research in binary code similarity detection has been influenced by natural
language processing. Asm2vec [9] learns semantic information between tokens using
the PV-DM model [33] and represents assembly functions using a weighted mixture of
semantic information. Safe [10] employs skip gram to generate instruction embeddings
to overcome the problem of missing important features due to manual feature extraction.
PalmTree [11] is the first approach with which to apply BERT to instruction embedding,
demonstrating the potential of language models in BCSD. To fully extract the structural
information of a program, jTrans [12] embeds control flow information of binary code into
a transformer-based language model and applies it to code similarity detection.

3. Methodology
3.1. Overview

The workflow of ModDiff is displayed in Figure 1. The process of detecting similarity
between malware modules involves two main components: program module partitioning
and module similarity calculation. Initially, two binary programs are transformed into
attribute graphs and divided into function-based modules using a module partitioning
algorithm based on graph embedding. Subsequently, the modules requiring similarity
computation are selected and the similarity of all functions between them is determined
using a Siamese BERT network. The next step involves constructing a bipartite graph with
the functions in the modules as vertices and the inter-function similarity as weights. Then,



Electronics 2023, 12, 2258 5 of 18

a matching algorithm is applied to find the maximum weight match of the bipartite graph,
which yields the similarity of the modules. Eventually, the homology decision based on
the module similarity threshold is used to determine whether or not two malicious codes
belong to the same family.
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3.2. Binary Code Modularization

Modularity is a crucial aspect of software design, wherein functions that perform
similar tasks are grouped into a module. To leverage the modularity information in binary
programs to its fullest potential, this paper proposes a deep learning-based approach
that employs a graph-embedding clustering algorithm to cluster functions and achieve
software module classification. Concretely, we first fully parse the software using hybrid
disassembly and construct a function attribute graph. The function nodes in the graph are
then encoded using a graph self-encoder to obtain their embedding representation. Finally,
a goal-directed clustering algorithm is applied to cluster the nodes and achieve software
module classification.

3.2.1. Attribute Graph Construction

In order to enhance the precision of module division, our approach involved analyzing
the features that express modular structure information in programs, taking into account
software design and compilation principles. After careful consideration, we selected four
features that were deemed most relevant for this purpose. Function addresses: During the
process of converting the source code into executable files, compilation optimization algo-
rithms may significantly impact the program structure. However, it has been observed that
the original sequential relationships between function locations are largely preserved [34].
As a result, functions with similar addresses are more likely to belong to the same module.
Function calls: According to the single responsibility principle, each module should ideally
serve a single function. Therefore, a group of functions that frequently call each other are
likely to belong to the same module. Data references: Well-designed modules are based on
the principle of high communication cohesion and low public coupling. As such, they try
to avoid using public data between them. In other words, functions that access the same
data area are highly likely to belong to the same module. API calls: Software is typically
divided into various modules based on their intended functionality. Functions within a
module are expected to use a sequence of semantically similar APIs to accomplish their
respective tasks. As a result, functions that use semantically similar APIs are more likely to
belong to the same module cluster. Following the pre-processing of the software to obtain
function and feature data, we construct a directed attribute graph with functions serving
as nodes, call relationships between functions as directed edges, and four types of feature
information as node attribute data.
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3.2.2. Attribute Graph Embedding

The graph-embedding algorithm was designed to map high-dimensional graph data
into low-dimensional vectors while maximizing the retention of valid information from the
original data. This enables the efficient analysis and application of the data in subsequent
steps. To capture the relationships between nodes more comprehensively, ModDiff employs
a graph attention self-encoder [35] to embed the nodes into a low-dimensional space, as
shown in Figure 2.
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The primary steps of the graph attention self-encoder are as follows: Initially, it takes
the attribute information of a node as the initial representation of the node. Then, it utilizes
the graph attention mechanism to calculate the importance of neighboring nodes to the
current node, known as the attention coefficient. Lastly, the final node representation is
obtained by multiplying the embedding representations of all neighboring nodes by the
attention factor and adding the embedding representation of the current node.

Specifically, given the attribute graph G = (V,E,X), where V denotes the set of nodes, E
denotes the set of edges and X denotes the set of node attributes, each node vi ∈ V has a
d-dimensional attribute vector xi ∈ Rd for characterizing the nodes. The goal of the graph
attention self-encoder is to map the attribute information and structural information of each
node, vi, to a k-dimensional vector, xi

′ ∈ Rk, for the next step of analysis and application.
To achieve this goal, the graph attention self-encoder employs an attention mechanism

that computes the importance of each node’s neighboring nodes to the current node. Given
a node, vi, and its set of neighboring nodes, Ni, the attention mechanism calculates the
importance of each neighboring node, vj ∈ Ni, to the node, vi; namely, the attention
coefficient, αij:

αij =
exp(LeakyReLU(

→
a

T
[Wxi‖Wxj]))

∑k∈Ni
exp(LeakyReLU(

→
a

T
[Wxi‖Wxj]))

. (1)

where W ∈ RF′×F represents the shared weight matrix, and
→
a ∈ R2F′ is a weight vector,

the role of which is to map the stitched high-dimensional features to a real number. Finally,
the embedding representations of all neighboring nodes are multiplied by the attention
factor and added to the embedding representation of the current node to obtain the final
node representation:

xi
′ = σ(∑j∈Ni

αijWxj), (2)

where xi
′ denotes the output representation of node, vi, and σ denotes a nonlinear function.

After encoding the graph, ModDiff optimizes the embedding representation of the nodes
with a self-training module based on reconstruction losses to obtain a more accurate
representation.
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3.2.3. Target-Oriented Node Clustering

To improve the accuracy and efficiency of clustering, ModDiff adopts a target-oriented
clustering algorithm [36]. The core idea of the algorithm is to guide the clustering process by
introducing an auxiliary target distribution to obtain more accurate and efficient clustering
results. Specifically, the algorithm initially operates the k-means algorithm multiple times
based on the node embedding representation to obtain more accurate initial clustering
centers. Then, Student’s T-distribution is employed as a kernel function to measure the
similarity between each data point and the clustering center, which is applied as a soft
clustering label for each category to which the data point belongs:

qiu =
(1 + ‖xi − µu‖2/α)

− α+1
2

∑k (1 + ‖xi − µk‖2/α)
− α+1

2
, (3)

where xi denotes the embedding of node, vi, µu is the cluster center of u, α is the degree of
freedom of the T-distribution, and qiu represents the probability that the node, vi, belongs
to the cluster u.

Considering that soft clustering labels with high probability have high confidence, the
algorithm raises the actual distribution of nodes to a quadratic one and normalizes it as the
target distribution:

piu =
q2

iu/∑i qiu

∑k
(
q2

ik/∑i qik
) , (4)

where piu denotes the target probability that the node, vi, belongs to u. Finally, the algo-
rithm calculates the KL divergence between the actual distribution of data points and the
target distribution as the clustering loss. The model parameters are updated to minimize
the KL divergence loss using the Adam optimization algorithm [37] until the maximum
number of iterations is reached. The final label of each node is obtained via the optimized
Q distribution.

3.3. Module Similarity Detection

Following the modularization of the program, we propose a module similarity detec-
tion algorithm based on function similarity. The algorithm comprises two stages. Firstly, it
competes the similarity between functions via Siamese networks, and secondly, calculates
the similarity between modules using the graph matching algorithm.

3.3.1. Function Encoding via Siamese Network

To accurately evaluate the similarity of functions and capture deeper semantic infor-
mation about functions, ModDiff leverages the Siamese BERT networks [38] to compute
the similarity of functions. Figure 3 presents the network architecture of the Siamese BERT
networks. Given two binary functions, ModDiff first preprocesses them via normalizing
instructions, tokenizing assembly, and serializing functions [39]. The processed functions
are then fed into two BERT encoders with identical structures and parameters. The output
from the encoder is converted into a fixed-size vector through a mean pooling operation.
Finally, the similarity between the two functions is computed by measuring the cosine
similarity of the output vectors.
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Preprocessing
As the raw instructions of assembly functions contain a large amount of specific ma-

chine code and syntax structures, these are difficult to understand by natural language
models. Therefore, ModDiff preprocesses the input functions to make them more compati-
ble with natural language model processing.

The first step in the preprocessing of assembly functions is instruction normalization,
which aims to convert information such as constants, addresses, and jumps in instructions
into a standardized expression. The principles for instruction normalization are outlined
in Table 2.

Table 2. Principles of instructional normalization.

Original Instructions Normalized Expression

Indirect addressing with register “eip/rip” PTR
Indirect addressing with register “esp/rsp” SSP
Indirect addressing with register “ebp/rbp” SBP

Other indirect addressing MEM
Relevant addressing REL
Immediate number NUM

Float instruction with register “xmm” XMM
Conditional jump cjmp

After instruction normalization, the previously complex and variable instructions in
assembly functions are converted into a relatively uniform expression. The following step
is instruction tokenization, where the input instructions are partitioned into meaningful
token units according to specific rules. This enables the model to process and analyze
the input information more effectively. To comprehensively and accurately capture the
semantic information of each instruction, we employ a full-instruction-level tokenization
approach, treating each assembly instruction as a separate and fully meaningful unit.

The last step in preprocessing is function serialization, which transforms the structured
function into a sequence of tokens that can be further processed and analyzed by the
model. As the semantic information in the assembly instructions already includes the
structured information of the program, ModDiff serializes the instructions directly in
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address order. In particular, each instruction is traversed within the function in ascending
address order and tokenized at the full instruction level, resulting in a serialized sequence
of instruction tokens.

Backbone network
Siamese BER networks is a model built on the Siamese network framework, comprising

two BERT networks [16] that share weights. Our purpose is to fine-tune the BERT networks
in the Siamese network framework to generate an assembly function embedding vector
that is more suitable for the task of function similarity computation. To achieve fixed-size
function embeddings, we apply an averaging pooling operation to the output of the BERT
networks. This approach could convert assembly functions of different lengths into a
fixed-length vector representation, facilitating subsequent similarity calculations.

Loss function
The loss function plays a crucial role in fine-tuning the model, which determines the

performance of the model in a particular downstream task. For each pair of assembly
functions, we first generate the embedding vectors u and v via Siamese BERT networks,
then calculate the similarity of the two vectors using cosine similarity and compare the
results with the true similarity labels. The model is fine-tuned via back-propagation losses
to make it more suitable for the task of compilation function similarity calculation. As
the mean square error has the advantages of being easy to compute, highly interpretable
and robust against outliers, it is chosen as the loss function for measuring the difference
between the true and predicted labels:

lossMSE =
1
n

n

∑
i=1

(xi − yi)
2, (5)

where xi is the true label and yi represents the cosine similarity of the two function-
embedding vectors obtained through the model.

Datasets
During the training process, we utilized a training set comprising widely used and rep-

resentative projects including Coreutils-9.0, Curl-7.82, Diffutils-3.8, Findutils-4.80, Binutils-
2.37, Tcpdump-4.93, and Gmp-6.2.1. In order to create a comprehensive dataset, we com-
piled the aforementioned projects using two compilers (GCC-10 and Clang-10) and four
optimization levels (O0, O1, O2, and O3). This resulted in close to 500 K function pairs,
with 90% being allocated to training and the remaining 10% being allocated to verifica-
tion. The use of multiple compilation options enabled us to obtain more precise and
extensive training data, which ultimately led to the improved performance of the machine
learning models.

3.3.2. Module Similarity Calculation

This section presents a novel approach to module similarity measurement based on func-
tion similarity. To reduce ambiguity, we first define the module similarity problem formally.

Definition 1. The module similarity problem. Given two program modules, X = {xi}n
i=1 and

Y = {yi}m
i=1, with n < m, any function in X and any function in Y satisfies 0 ≤ FuncSim(x, y) ≤ 1.

The module similarity problem can be defined as finding a single projection, f : X → Y , from set X
to set Y such that ∑x∈X FuncSim(x, f (x)) achieves a maximum value.

In order to measure module similarity more accurately, we further propose a definition
of module similarity.

Definition 2. Module similarity. Due to the varying number of functions between modules,
we define [∑x∈X FuncSim(x, f (x))]max/|X| as the similarity of module X to module Y, and
[∑x∈X FuncSim(x, f (x))]max/|Y| as the similarity of module Y to module X.
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To solve the module similarity problem, this paper employs the concept of the bipartite graph-
matching problem and utilizes its matching algorithm to perform the necessary computations.

Typically, ModDiff models the modules to be detected in both programs as an entitled
bipartite graph, G = (X, Y, E), where X and Y represent the program modules to be
detected (a set of clusters of functions and the nodes in the set are not adjacent).

The set of edges, E, is constructed as follows: for ∀x ∈ X, y ∈ Y, if FuncSim(x, y) > 0,
then an undirected edge 〈x, y〉 of weight, FuncSim(x, y), is added between the two vertices
corresponding to x and y in the bipartite graph, G. After modeling by a bipartite graph,
the module similarity problem is equivalent to solving the maximum weight-matching
problem on the weighted bipartite graph.

ModDiff utilizes the Kuhn–Munkres (KM) algorithm [40] to find the maximum weight
match. The KM algorithm is a classical and efficient algorithm for solving the best match
of entitled bipartite graphs via solving the perfect match of equivalent subgraphs of the
bipartite graph. However, it is only applicable when the number of nodes in X and Y is
equal, which is not always the case in our problem. To overcome this limitation, we propose
a module similarity metric algorithm based on the KM algorithm that can handle different
numbers of nodes. The main flow of the algorithm is shown in Algorithm 1. This algorithm
can effectively calculate the similarity of modules quickly and accurately, even when the
number of nodes is unequal.

Algorithm 1 Module similarity calculation algorithm

Input: G = (X, Y, E) and |X| ≤ |Y|
Output: Module Similarity
1: if |X| < |Y| then
2: Add (|Y| − |X|) virtual nodes to X
3: for virtual node i in X do
4: Add virtual edges between virtual node i and all node in Y
5: Set the weight of new virtual edges to zero
6: end for
7: end if

8:
Use KM algorithm to find an maximum weight matching M and maximum weight
W for G

9: Take W/|X| as the similarity of module X to module Y
10: Take W/|Y| as the similarity of module Y to module X

After acquiring the module similarity of the malware, we can establish the module
similarity threshold with expert experience or experiments. When the module similarity of
two malwares surpasses this threshold, they are deemed to be part of the same family.

4. Evaluation

The experimental section aims to answer the following research questions:
RQ1: How accurate is the binary code modularity approach in ModDiff?
RQ2: How accurate is ModDiff in malware homology determination?
RQ3: How robust is ModDiff?
RQ4: How scalable is ModDiff?
To evaluate the performance of ModDiff, we compare it with two widely used binary

modularization tools and examined its accuracy in detecting malware homology. However,
given the diversity of malwares, we also evaluate the robustness of ModDiff under different
compilers and optimization options. In addition, we evaluate the scalability of ModDiff by
comparing the similarity between multiple versions of software.

4.1. Binary Code Modularization Evaluation (RQ1)

Datasets. To construct the datasets for evaluating the accuracy and scalability of the
binary code module partitioning method in ModDiff, we compiled a source code from open-
source software repositories and official software websites to obtain executable programs,
and constructed three datasets, as illustrated in Table 3. S1 consists of open-source software
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developed and maintained by organizations or volunteers working together, obtained
from official software websites. S2 is a collection of open-source software designed and
developed by individuals or small teams, obtained from the GitHub open-source repository.
M1 is a dataset consisting of 728 common pieces of malware that were extracted using the
SourceFinder [41] method.

Table 3. Datasets for modularization evaluation.

Dataset Samples Average Functions Average Clusters Average Size (KB)

S1 82 847 17 979
S2 1056 931 16 883
M1 728 256 13 325

To conduct a comprehensive evaluation of the performance of ModDiff in binary code
module partitioning, we compared it with two mainstream binary code modularization
methods, BCD [21] and ModX [23], for comparison and conducted experiments on three
datasets, respectively. As the source code for two algorithms was not readily available,
we implemented a simple prototype version based on the descriptions provided in the
relevant literature.

Table 4 presents the experimental results of the use of these methods on the three
datasets. ModDiff outperforms the other methods in terms of Prc, NMI, and F1 metrics
for all three datasets. Specifically, ModDiff achieves an average F1 score of 0.802, 0.701
and 0.692 on datasets S1, S2, and M1, respectively, which are significantly better than the
scores achieved via BCD and ModX. This suggests that the graph embedding-based module
partitioning approach can better extract semantic information from functions and recover
the modular structure of the program. Comparing the results for S1 and S2 reveals that well-
designed software can be more easily reverse-decomposed into modules. Furthermore,
we found that ModDiff performs exceptionally well on the M1 dataset, indicating its
effectiveness at dealing with unencrypted and obfuscated malwares.

Table 4. The modularization results.

Dataset Method Prc NMI F1

S1
BCD 0.623 0.505 0.641

ModX 0.648 0.547 0.687
ModDiff 0.783 0.737 0.802

S2
BCD 0.539 0.498 0.589

ModX 0.592 0.512 0.635
ModDiff 0.703 0.687 0.701

M1
BCD 0.539 0.513 0.557

ModX 0.571 0.532 0.633
ModDiff 0.632 0.674 0.692

Answer to RQ1: compared to other dominant binary modularization tools, ModDiff
has better precision and a better F1 score, and can restore the modular structure of a
program more accurately.

4.2. Homologation Detection Accuracy Evaluation (RQ2)

In this section, we assess the performance of the ModDiff method in homology detec-
tion via malware variant detection.

Datasets. To comprehensively evaluate the effectiveness of ModDiff, we constructed
a dataset comprising 186 families of active malware variants obtained from Malware
Bazaar [42]. The samples in this dataset met the following conditions: (1) absence of code
protection measures such as obfuscation and shelling, (2) utilization of the X86 architecture,
and (3) presentation of at least three samples in each family. With these filtering criteria, we
generated a dataset that comprised 897 malicious binaries.
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Ground Truth. For the purpose of evaluating the module similarity results, we defined
two samples to be considered similar, which means they belong to the same malicious
family, if the similar modules (module similarity above TModSim) exceed TModPer in both
samples, where TModSim is the module similarity threshold and TModPer is the module
similarity number percentage threshold.

In the experiments, we first applied a binary code module partitioning algorithm to
decompose all samples into function-based modules, and then used the module similarity
algorithm to calculate the similarity between any two modules. Based on the results of the
similarity comparison, predicted labels for each module were derived and compared with
the true labels to assess the accuracy of the algorithm.

Figure 4 shows the performance of ModDiff for the malware variant detection task
at different TModSim and TModPer values. Our results show that when TModSim is 0.8 and
TModPer is 0.7, ModDiff achieves an F1 score of 0.89 for classification, which is highly
accurate in identifying malware of the same family. Nevertheless, further analysis revealed
that excessively high or low threshold values can impair the performance of the model.
When the threshold is set too low, the model may have a higher false positive rate, which
means that samples that do not belong to the same family may be incorrectly classified
into the same family. This can lead to inaccuracies in classification results for different
families. Conversely, if the threshold is set too high, the model may have a high false
negative rate, which means that samples belonging to the same family may be classified
into different families. This can result in inaccuracies in classification results for the
same family. Therefore, when training and applying the model, it is important to take
into account the trade-off between the false positive and false negative rates based on
the specific circumstances, and select suitable threshold parameters to achieve optimal
classification results.
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Answer to RQ2: With reasonable threshold settings, ModDiff achieves an F1 score of
0.89 in malware family classification experiments, indicating that the method can accurately
determine the homology of malware.
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4.3. Robustness Evaluation (RQ3)

The robustness of ModDiff mainly encompasses compiler and optimization-level
robustness. To evaluate robustness, we recompiled the malicious sample dataset M1
collected in Experiment 1 (Section 4.1) using two compilers (GCC-10 and Clang-10) and
four optimization levels (O0, O1, O2, and O3). This resulted in a test set of 5824 binaries.

The robustness evaluation experiment consisted of two parts. The first part involved
comparing binaries generated by two compilers at the same optimization level to deter-
mine whether or not they were compiled and generated from the same source code. The
second part involved comparing binaries generated by O1, O2, and O3 with the O0 level,
respectively, at the same compiler to determine whether or not they were the same malware.

Figure 5 presents the results of the ModDiff comparison of binaries generated by
different compilers at four optimization levels. Overall, the F1 score of the model tends
to decrease as the compilation optimization level increases. This indicates that the opti-
mization algorithms of different compilers affect the modular structure and functions of
the program differently, making it difficult for the model to recognize the same binaries.
However, further analysis reveals that as the optimization level increases, the precision of
the model also gradually increases, indicating that the model is able to recognize the same
binary files more accurately. On the other hand, the decrease in recall suggests that the
model may miss some identical binaries at high optimization levels. Therefore, in practical
applications, a balance must be struck and adjustments must be made to ensure that the
model performs optimally.
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The performance of ModDiff at different compilation optimization levels is shown
in Table 5. Intuitively, we observe that when the optimization level is increased from O1
to O3, the detection accuracy of the model in GCC and Clang-generated code decreases
by 0.18 and 0.21, respectively. The results show that as the compilation optimization level
increases, the precision of the model also gradually increases, indicating that the model is
able to recognize the same binary files more accurately. On the other hand, the decrease
in recall suggests that the model may miss some identical binaries at high optimization
levels. This trade-off between precision and recall highlights the importance of selecting
appropriate threshold values to achieve accurate and reliable classification results.
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Table 5. F1 score on different optimization levels.

O0 vs. O1 O0 vs. O2 O0 vs. O3 Avg

GCC 0.83 0.76 0.65 0.75
Clang 0.81 0.72 0.60 0.71

Answer to RQ3: The experimental results show that although the F1 value of the
model shows a decreasing trend in experiments with different compilers and optimization
levels, the average accuracy of the model reaches 0.73. This indicates that ModDiff is able
to perform effective binary file comparison in different compilation environments with
some generality and adaptability.

4.4. Scalability Evaluation (RQ4)

To confirm the suitability of ModDiff for detecting homologation in common software,
we compiled various versions of the source code using the same compiler and optimization
options. This ensured that any differences between the compiled binaries were solely due
to version changes. Then, these binaries were examined using the ModDiff algorithm to de-
termine whether or not they belong to different versions of the same software. Furthermore,
we compared ModDiff with two commonly used binary comparison tools, BinDiff [43] and
Diaphora [44], to comprehensively evaluate its effectiveness.

Table 6 displays the open-source projects commonly used under Linux that we col-
lected as datasets. These projects are diverse in their application types and are widely used.
We downloaded multiple versions of each project from their official websites and selected
two versions as our dataset. To evaluate the scalability of ModDiff, we specifically chose
two versions that were released over five years apart from each other, ensuring that the
differences between them were significant.

Table 6. Datasets for scalability evaluation.

Datasets Version Binary Pairs

Binutils 2.30 2.40 16
Coreutils 6.6 9.0 97
Diffutils 2.9 3.8 4
Findutils 4.2 4.9 4

The results of the scalability evaluation are presented in Table 7, indicating that
ModDiff performs exceptionally well on the open-source projects with an accuracy rate of
93%. This accuracy rate is higher than that of other binary comparison tools, demonstrating
the superior performance of ModDiff in general software homologation detection. In
addition, we also analyzed the false positive and false negative rates of ModDiff, which
were found to be very low. This indicates that ModDiff is highly accurate in detecting
homologous software in open-source projects, while minimizing the risk of misclassification.
Furthermore, our method also consumes less time and computational resources during the
detection process, allowing for quick completion of the task.

Table 7. Performance on scalability evaluation.

Precision Recall F1

ModDiff 0.94 0.92 0.93
BinDiff 0.90 0.80 0.85

Diaphora 0.91 0.85 0.88

Answer to RQ4: ModDiff outperforms other mainstream binary matching tools on a
dataset built with common software and accurately identifies different versions of binary
files, exhibiting excellent scalability.
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5. Discussion

In this section, we first illustrate other potential applications of the modular similarity
analysis technique, and then present the limitations of the approach as well as future work.

5.1. Applications

ModDiff enables modular partitioning of a binary code even without the source code
or debugging information, and can identify similar modules across diverse executables.
In addition to its crucial role in malware homologation detection, ModDiff has other
potential applications.

Code plagiarism detection. With the rapidly increasing number of open-source
projects, code plagiarism has become a serious issue in the software industry, posing
a significant threat to its sustainable growth [45]. Code plagiarism refers to the unautho-
rized use of the software code of others for commercial purposes or other unapproved uses
without obtaining a license. The module similarity analysis method of ModDiff provides
a new detection granularity for code plagiarism detection. By dividing the software into
function-based modules and identifying similar modules using a module similarity algo-
rithm, ModDiff can detect code plagiarism. Compared to traditional detection techniques
based on function or basic block similarity, the module-based approach can recognize
similar functional modules in an application, resulting in higher detection accuracy and
lower false alarm rates.

Software vulnerability detection. Software vulnerability detection aims to prevent
or mitigate security vulnerabilities that may be exploited by attackers, ultimately safeguard-
ing information assets. Currently, many function similarity-based methods are proposed
for software security detection [46]. However, module similarity-based detection methods
are more effective as they can determine the similarity between code modules by comparing
their structural, semantic and execution path characteristics, thus improving the accuracy
of detection. Therefore, the module similarity-based detection method plays a crucial role
in software vulnerability detection.

Accelerated reverse analysis. As software functionality and complexity increase, the
size of executables also increases, posing significant challenges to the speed and accuracy
of reverse analysis. Binary-code module division techniques can help analysts divide
software into relatively independent functional modules, enabling them to recover the
modular control structure of the program. This facilitates the swift identification of code
locations for specific functions, thereby expediting the process of reverse analysis. In
addition, in the field of malware analysis, module partitioning can help analysts extract
modules such as encryption, packaging, and communication in malware [47]. The speed of
automated malware analysis can be increased via implementing module reuse in a secure
and controlled environment to extract an execution code, analyze communication protocols
and capture traffic characteristics.

5.2. Limitation and Future Work

Despite its potential, the ModDiff approach has some limitations that need to be
addressed in future research.

Firstly, code obfuscation can significantly alter the control structure and data depen-
dency structure of a program, presenting a significant challenge in the semantic extraction
of functions. This challenge poses two problems for the ModDiff approach. The first issue
pertains to the impact on the modularization of the code, as the function call and data
reference features extracted via the ModDiff method are vulnerable to code obfuscation,
which affects the accuracy of the modularity. The second relates to functional similarity
calculation, as the Siamese BERT network-based function similarity calculation method
used in this paper has a high miss rate when dealing with code obfuscation. In the future,
effective deobfuscation methods [48] need to be considered to recover the original code
structure as much as possible.
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Secondly, the module partitioning method used in this paper generates outcomes
with uncertainty, which may affect the accuracy of the module similarity analysis. If the
module partitioning is not precise enough, unrelated modules may be categorized into the
same module, resulting in high similarity between multiple modules. Conversely, related
modules may be classified into different modules, resulting in low-similarity analysis
results. In the future, it may be beneficial to consider using expert knowledge to guide
the partitioning process and ensure that the delineated modules are closer to the actual
modules, thus improving the accuracy of module similarity analysis.

Thirdly, the accuracy of ModDiff primarily relies on the algorithm used for function
similarity detection. The limitations of semantic learning models in function similarity
computation arise mainly from two aspects. On the one hand, they may not accurately
capture the relationship and semantic information between functions, resulting in inaccu-
rate computed similarity. On the other hand, the models may be over-fitted or under-fitted
due to a lack of sufficient semantic information or insufficient training data, resulting in
distorted similarity calculations. In future research, it may be beneficial to utilize several
different semantic learning models for comparison and to ensure that the model is ade-
quately trained and validated to accurately capture the relationship between functions and
semantic information. Additionally, other methods or features can be used to calculate
function similarity to enhance the accuracy of the calculation results.

6. Conclusions

This paper proposes a method called ModDiff to detect the homology of malware
based on module similarity. The method first decomposes programs into function-based
modules using graph-embedding clustering. It then calculates the similarity of modules
via matching the similarity functions in the modules. The experimental results demonstrate
that the modularization technique of ModDiff can effectively partition programs into
relatively independent modules, thereby improving the speed and accuracy of reverse
analysis. Moreover, ModDiff exhibits excellent accuracy in the malware family detection
task and good robustness and scalability in multiple sets of evaluation experiments, which
confirms the practicality and reliability of the method.
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