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Abstract: Few-shot, multi-pose face recognition has always been an interesting yet difficult subject in
the field of pattern recognition. Researchers have come up with a variety of workarounds; however,
these methods make it either difficult to extract effective features that are robust to poses or difficult
to obtain globally optimal solutions. In this paper, we propose a few-shot, multi-pose face recognition
method based on hypergraph de-deflection and multi-task collaborative optimization (HDMCO).
In HDMCO, the hypergraph is embedded in a non-negative image decomposition to obtain images
without pose deflection. Furthermore, a feature encoding method is proposed by considering the
importance of samples and combining support vector data description, triangle coding, etc. This
feature encoding method is used to extract features from pose-free images. Last but not the least,
multi-tasks such as feature extraction and feature recognition are jointly optimized to obtain a solution
closer to the global optimal solution. Comprehensive experimental results show that the proposed
HDMCO achieves better recognition performance.

Keywords: few-shot learning; face recognition; pose variations; hypergraph

1. Introduction

Face recognition is a very important technology with a wide range of applications, such
as video surveillance, forensics, and security [1–3]. Pose change is one of the difficulties in
face recognition. Posture changes involved in images can cause images of one person to
look like images of other people. That is to say, the change in pose will lead to an increase in
intra-class difference and a decrease in inter-class difference, which will hinder the classifier
from correctly recognizing the face images. One study shows that the performance of
most algorithms decreases by more than 10% from frontal-frontal to frontal-profile face
verification; however, there is only a small drop in the recognition performance of the
human eye [4]. Therefore, it is of great significance to study face recognition involving
pose change.

Many methods have been proposed to solve the multi-pose face recognition
problem [5–11]. These methods can be divided into the following categories: face normal-
ization, feature representation, spatial mapping, and pose estimation.

The method based on face normalization can better identify the image by normalizing
the image with attitude deflection to the front image or the image close to the front image.
For example, Ding et al. [12] transform images with pose deflection into frontal images
by pose normalization. Luan et al. [13] take geometry preservation into account in GAN
networks and exploit perceptual loss constraints along with norm loss to obtain the frontal
images that preserve global and local information. Liu et al. [14] use pixel-level loss, feature
space perception loss, and identity-preserving loss to generate real class-invariant frontal
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images. Yin et al. [15] embed the contextual dependency and the local consistency into
GAN networks to extract the frontal images. Lin et al. [16] use the deep representation
alignment network to extract the pose-invariant face feature. Yang et al. [17] use the multi-
bit binary descriptor to extract the pose-invariant feature. Tu et al. [18] jointly optimize
image inpainting and image frontalization to deal with the recognition of low-resolution
face images involving pose variations.

Learning the effective feature representations of images can be beneficial for tackling
the task of classification. For example, Zhou et al. [19] use the divide-and-strategy to deal
with the representation and classification of samples, which can reduce the challenge of
posture. Zhang et al. [20] use locality-constrained and label information to enhance the
representational power of regression-based methods. Gao et al. [21] use the multi-modal
hashing and discriminative correlation maximization analysis for feature representation
learning to allow them to obtain the easily distinguishable feature representation of each
pose image. Yang et al. [22] learn the more discriminative feature representations by
imposing penalties on weighted vectors. Huang et al. [23] use the samples and feature
centers to enhance the similarity of features between samples of the same class.

The method based on spatial mapping can reduce the intra-class differences and
increase the inter-class differences by mapping samples into a new space, which is beneficial
for classification. For example, He et al. [24] use the identity consistency loss and the pose-
triplet loss to minimize the intra-class and maximize the inter-class. Wang et al. [25] use the
divergence loss to increase the diversity among multiple attention maps. Furthermore, the
attention sparsity loss is used to highlight the regions with strong discriminative power.
He et al. [26] reduce the difference between images with different modes by applying
adversarial learning to both image-level and feature level. Liu et al. [27] use the source
domain data to improve the performance of target domain data so that the poses of two
images with the same category from the source and target domains are markedly different.
Sun et al. [28] use the equalized margin loss to reduce the impact of unevenly distributed
data (uneven distribution of attitude deflection).

It is also a good way to estimate the attitude deflection angle of the image and use the
information of the deflection angle to recognize the image. For example, Zhang et al. [29]
use the pose-guided margin loss to estimate the head poses, then the recognition process
can be completed in the same pose. Badave et al. [30] use multiple cameras for pose
estimation and then use the estimated pose to recognize the face images. Wang et al. [31]
combine the learned sub-classifiers into a classifier with a strong performance by learning
the dictionaries and the sub-classifiers at the same time.

The above methods have good effects on face recognition involving small posture
deflection or face recognition with a large number of samples. However, most face recogni-
tion is either few-shot face recognition or face recognition involving large pose deflection.
It is difficult for these methods to learn the intrinsic relationship between multiple sam-
ples of the same category in the process of model learning, and the essential attributes
of the samples of the same category summarized by the learned model are incomplete
or inaccurate.

Hypergraphs can represent complex relationships between objects. Unlike ordinary
graphs (where each edge of an ordinary graph can only connect two nodes), each edge
of a hypergraph can connect multiple nodes. That is, a hypergraph can reveal complex
relationships between multiple nodes. Furthermore, non-negative matrix factorization
is widely used in the field of computer vision, such as feature extraction. A matrix can
be decomposed into two matrices with different properties by non-negative matrix fac-
torization. Inspired by non-negative matrix factorization, we can decompose each image
involving attitude changes through non-negative matrix decomposition, and one matrix
obtained by the decomposition is used as the image without attitude deflection, and the
other matrix is used as the attitude change matrix. The image without pose deflection is
finally obtained through multiple iterative decompositions. Inspired by the hypergraph,
we treat each image as a node in the hypergraph and embed the hypergraph formed by
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multiple images into a non-negative matrix decomposition to extract images with better
performance and no attitude deflection. A few-shot multi-pose face recognition method
based on hypergraph de-deflection and multi-task collaborative optimization (HDMCO)
is proposed in this paper. First, HDMCO uses the hypergraph and non-negative matrix
factorization to obtain the images that are approximately frontal. Then, a novel feature
encoding method based on the improved support vector data description is proposed, and
it is jointly optimized with a dictionary learning-based classifier for feature extraction and
feature classification. Figure 1 shows the flowchart of the proposed HDMCO.
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and Oi, Oi is the center of the i -th SVDD sphere, i = 1, 2, · · · , C. X is the training. Sample set, D is
the dictionary, Z is the representation coefficient matrix.

In the de-attitude deflection phase of Figure 1, the image without attitude deflection is
separated from the image with attitude deflection by non-negative matrix decomposition.
In this process, the hypergraph is embedded in the non-negative decomposition to protect
the structural information of the image. In the feature extraction phase, the improved
support vector data description is used to obtain the clustering center and radius of each
cluster, and triangle coding is used to encode features for each patch. Then, image coding
can be obtained. In the feature classification phase, the dictionary learning-based classifier
recognizes the features of the image and then determines the category of the image.

The main innovations of this paper are as follows.

(1) A novel multi-pose face recognition framework based on hypergraph de-deflection
is proposed. The framework first isolates the pose-free deflection images, then uti-
lizes the proposed feature coding method based on improved support vector data
description to extract the features of the pose-free deflection images, and recognizes
the extracted features.

(2) A new feature encoding method based on improved support vector data description
is proposed. The feature encoding method utilizes the improved support vector data
description and triangle encoding to make the extracted features more discriminative.

(3) An effective feature extraction and feature classification optimization model is con-
structed, which makes it easy to obtain a solution closer to the global optimum and
helps to improve the recognition performance of the algorithm.
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The subsequent sections of this article are arranged as follows: Section 2 introduces
related studies. Section 3 describes the proposed method. Section 4 outlines the details of
the experiments, and Section 5 presents the conclusion.

2. Relate Studies

This section will introduce some theories related to the proposed method. Specifically,
few-shot face recognition, non-negative matrix factorization, and hypergraph theory will
be introduced in turn.

2.1. Few-Shot Face Recognition

Few-shot face recognition has always been an interesting yet difficult research topic.
Few-shot learning provides an effective solution to the very relevant and unavoidable
problem of data scarcity in many applications. Prior knowledge is applied to small datasets
so that few-shot learning can be generalized to new tasks and samples [32].

Researchers have proposed many methods to solve the problem of few-shot face
recognition by using few-shot learning [33–35]. Masi et al. [36] propose the pose-aware
model (PAM). PAM uses multiple networks to synthesize various pose images and uses
the synthesized pose images to train the model to improve its recognition ability. However,
this method needs a large amount of memory to store a large number of training images
when using a variety of networks to generate a large number of images of various poses,
so it is difficult to carry out during the actual process. Elharrouss et al. [37] propose
the cascade networks (abbreviated as MCN) corresponding to multiple tasks to enhance
the recognition ability of the recognition network for images involving pose variations.
However, the diversity of attitude changes considered by this method is limited during
model training, so the learned model is invalid when processing images involving other
pose changes. Liu et al. [38] use multiple profile images to generate frontal images and
use the Siamese network to learn the depth representation of the generated frontal images.
The depth representation of the images is more easily recognized by the classifier, which
helps to improve the recognition rate of the algorithm. Tao et al. [39] use the identity
information of the images and the latent relationship between the frontal and profile images
to model the distribution of the profile images and reduce the difference between the profile
images and the frontal images. However, it is difficult to judge whether the underlying
relationship between the frontal and profile images used is correct and comprehensive.
Gao et al. [40] propose a multilayer locality-constrained structural orthogonal Procrustes
regression (MLCSOPR) and use MLCSOPR to extract pose-robust features. This method
only considers the horizontal change in the posture, but in practice, the image involves
both the horizontal and vertical changes of the posture, so the application scope of this
method is very narrow.

2.2. Non-Negative Matrix Factorization

Given any non-negative matrix X0, it can be decomposed into two non-negative

matrices
↔
Y and PT . 

min
↔
Y ,PT
‖X0 −

↔
YPT‖

2

F

s.t.
↔
Y ≥ 0, P ≥ 0

(1)

where X0 ∈ <m×n is the non-negative matrix,
↔
Y ∈ <m×r is the basis matrix, PT ∈ <r×n is

the submatrix.
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Then,
↔
Y and PT can be updated by

↔
Y ij ←

↔
Y ij

(XP)ij

(
↔
YPTP)ij

(PT)jk ← (PT)jk
(
↔
Y

T
X)jk

(
↔
Y

T
YPT)jk

(2)

2.3. Hypergraph Theory

A hypergraph is very helpful for maintaining the internal structure of the data. Next,
we will briefly introduce the hypergraph theory.

Hypergraph is defined as follows: Hypergraph G is an ordered binary group G = (V, e),
where V is a non-empty set with nodes or vertices as elements, which is called vertex set; e
is a cluster of non-empty subsets whose elements are called hyperedges. Unlike ordinary
graphs, each edge of the hypergraph can connect not only two vertices but also more
vertices. Here, the hypergraph is undirected.

Given a hypergraph G = (V, e), V = {v1, v2, · · · , vk} is a set of finite data points,
vi(i = 1, 2, · · · , k) is a vertex. e = {e1, e2, · · · , et} is the set of hyperedges, ej is a hyperedge.

The hyperedge set e satisfies the following two conditions:

(a) ej /∈ φ, j = 1, 2, · · · , t;
(b) e1 ∪ e2 ∪ e3 · · · ∪ et = V;

Each hyperedge ej has a corresponding weight wj. Vertices hyperedges will form an
association matrix H ∈ <|V|×|e|, any element in H can be calculated by Equation (3):

Hij =

{
1, vi ∈ ej
0, vi /∈ ej

(3)

To better understand the hypergraph theory, we take the hypergraph in Figure 2 as an
example to illustrate the knowledge of the hypergraph. In Figure 2, the set of all vertices
is denoted as V = {v1, v2, · · · , v8}, e1 = {v1, v2, v3}, e2 = {v4, v5, v6} and e3 = {v7, v8}
denote the three hyperedges of G. The set of all hyperedges is denoted as e = {e1, e2, e3}.
The value of each element in H can be obtained according to Equation (3) and shown
in Figure 2. Each image serves as a data point and becomes a vertex in the hypergraph.
Hyperedges are composed of several similar data points. Similar data points indicate
images in which the contents of the images appear to be relatively close, such as two images
of the same person with small differences in attitude.

The degree di of each vertex in the hypergraph is defined as the sum of the weights of
the hyperedges to which it belongs, and the degree ρi of the hyperedges is defined as the
number of nodes to which the hyperedge belongs. di and ρi are calculated as follows:

di =
t

∑
j=1

wjHij

ρi =
k
∑

i=1
Hij

(4)

Let Dv denotes a diagonal matrix, whose main diagonal elements are Dvii = di, where
i = 1, 2, · · · , k. Similarly, let De and W be the diagonal matrices generated by ρj and wj,
respectively, where j = 1, 2, · · · , t. Then, the non-regularized hypergraph Laplacian matrix
can be calculated by Equation (5).

LH = Dv −HWD−1
e H (5)
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3. Proposed Method

In this section, we introduce the proposed method (the few-shot, multi-pose face
recognition method based on hypergraph de-deflection and multi-task collaborative op-
timization). The main idea of the proposed method is as follows. First, we propose a
feature discrimination enhancement method based on non-negative matrix factorization
and hypergraph embedding and use it to extract near-frontal images from pose-deflected
images. After that, we propose a feature encoding method based on improved support
vector data description and use it to extract the distinguishing features. Meanwhile, those
distinguishing features are classified by the dictionary learning-based classifier. When
performing feature extraction and feature classification, these two processes are jointly
optimized. Hence, we mainly introduce the feature discrimination enhancement method
based on non-negative matrix factorization and hypergraph embedding, feature encoding
method, dictionary learning-based classifier, joint optimization of the feature extraction,
and feature classification.

3.1. Feature Discrimination Enhancement Method Based on Non-Negative Matrix Factorization
and Hypergraph Embedding

Suppose a given dataset is denoted as Y ∈ <m×n, and each column in Y represents
an image sample. First, we apply a Gaussian filter to each image in Y to remove the noise
in the image. Next, we check whether the pixel value of each image is negative, change
the negative value to 0 for the negative values, and keep the original value for the positive
values, then obtain YW . After that, we construct the deregularized hypergraph Laplacian
matrix LH of YW . Assume that the number of hyperedges is t, the number of data in the
hypergraph is N and t is equal to N. The number of vertices contained in each hyperedge is
s. The vertices contained in each hyperedge are generated by YW

n itself and its nearest s− 1
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neighbors, where YW
n is the nth column of YW . LH is calculated according to Equation (5),

where wj can be calculated by Equation (6).

wj = ∑
YW

n1
,YW

n2
∈ej

exp(−
‖YW

n1
− YW

n2
‖

δ2 ) (6)

where δ = 1
s×t

t
∑

j=1
∑

YW
n1

,YW
n2
∈ej

‖YW
n1
− YW

n2
‖.

After YW and LH are obtained, the objective function is as follows. min‖YW −
↔
YPT‖

2

F + λTr(PTLHP)

s.t.
↔
Y ≥ 0, P ≥ 0

(7)

where YW ∈ <m×n,
↔
Y ∈ <m×n, P ∈ <n×n, LH ∈ <n×n, ‖YW −

↔
YPT‖

2

F represents the
error resulting from the non-negative decomposition of YW . Tr(PTLHP) is the hypergraph
regular term, which can protect the local geometric structure of the data and improve the
performance of the algorithm. The value of λ is set to 0.3.

It is difficult to solve Equation (7) directly, so an iterative solution method is adopted
to solve this problem. The Lagrangian function corresponding to Equation (8) is:

∆ = ‖YW −
↔
YPT‖

2

F + λTr(PTLHP) + Tr(Ψ
↔
Y

T
) + Tr(ΦPT) (8)

where Ψ is the matrix formed by the Lagrange multipliers of Ψmk for
↔
Ymk ≥ 0, Φ is the

matrix formed by the Lagrange multipliers of Φnk for Pmk ≥ 0.
∆ in Equation (8) can be rewritten as

∆ = Tr(YWT
YW)− Tr(YWT↔

YPT)− Tr(P
↔
Y

T
YW)

+Tr(P
↔
Y

T↔
YPT) + λTr(PTLHP) + Tr(Ψ

↔
Y

T
) + Tr(ΦPT)

= Tr(YWT
YW)− 2Tr(P

↔
Y

T
YW) + Tr(P

↔
Y

T↔
YPT)

+λTr(PTLHP) + Tr(Ψ
↔
Y

T
) + Tr(ΦPT)

(9)

By taking the partial derivatives of ∆ with respect to
↔
Y and P, respectively, we obtain

∂∆

∂
↔
Y
= −2YWP + 2

↔
YPTP + Ψ

∂∆
∂P = −2YWT↔

Y + 2P
↔
Y

T↔
Y + 2λLHP + Φ

(10)

According to the KKT conditions Ψmk
↔
Ymk = 0 and ΦnkPnk = 0 , we obtain

−(YWP)mk

↔
Ymk + (

↔
YPTP)mk

↔
Ymk = 0 (11)

−(YWT↔
Y)nkPnk + (P

↔
Y

T↔
Y)nkPnk + λ(LHP)nkPnk = 0 (12)

In Equations (11) and (12), the subscript of each variable indicates the number of
iterations of the variable.
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Then,
↔
Ymk and Pnk can be updated by the following two equations.

↔
Ymk ←

↔
Ymk ⊗

(YWP)mk

(
↔
YPTP)mk

(13)

Pnk ← Pnk ⊗
(YWT↔

Y)nk + (λHWD−1
e HP)nk

(P
↔
Y

T↔
Y)nk + (λDvP)nk

(14)

The variables in Equations (13) and (14) have appeared before; please see the previous
section for their definitions. The subscript of each variable indicates the number of iterations

of the variable. ⊗ represents the element-wise multiplication of two matrices. The output
↔
Y

is the image set with almost no attitude deflection. The features of each image with almost
no attitude deflection can be obtained by using the proposed feature coding method, which
has high-class discrimination.

Figure 3 shows the process of extracting near-frontal images from images involving
pose variations. Y represents the original image set involving pose deflection, YW represents

the image set after preprocessing Y,
↔
Y represents the image set of the approximate frontal

image obtained by decomposition and iteration, P represents the pose change matrix.
In Figure 3, we first preprocess each image in the original image set to obtain a non-
negative image set without noise pollution. Then, the hypergraph is embedded into the
non-negative matrix factorization to preserve the structure of the decomposed images.
Finally, the image set with almost no deflection is obtained through matrix factorization
and multiple iterative updates.
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Figure 3. The process of extracting near-frontal images from images involving pose variations. Y

is the original image set involving pose deflection, YW is the image set after preprocessing Y,
↔
Y is

the image set of the approximate frontal image obtained by decomposition and iteration, P is pose

change matrix, PT is the transpose of P,
↔
Y i is the value of

↔
Y at the i -th iteration, Pi

T is the value of
PT at the i -th iteration.
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3.2. Feature Coding Method Based on Improved Support Vector Data Description

The main idea of the proposed feature coding method based on improved support
vector data description is as follows. First, we propose an improved support vector data
description and use it to obtain the sphere center and radius of each cluster. After that, the
radius and center of the ball corresponding to each cluster are used for feature encoding.
The existing support vector data description considers that each data point plays the same
role when calculating the radius of each cluster, which is not in line with reality. Hence,
we assign a learned weight to each data in the model learning and propose an improved
support vector data description; its model is as follows.

min
r,χ

r2 + ς
num
∑

i=1
ρ(yi)χi

s.t.‖yi − b‖2 ≤ r2 + χi, χi ≥ 0, b = 1
num

num
∑

i=1
yi

(15)

where r is the radius of the ball, yi is the ith sample, ρ(yi) is the weight of yi, b is the center
of the ball, num is the number of the samples, χi is the slack variable. ς is a parameter
whose value is set to 0.4.

The weight of any sample is calculated as follows.
First, we divide the whole data set into C clusters, and assume that the sample

set of the kth cluster is denoted as
{

yk
1, yk

2, · · ·, yk
Pk

}
, where yk

i is the ith data point in{
yk

1, yk
2, · · ·, yk

Pk

}
, i = 1, 2, · · · , Pk. Pk is the number of data points in

{
yk

1, yk
2, · · ·, yk

Pk

}
, and

yk
i = [vki

1 , vki
2 , · · · , vki

d ]
T ∈ <d×1.

Denote the average distance between two data points in
{

yk
1, yk

2, · · ·, yk
Pk

}
as mk.

If the number of data points contained in
{

yk
1, yk

2, · · ·, yk
Pk

}
is greater than one, then

mk =
2

pk(pk − 1)

pk

∑
i=1

pk

∑
j=i+1

d(yk
i , yk

j ) (16)

d(yk
i , yk

j ) =

√
(vki

1 − vkj
1 )

2
+ (vki

2 − vkj
2 )

2
+ · · ·+ (vki

d − vkj
d )

2
(17)

If the number of data points contained in
{

yk
1, yk

2, · · ·, yk
Pk

}
is equal to one, then

mk =
1

C
∑

i=1,i 6=k
pk

C

∑
t=1,t 6=k

Pt

∑
i=1

d(yk
1, yt

i) (18)

Generally speaking, the distances between data points in the same cluster are far less
than the distances between data points in different clusters. Thus, we assume that data
points in the same cluster have the same weight.

ρk = 1− mk
C
∑

i=1
mi

(19)

The Lagrange function of Equation (15) can be written as

L̃(r, χ, α, β) = r2 + ς
num
∑

i=1
ρ(yi)χi +

num
∑

i=1
αi{

‖yi − 1
num

num
∑

j=1
yj‖

2
− r2 − χi

}
−

num
∑

i=1
βiχi

(20)
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Let ∂L̃
∂r = 0 and ∂L̃

∂χi
= 0, we can obtain{

min
α

2
num αQe− αTΩ

s.t. αTe = 1
(21)

where Q = (< yi, yj >)
num×num

, Ω = (< yi, yj >)
num×1

, e = (1, 1, 1, · · · , 1)T , yi and yj are

the ith sample and jth sample in the dataset with attitude deflection removed, respectively,
α = [α1, α2, · · · , αnum]. α can be obtained by using the linear programming algorithm.

r can be obtained by using Equation (22).

r2 = yi · yj − 2
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where ϒ  is the set of support vectors, the sample points used in Equation (22) are the 
support vectors. Whether the data point is a support vector, the following condition needs 
to be met: if the data point iy   is a support vector, its corresponding iα   is non-zero. 
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∑
i,j=1

αi(yi · yj) +
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where ϒ  is the set of support vectors, the sample points used in Equation (22) are the 
support vectors. Whether the data point is a support vector, the following condition needs 
to be met: if the data point iy   is a support vector, its corresponding iα   is non-zero. 

1 2[ , , , ]Cr r r r=  , C  is the number of clusters in the dataset. 
Then, for each image with pose deflection removed, it is decomposed into N  

patches (each patch has the same size), and each patch is encoded. The schematic diagram 

∑
i,j=1

αiαj(yi · yj) (22)

where
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is the set of support vectors, the sample points used in Equation (22) are the
support vectors. Whether the data point is a support vector, the following condition
needs to be met: if the data point yi is a support vector, its corresponding αi is non-zero.
r = [r1, r2, · · · , rC], C is the number of clusters in the dataset.

Then, for each image with pose deflection removed, it is decomposed into Ñ patches
(each patch has the same size), and each patch is encoded. The schematic diagram of the
image being divided into small pieces is shown in the Figure 4. For example, for an image
q with attitude deflection removed, it is divided into Ñ small patches. Ñ is determined by
our experience. For any small patch qj, j = 1, 2, · · · , Ñ, it can be encoded as U(qj).

U(qj) = [ U1(qj) U2(qj) · · · UC(qj) ]
T (23)

where Ui(qj) = [ Ui,1(qj) Ui,2(qj) ], i = 1, 2, · · · , C, j = 1, 2, · · · , Ñ, Ui,1(qj) and Ui,2(qj)

are obtained by the triangle coding. Ui,1(qj) = max
{

0, d(s)− si(qj)
}

, si(qj) = ‖qj − oi‖2
represents the distance from qj to oi, d(s) is the mean of all si(qj) values. Ui,2(qj) =
max

{
0, A(m)−mi(qj)

}
, mi(qj) = ri

C
∑

k=1
rk

, A(m) is the mean of all mi values.
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Figure 4. In the picture, each small grid represents a patch. The number of patches is chosen based
on our experience.

Figure 5 shows the schematic diagram of the encoding. qj represents the jth patch of
the image q (The image q is divided into Ñ patches). oi denotes the center of the SVDD
sphere formed by the jth cluster (multiple sample points are clustered into a cluster.), ri.
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Figure 5. The schematic diagram of the encoding. oi and oj are the centers of the i -th and j -th SVDD
balls, respectively. ri and rj are the radius of the i th and j th SVDD balls, respectively. si(qj) and
sj(qj) represent the distance from patch qj to oi and oj, respectively. denotes the radius of the SVDD
sphere formed by the ith cluster. si(qj) represents the distance between qj and oi. oj denotes the center
of the SVDD sphere formed by the jth cluster, rj denotes the radius of the SVDD sphere formed by the
jth cluster. sj(qj) represents the distance between qj and oj. For the specific encoding of each patch,
please refer to Equation (19).

Hence, the image q can be encoded as Fq, and the expression of Fq is as follows.

Fq = [ (U(q1))
T

(U(q2))
T · · · (U(qÑ))

T
]
T

(24)

3.3. Dictionary Learning-Based Classifier

The de-deflection operations and feature encoding operations described above greatly
reduce the influence of posture changes on face recognition. To further improve the
recognition rate of the whole algorithm on this basis, we decided to learn the classifier,
questioning which classifier can not only realize the learning function but also learn the
characteristics related to the classified samples in the process of learning. Recent studies
have shown that sparse representations have been successfully applied in many fields,
such as image restoration and image classification. Dictionaries play an important role
in sparse representation, and the quality of dictionaries greatly affects the performance
of sparse representation. The latest research on dictionary learning shows that learning a
desirable dictionary from the training data itself can usually yield good results for tasks
on images or video [41]. Inspired by this, we are ready to learn the dictionary and use the
learned dictionary to represent the test samples, and then determine the category of the
test samples according to the representation residual.

The basic model of the dictionary learning-based classifier is as follows.{
min
D,Z
‖X−DZ‖2

F + η‖Z‖1

s.t.‖di‖2
2 ≤ 1

(25)

where X is the training samples, D represents the dictionary to be learned, Z is the repre-
sentation coefficient, di represents the ith atom in D. η is set to 0.3.

3.4. Joint Optimization of the Feature Extraction and Feature Classification

To obtain the globally optimal solution of HDMCO, we jointly optimized the feature
extraction and feature classification.

The model for jointly optimizing the feature extraction and feature classification is
as follows. {

min
α,D,Z
‖X−DZ‖2

F + η( 2
num αTQe− αTΩ)‖Z‖1

s.t.αTe = 1, ‖di‖2
2 ≤ 1

(26)

According to Equation (26), we can obtain α, D and Z.
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α can be obtained by using Equation (27).{
min

α
η( 2

num αTQe−αTΩ)‖Z‖1

s.t.αTe = 1
(27)

Then, the value of α can be obtained by using the linear programming algorithm.
D can be obtained by solving Equation (28).{

min
D
‖X−DZ‖2

F

s.t.‖di‖2
2 ≤ 1

(28)

Solving Equation (28) can be converted to solving Equation (29).
D = argmin

D
‖X−DZ‖2

F + ϑ‖D− V + J‖2
F

V = argmin
V

ϑ‖D− V + J‖2
F, s.t.‖vi‖2

2 ≤ 1

J = J + D− V

(29)

where
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where ϑ  is set to 0.2. 
Then, D  can be obtained by iteratively solving the variables in Equation (29). 

is set to 0.2.
Then, D can be obtained by iteratively solving the variables in Equation (29).
Z can be obtained by solving Equation (30).

min
Z
‖X−DZ‖2

F + η(
2

num
αTQe− αTΩ)‖Z‖1 (30)

The solution to Equation (30) is as follows.

Z = shrink(D−1X,
η( 2

num αTQe− αTΩ)

2
) (31)

where shrink(x, a) = signmax(|x| − a, 0).
Figure 6 shows the schematic diagram of seeking a globally optimal solution.
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4. Experiments
4.1. Dataset

Here, Multi-PIE [42], MegaFace [43], CAS-PEAL [44], YTF [45], CPLFW [46], and
CVL [47] are used in experiments to verify the performance of HDMCO.

Multi-PIE mainly involves pose variations and illumination variations, and includes a
total of more than 750,000 images of 337 different people. Figure 7a shows some samples of
multi-PIE.
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MegaFace is a challenging, large-scale face dataset. It contains the gallery set and the
probe set. The gallery set contains more than 1 million face images, while the probe set
contains 106,863 face images of 530 celebrities. Figure 7b shows some samples of MegaFace.

CAS-PEAL includes 99,450 images of 1040 different people, which mainly involve pose
variations, expression variations, and lighting variations. Figure 7c shows some samples
of CAS-PEAL.

YTF contains 3425 videos of 1595 subjects with diverse ethnicities. Figure 6d shows
some samples of YTF.

CPLFW includes 11,652 images of 5749 different people, which mainly involves pose
variations. Figure 7e shows some samples of CPLFW.

CVL contains 798 images of 114 different people, which mainly involves pose varia-
tions. Figure 7f shows some samples of CVL.

4.2. Experimental Results and Analysis
4.2.1. Comparison with State-of-the-Art Methods
Experimental Setup

Resnet [48], Duan’s method [49], PGM-Face [29], PCCycleGAN [14], LDMR [20], MH-
DNCCM [21], DRA-Net [16], TGLBP [35], MCN [37], 3D-PIM [50] WFH [17], mCNN [51],
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HADL [31], RVFace [52], DTDD [53], ArcFace [54], VGG [55], and DeepID [56] are used as
the comparison methods.

For multi-PIE, we choose images with pose deflection angles of −45
◦
, −30

◦
, −15

◦
, 0
◦
,

15
◦
, 30

◦
, 45

◦
for experiments. In other words, a total of 2359 images of 337 subjects were

used for the experiments. For images of each subject, we randomly selected three images
for training and the remaining images for testing. It means that the number of training
images accounted for 42.85% of the total number of images, and the number of testing
images accounted for 57.15% of the total number of images.

For MegaFace, we selected the samples of categories with the number of images greater
than or equal to two for experiments. For each class of samples used for experiments, we
randomly selected one image for training and one image for testing. Namely, the number
of training images accounted for 50% of the total number of images, and the number of
testing images accounted for 50% of the total number of images.

For CAS-PEAL, we choose those images involving 800 subjects in three different poses
(0
◦
, −45

◦
and 45

◦
) for experiments. That is to say, each subject contains three images

deflected at different angles. The image with a deflection angle of 0 degrees in each subject
is used for training and the rest are used for testing. Specifically, the number of training
images accounted for 33.33% of the total number of images and the number of testing
images accounted for 66.67% of the total number of images.

For YTF, we selected 226 subjects with four or more videos available. Then, we selected
225 subjects from 226 subjects for experiments and divided the 225 subjects into five groups,
each group involving 45 subjects. For each group, the first three videos of each subject
as gallery sets and the remaining videos for testing. The results obtained from the five
groups of experiments are averaged as the final experimental result. The number of training
samples accounted for 43.29% of the total number of images, and the number of testing
samples accounted for 56.71% of the total number of images.

For CPLFW, we selected the samples of 2000 classes to form a subset. For samples
belonging to a certain class (each class) in this subset, we randomly selected one image as
the training sample and one image as the test sample. Precisely, the number of training
images accounted for 50% of the total number of images, and the number of testing images
accounted for 50% of the total number of images.

For CVL, we choose three images in each class for training and the rest for testing.
That is to say, the number of training images accounted for 42.85% of the total number
of images, and the number of testing images accounted for 57.15% of the total number
of images.

The images used in the experiments are cropped to 60× 80.

Experimental Result

The Accuracies of different methods on different datasets are shown in Table 1. It can
be seen from the experimental results on multi-PIE that ArcFace has the highest recognition
rate, reaching 95.89%. This may be because the proportion of images involving large
pose changes is relatively small, resulting in the difference between most training images
and test images not being too large, and ArcFace can achieve good recognition results.
Furthermore, almost all methods have achieved good results. The reason for this result is
as follows. The Multi-PIE dataset involves relatively few images with large pose deflection.
For example, the number of images with an attitude deflection of 45 degrees only accounts
for two-sevenths of the total dataset, which means most of the images used for training
have little difference from the test images. Then, the trained model can better identify the
test samples.
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Table 1. Accuracies (%) of Different Methods on Different Datasets.

Methods\Datasets Multi-PIE [40] MegaFace [41] CAS-PEAL [42] YTF [43] CPLFW [44] CVL [45]

Reset [48] 91.06 87.77 90.77 76.05 82.36 89.56

Duan [49] 87.68 82.55 89.37 73.88 81.06 85.17

PGM-Face [29] 90.23 85.33 90.01 73.20 78.58 88.06

PCCycleGAN [14] 88.99 85.01 88.85 75.16 80.66 87.38

LDMR [20] 91.33 86.23 92.29 77.22 85.06 90.23

MH-DNCCM [21] 91.78 85.89 90.46 76.11 82.50 87.98

DRA-Net [16] 93.06 83.99 93.16 76.47 82.97 90.01

TGLBP [35] 89.06 86.13 90.67 75.60 83.71 86.97

MCN [37] 92.01 86.24 91.37 77.05 85.20 88.31

3D-PIM [50] 93.02 86.31 91.79 78.05 85.07 89.22

WFH [17] 91.55 86.01 92.70 74.88 84.01 87.34

mCNN [51] 88.68 85.17 87.58 72.89 80.59 81.38

HADL [31] 90.82 85.35 90.47 75.95 84.35 86.40

RVFace [52] 92.10 88.03 93.17 78.05 85.97 90.03

DTDD [53] 90.39 88.37 93.55 77.35 86.23 88.80

ArcFace [54] 95.89 91.37 92.13 83.40 84.88 87.23

VGG [55] 95.14 89.29 90.92 81.05 83.06 85.71

DeepID [56] 93.88 87.58 88.15 78.45 83.46 85.12

HDMCO [ours] 95.19 90.67 95.88 80.34 88.41 92.19

For the experimental results on MegaFace, almost all methods based on deep learning
achieved good results. The possible reasons are as follows: although the number of samples
used for training in each category is not large, the difference between the large number
of samples used for pre-training and the test samples is not too large. Thus, the final
learned model has better classification ability for the test samples. Among all the methods,
Duan’s method has the worst performance, which may be because the performance of the
method depends on finding the parts related to the pose. However, it cannot completely
and correctly determine which parts of the image are related to the pose. Furthermore,
this method mainly solves face recognition involving pose changes, while the MegaFace
dataset involves not only pose changes but also other changes, so the recognition rate of
this method on MegaFace is not very high.

The experimental results on YTF show that the recognition rate of all algorithms
does not exceed 85%. This is because YTF datasets involve large changes (e.g., large pose
changes, large expression changes), so their performance is not very good. Specifically, for
methods based on deep learning, the pre-trained model is not suitable for the classification
of test images. This is because a large number of samples used for pre-training are quite
different from the images in the used dataset. For HADL, because the samples used for
training may be quite different from the samples used for testing, the learned dictionary
cannot accurately represent the test samples, which means that the algorithm cannot obtain
a higher recognition rate. For Duan’s method, because the samples used for training may
be quite different from the samples used for testing, the learned characteristics of a certain
category are quite different from those of the same category of images in the test set. Then,
the recognition rate of the algorithm on the YTF dataset is not very high.

The experimental results on CPLFW show that the recognition rate of our method
is higher than that of other algorithms. This may be because our proposed non-negative
matrix factorization based on hypergraph embedding extracts the frontal images with
better quality. In other words, we use hypergraph and non-negative matrix factorization to
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separate the frontal image from the profile image. The extracted pose-free features are then
used to learn the dictionaries with strong performance, and the learned dictionaries are
used to accurately represent the test samples, thereby greatly improving the recognition
rate of the algorithm. The reasons why the recognition rate of the deep learning-based

Method is not as high as that of our method are as follows. A large number of samples
used for pre-training are too different from the samples in the test set. For example, many
samples used for pre-training are images with small attitude deflection, while many test
samples are images with large attitude deflection. Then, the rules summarized for each
category through training are not suitable for the rules of the same category of images in
the test set.

The experimental results on CVL show that the recognition rate of our method is 92%,
which is higher than that of other methods. The reasons for this result are as follows: the
hypergraph is embedded in the non-negative matrix factorization so that the resulting
images retain the intrinsic properties of the original images. Furthermore, triangular
encoding is used to encode the obtained pose-free images, which makes the extracted
features highly unique. Furthermore, we use the encoded features to train the dictionary, so
that the learned dictionary has a stronger representation ability. Then, the test samples can
be accurately represented by the dictionaries, thereby achieving the purpose of improving
the recognition rate. The performance of deep learning-based methods is not the best
among all methods, and the reasons for this result are as follows. The rules summarized for
each category through pre-training are quite different from the rules of the same category
of images in the test set. Therefore, the model obtained by training is not suitable for the
classification of the test images, or the model obtained by training cannot correctly classify
many test images. For HADL and LDMR, it is difficult for them to extract the pose-invariant
features of the images when dealing with images with large pose changes, which makes it
difficult for subsequent classifiers to correctly identify samples.

Tables 2 and 3 show the recall and precision of different methods on different datasets.
The experimental results obtained are generally consistent with those in Table 1; HDMCO
has the best effect.

Table 2. Recall (%) of Different Methods on Different Datasets.

Methods\Datasets Multi-PIE [40] MegaFace [41] CAS-PEAL [42] YTF [43] CPLFW [44] CVL [45]

Reset [48] 78.35 70.68 76.18 82.67 76.83 81.33

Duan [49] 76.02 65.43 72.67 77.61 73.25 78.69

PGM-Face [29] 79.66 73.14 75.68 75.60 77.25 80.39

PCCycleGAN [14] 81.64 72.95 77.62 73.08 76.89 76.28

LDMR [20] 83.58 76.89 72.99 75.03 75.88 79.01

MH-DNCCM [21] 82.05 73.91 70.03 73.26 74.19 80.06

DRA-Net [16] 85.11 80.34 77.68 79.32 80.64 81.39

TGLBP [35] 80.24 78.92 78.33 75.17 78.38 79.68

MCN [37] 83.67 80.20 81.08 77.68 80.34 78.18

3D-PIM [50] 85.02 81.35 81.69 79.67 77.58 76.64

WFH [17] 82.67 78.54 76.44 77.39 79.14 75.89

mCNN [51] 80.33 78.67 79.58 78.99 80.01 78.66

HADL [31] 78.89 80.59 79.44 79.88 78.46 80.62
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Table 2. Cont.

Methods\Datasets Multi-PIE [40] MegaFace [41] CAS-PEAL [42] YTF [43] CPLFW [44] CVL [45]

RVFace [52] 82.24 80.30 77.89 79.01 81.33 80.23

DTDD [53] 80.95 80.68 79.25 79.31 80.64 82.07

ArcFace [54] 82.53 85.01 82.34 80.09 81.69 80.60

VGG [55] 79.28 81.02 78.08 75.89 79.88 79.47

DeepID [56] 81.08 82.16 79.66 81.06 81.06 78.30

HDMCO [ours] 88.37 85.67 86.17 85.60 88.32 88.97

Table 3. Precision (%) of Different Methods on Different Datasets.

Methods\Datasets Multi-PIE [40] MegaFace [41] CAS-PEAL [42] YTF [43] CPLFW [44] CVL [45]

Reset [48] 89.26 86.08 86.92 78.34 80.16 86.57

Duan [49] 85.06 80.38 88.15 75.06 79.68 86.23

PGM-Face [29] 89.32 86.42 88.95 75.01 77.19 86.27

PCCycleGAN [14] 86.27 85.39 86.19 77.12 79.18 85.61

LDMR [20] 88.97 85.09 90.87 75.80 83.97 87.18

MH-DNCCM [21] 88.39 82.17 88.69 78.02 80.05 85.10

DRA-Net [16] 90.86 82.34 92.05 75.24 80.34 87.19

TGLBP [35] 86.95 85.06 91.21 75.32 81.99 85.43

MCN [37] 90.67 83.97 89.68 76.38 83.97 87.32

3D-PIM [50] 90.98 85.11 90.08 75.86 83.46 87.68

WFH [17] 89.30 83.67 90.79 74.02 83.97 86.22

mCNN [51] 86.91 85.06 86.40 70.66 79.30 79.66

HADL [31] 88.69 84.39 88.67 76.08 83.97 85.88

RVFace [52] 90.68 86.92 91.86 78.68 85.02 88.60

DTDD [53] 88.67 87.08 92.43 76.18 85.15 87.67

ArcFace [54] 93.91 90.28 90.88 82.91 82.69 86.41

VGG [55] 95.86 88.06 88.67 79.38 81.67 85.02

DeepID [56] 93.05 86.14 85.97 77.68 81.97 84.67

HDMCO [ours] 96.08 91.35 94.86 81.57 88.05 92.30

4.2.2. Cross-Validation Experiment

In order to further verify the performance of HDMCO, cross-validation experiments
are carried out in this section. For each data set, we selected the face image with an attitude
deflection angle greater than 45◦, and 5-fold cross-validation was performed. Specifically,
the data set was divided into five parts, four of which were taken as training data and one as
test data in turn, and the experiment was carried out. Each trial obtained the corresponding
recognition rate. The average recognition rate of the results of five times was used as the
estimation of the algorithm accuracy.

As can be seen from Table 4, the average recognition rate of many algorithms on
the multi-PIE data set and CAS-PEAL data set is more than 80%. At the same time, it
can also be seen that the recognition rate of the proposed HDMCO is higher than that of
other algorithms.
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Table 4. The Results (%) of Cross-validation.

Methods\Datasets Multi-PIE [40] MegaFace [41] CAS-PEAL [42] YTF [43] CPLFW [44] CVL [45]

Reset [48] 81.32 78.92 81.24 68.05 73.68 80.92

Duan [49] 80.68 75.60 80.38 63.58 71.99 78.96

PGM-Face [29] 77.68 79.31 77.59 72.38 68.56 77.90

PCCycleGAN [14] 76.82 75.66 74.97 68.33 69.98 78.62

LDMR [20] 80.38 83.29 80.64 73.20 76.82 80.93

MH-DNCCM [21] 81.60 81.32 83.67 64.51 71.93 79.71

DRA-Net [16] 83.64 83.16 81.46 66.49 74.69 80.97

TGLBP [35] 80.32 80.97 76.91 64.98 72.64 77.62

MCN [37] 80.06 79.86 80.46 71.61 71.62 78.59

3D-PIM [50] 81.30 80.61 78.67 70.38 73.92 78.61

WFH [17] 81.69 80.67 81.33 63.89 73.68 79.68

mCNN [51] 79.37 75.31 76.82 63.99 71.68 70.29

HADL [31] 80.34 73.97 80.34 73.61 73.61 77.85

RVFace [52] 77.31 76.89 83.89 75.06 75.38 79.33

DTDD [53] 78.39 80.67 82.58 73.68 78.99 78.99

ArcFace [54] 82.67 78.59 81.37 77.31 74.63 77.97

VGG [55] 80.69 77.98 80.59 73.68 73.91 76.89

DeepID [56] 83.99 77.86 78.61 71.68 77.35 77.95

HDMCO [ours] 89.30 85.07 85.99 78.95 83.93 83.97

4.2.3. The Effect of Feature Dimension on the Recognition Performance of the Algorithms

To illustrate the effect of feature dimension on the recognition rate of our method,
we conducted experiments. DDTD, HADL, and PCCycleGAN are used as comparison
methods. The experimental conditions are the same as the experimental conditions in
Section 4.2.1. The only difference is that the dimension of the features ranges from 100
to 600. Figure 8 shows the effect of feature dimension on the recognition rate of different
methods. It can be seen from Figure 8 that the recognition rates of all methods first
gradually increase with the feature dimension and then remain unchanged. Furthermore,
the recognition performance of our method is better than other methods.

4.2.4. The Display of the Extracted Frontal Images

To illustrate that our method can effectively separate pose-free images from pose-
deflected images, we show the obtained separated images. In Figure 9, the left half of each
subfigure shows the original image, and the right half shows the pose-free deflection image
separated from the original image. As can be seen from Figure 9, the separated images are
close to the frontal image. This shows that the proposed feature discrimination enhance-
ment method based on non-negative matrix factorization and hypergraph embedding can
indeed achieve the de-pose function.
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4.2.5. Ablation Experiment

To verify the role of each component in the proposed method, we performed abla-
tion experiments. The main components of the method proposed in this paper are the
“feature discrimination enhancement method based on non-negative matrix factorization
and hypergraph embedding”, the “feature coding method based on improved support
vector data description”, “dictionary learning-based classifier”, and “joint optimization of
the feature extraction and feature classification”, which are abbreviated as de-deflection,
feature coding, dictionary learning, and joint optimization.
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Experimental Setup

The experimental conditions are the same as in Section 4.2.1.

Experimental Results

Figure 10 shows the results of ablation experiments. It can be seen from Figure 10a
that using the de-deflection component can improve the recognition rate of the algorithm
by about 2% on some datasets, and more on some datasets, such as 5% and 7%. As can be
seen from Figure 10b, the use of feature encoding component improves the recognition rate
of the algorithm by about 2% on almost all datasets. It can be seen from Figure 10c that the
use of the dictionary learning component improves the recognition rate of the algorithm by
about 1% on some datasets and by about 2% on others. It can be seen from Figure 10d that
using the joint optimization component improves the recognition rate of the algorithm by
about 3% on almost all datasets.

4.2.6. The Effect of Parameters on the Recognition Performance of HDMCO

In HDMCO, η and λ are the main parameters. To explore their impact on the recog-
nition rate of HDMCO, we conducted experiments. The experimental conditions are the
same as the experimental conditions in Section 4.2.1. The only difference is that η ranges
from 0.1 to 0.6, and λ ranges from 0 to 1. Figure 11 shows the effect of the main parameters
on the recognition rate of HDMCO. It can be seen from Figure 11 that the recognition rate
of HDMCO is the highest when the value of η is about 0.3, and the recognition rate of
HDMCO is the highest when the value of λ is about 0.5.



Electronics 2023, 12, 2248 21 of 24

Electronics 2023, 12, x FOR PEER REVIEW 20 of 24 
 

 

  
(c) (d) 

  
(e) (f) 

Figure 9. Images are separated by non-negative matrix factorization based on the hypergraph (a) 
Multi-PIE (b) MegaFace (c) CAS-PEAL (d) YTF (e) CPLFW (f) CVL. 

4.2.5. Ablation Experiment 
To verify the role of each component in the proposed method, we performed ablation 

experiments. The main components of the method proposed in this paper are the “feature 
discrimination enhancement method based on non-negative matrix factorization and hy-
pergraph embedding”, the “feature coding method based on improved support vector 
data description”, “dictionary learning-based classifier”, and “joint optimization of the 
feature extraction and feature classification”, which are abbreviated as de-deflection, fea-
ture coding, dictionary learning, and joint optimization. 

Experimental Setup 
The experimental conditions are the same as in Section 4.2.1. 

Experimental Results 
Figure 10 shows the results of ablation experiments. It can be seen from Figure 10a 

that using the de-deflection component can improve the recognition rate of the algorithm 
by about 2% on some datasets, and more on some datasets, such as 5% and 7%. As can be 
seen from Figure 10b, the use of feature encoding component improves the recognition 
rate of the algorithm by about 2% on almost all datasets. It can be seen from Figure 10c 
that the use of the dictionary learning component improves the recognition rate of the 
algorithm by about 1% on some datasets and by about 2% on others. It can be seen from 
Figure 10d that using the joint optimization component improves the recognition rate of 
the algorithm by about 3% on almost all datasets. 

  
(a) (b) 

Electronics 2023, 12, x FOR PEER REVIEW 21 of 24 

(c) (d) 

Figure 10. Results of ablation experiments. MP represents Multi-PIE, MF represents MegaFace, CP 
represents CAS-PEAL (a) de-deflection (b) feature learning (c) dictionary learning (d) joint optimization. 

4.2.6. The Effect of Parameters on the Recognition Performance of HDMCO
In HDMCO, η   and λ   are the main parameters. To explore their impact on the

recognition rate of HDMCO, we conducted experiments. The experimental conditions are 
the same as the experimental conditions in Section 4.2.1. The only difference is that η  
ranges from 0.1 to 0.6, and λ  ranges from 0 to 1. Figure 11 shows the effect of the main 
parameters on the recognition rate of HDMCO. It can be seen from Figure 11 that the 
recognition rate of HDMCO is the highest when the value of η   is about 0.3, and the 
recognition rate of HDMCO is the highest when the value of λ  is about 0.5. 

(a) (b) 

Figure 11. The effect of main parameters on the recognition rate of HDMCO. (a) η  (b) λ . 

4.2.7. Comparison of Computational Complexity
In this section, we analyze the computational complexity of the proposed algorithm 

and compare it with the computational complexity of several existing methods. The com-
putational complexity of HDMCO is mainly dervived from solving α  using linear pro-
gramming; meanwhile, the computational complexity of calculating α  is 2

0( )o n , and 0n
is the number of training samples. Thus, the computational complexity of HDMCO is 

2
0( )o n . HADL [27] and LDMR [19] are used as comparative methods. The computational 

complexity of HADL is 3
0( ( max( , )))O M Kn K L Kτ + , where τ  is the iteration number, and 

L is the dimension of each sample, K is the number of atoms in the dictionary. M  is 
the maximum number of the iteration number. The computational complexity of LDMR 
is 2 3 2

0 0 0 0 0 0 0 0 0( ( ))O u v n n u v u v nτ+ + + , and 0u  and 0v are the width and height of the image, 
respectively. It is easy to see from the computational complexity expressions of the three
algorithms that the computational complexity of HDMCO is 2

0n , while the computational 

Figure 10. Results of ablation experiments. MP represents Multi-PIE, MF represents MegaFace,
CP represents CAS-PEAL (a) de-deflection (b) feature learning (c) dictionary learning (d) joint
optimization.

Electronics 2023, 12, x FOR PEER REVIEW 21 of 24 
 

 

  
(c) (d) 

Figure 10. Results of ablation experiments. MP represents Multi-PIE, MF represents MegaFace, CP 
represents CAS-PEAL (a) de-deflection (b) feature learning (c) dictionary learning (d) joint optimization. 

4.2.6. The Effect of Parameters on the Recognition Performance of HDMCO 
In HDMCO, η   and λ   are the main parameters. To explore their impact on the 

recognition rate of HDMCO, we conducted experiments. The experimental conditions are 
the same as the experimental conditions in Section 4.2.1. The only difference is that η  
ranges from 0.1 to 0.6, and λ  ranges from 0 to 1. Figure 11 shows the effect of the main 
parameters on the recognition rate of HDMCO. It can be seen from Figure 11 that the 
recognition rate of HDMCO is the highest when the value of η   is about 0.3, and the 
recognition rate of HDMCO is the highest when the value of λ  is about 0.5. 

  

(a) (b) 

Figure 11. The effect of main parameters on the recognition rate of HDMCO. (a) η  (b) λ . 

4.2.7. Comparison of Computational Complexity 
In this section, we analyze the computational complexity of the proposed algorithm 

and compare it with the computational complexity of several existing methods. The com-
putational complexity of HDMCO is mainly dervived from solving α  using linear pro-
gramming; meanwhile, the computational complexity of calculating α  is 2

0( )o n , and 0n  
is the number of training samples. Thus, the computational complexity of HDMCO is 

2
0( )o n . HADL [27] and LDMR [19] are used as comparative methods. The computational 

complexity of HADL is 3
0( ( max( , )))O M Kn K L Kτ + , where τ  is the iteration number, and 

L  is the dimension of each sample, K  is the number of atoms in the dictionary. M  is 
the maximum number of the iteration number. The computational complexity of LDMR 
is 2 3 2

0 0 0 0 0 0 0 0 0( ( ))O u v n n u v u v nτ+ + + , and 0u  and 0v  are the width and height of the image, 
respectively. It is easy to see from the computational complexity expressions of the three 
algorithms that the computational complexity of HDMCO is 2

0n , while the computational 

Figure 11. The effect of main parameters on the recognition rate of HDMCO. (a) η (b) λ.

4.2.7. Comparison of Computational Complexity

In this section, we analyze the computational complexity of the proposed algorithm
and compare it with the computational complexity of several existing methods. The
computational complexity of HDMCO is mainly dervived from solving α using linear
programming; meanwhile, the computational complexity of calculating α is o(n2

0), and
n0 is the number of training samples. Thus, the computational complexity of HDMCO is
o(n2

0). HADL [27] and LDMR [19] are used as comparative methods. The computational
complexity of HADL is O(Mτ(Kn3

0 + Kmax(L, K))), where τ is the iteration number, and
L is the dimension of each sample, K is the number of atoms in the dictionary. M is the
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maximum number of the iteration number. The computational complexity of LDMR is
O(u0v0n2

0 + n3
0 + τ(u0v2

0 + u0v0n0)), and u0 and v0 are the width and height of the image,
respectively. It is easy to see from the computational complexity expressions of the three
algorithms that the computational complexity of HDMCO is n2

0, while the computational
complexity of the other two algorithms is n3

0. Hence, HDMCO has low computational
complexity. Meanwhile, for example, the running time of HDMCO on the multi-PIE
database is 713.45 s, while the running time of HADL and LDMR are 4397.45 s and 5813.24 s.
The configuration of our computer is as follows: Intel Core i7-9700 K, 3.6 GHz, Nvidia
GeForce RTX 2080 Ti.

5. Conclusions

In this paper, we propose a novel few-shot, multi-pose face recognition method
based on hypergraph de-deflection and multi-task collaborative optimization (HDMCO).
HDMCO uses the hypergraph theory and non-negative matrix decomposition to separate
the frontal images from the attitude deflection images, and then uses the improved support
vector data description and triangle coding to extract the features of the separated images
without attitude deflection. Dictionary learning-based classifier is then also used to classify
those features. The feature extraction process and feature classification process are jointly
optimized. The large number of experimental results show that the proposed HDMCO
does achieve good results. Although we have jointly optimized feature extraction and
feature classification and achieved better results, since the separation of frontal images is
separate from the subsequent feature extraction, the obtained recognition result is still not
the ultimate optimal result of HDMCO. In future work, we will continue to explore the
joint optimization of the separation of frontal images and feature extraction to obtain the
ultimate optimal recognition effect of HDMCO.
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