
Citation: Alaerjan, A. Formalizing

the Semantics of DDS QoS Policies

for Improved Communications in

Distributed Smart Grid Applications.

Electronics 2023, 12, 2246. https://

doi.org/10.3390/electronics12102246

Academic Editors: Imed Ben Dhaou,

Ahmed Abdelgawad and Hannu

Tenhunen

Received: 23 April 2023

Revised: 9 May 2023

Accepted: 12 May 2023

Published: 15 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Formalizing the Semantics of DDS QoS Policies for Improved
Communications in Distributed Smart Grid Applications
Alaa Alaerjan

College of Computer and Information Sciences, Jouf University, Sakaka 72341, Saudi Arabia; asalaerjan@ju.edu.sa

Abstract: Quality communication is a major challenges in large-scale and distributed smart grid
applications. Several protocols and middleware have been proposed to address communication
quality issues in those applications. DDS is a standard data-centric middleware for publish/subscribe
communication. It has been proposed for smart grid to address both connectivity and communication
quality issues. DDS provides multiple quality of service (QoS) policies to address reliability, latency,
and data availability. One of the main challenges in adopting the standard in smart grids is the
complexity of adopting and tailoring its QoS policies. This is because those policies are described
informally introducing ambiguities, which hinders the precise implementation of DDS. To address
this, we formalize the descriptions of DDS QoS policies using the object constraint language (OCL).
We also clearly defined the design structural relations among DDS entities and QoS policies. In
the process, we analyzed the dependencies among QoS policies and we built clear and concise
structural relations. We then proposed feature modeling and a management layer to facilitate QoS
tuning and to reduce development and configuration complexity. We implemented the proposed
approach in a simulated power consumption domain. The results show that the approach improves
the development process. They also show that the approach significantly improves the performance
of DDS-enabled applications.

Keywords: communication; data centric; DDS; distributed applications; OCL; QoS; smart grid

1. Introduction

Distributed systems such as smart grids and renewable energy resources require high
quality data communication [1,2]. Traditionally, the development of those systems relies on
static distribution models such as the Remote Procedure Calls (RPC) [3]. However, given the
technical advances in recent years, there has been a growing interest in adopting dynamic
models to cope up with communication quality requirements. Specifically, communication
models that are based on the publish/subscribe paradigm have become appealing to
large-scale distributed systems due to their dynamism and scalability [4,5].

Smart grids and renewable energy resources have emerged in the last decade due to
operational and environmental challenges (e.g., blackouts, greenhouse gas emissions) [6–8].
A smart grid depends on connectivity to overcome the issues in traditional power grids [9].
However, controlling the communication system is one of the main challenges in smart
grids [10]. This is due to aspects such as the heterogeneity of domains, equipments,
and systems [11]. Another critical challenge is managing the quality of the communication
system in smart grids. This is because several applications within a smart grid impose
rigid quality requirements, which makes quality communication one of the key design
requirements [12]. Significant efforts have been made by researchers and industry to
develop robust communication systems for smart grids [10]. Most of those studies proposed
adopting flexible communication model (e.g., publish/subscribe, data centric) to cope with
the requirements of different distributed applications in smart grids.

Several publish/subscribe protocols have been proposed for possible adoption in
smart grids. Among them is the Data Distribution Service (DDS) [13], which has attracted

Electronics 2023, 12, 2246. https://doi.org/10.3390/electronics12102246 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12102246
https://doi.org/10.3390/electronics12102246
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-2926-6083
https://doi.org/10.3390/electronics12102246
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12102246?type=check_update&version=1

Electronics 2023, 12, 2246 2 of 20

significant attention. DDS is a standardized protocol based on the publish/subscribe
communication paradigm. DDS aims at providing efficient and reliable communication for
distributed systems. Multiple studies have proposed DDS as a potential solution for smart
grids’ communication issues [14]. DDS has also been adopted in other distributed systems,
such as cyber-physical systems [15] and combat systems [16].

DDS enables reliable data communication by providing a wide range of QoS policies,
which allows rigorous agreements on data exchange among distributed applications. The
model also provides a flexible discovery mechanism, allowing communicating entities to
be added and removed dynamically [17] without pre-configuration. DDS is brokerless,
which means it does not have a single point of failure. The standard defines 22 QoS
policies, each addressing a different quality aspect, such as data availability and reliability.
DDS supports different transport protocols, such as TCP and UDP via wired or wireless
communication [18]. However, one of the main challenges to adopting DDS in distributed
environments is the complexity of its QoS policies [19]. To illustrate, the QoS policies in DDS
standard are described informally, which introduces ambiguities and inconsistency among
different implementations. Such ambiguities make it difficult to analyze dependencies
among different policies, which is critical for the consistency of QoS agreements. Such an
ambiguity deteriorates the adoption of DDS in different domains in smart grids. It also
hinders the development process, which makes DDS complex to implement.

To address the above issues, we present a formalization approach to manage DDS
QoS policies using the Object Constraint Language (OCL) [20]. We first categorize the
QoS policies based on their objectives. Then, we localize dependencies and define a class
diagram for each category to identify the relationships between DDS entities and QoS
policies. Then, we analyze dependencies among QoS policies in the category using the
class diagrams. Based on the analysis of class diagrams, we provide formal definitions of
QoS policies using OCL. We demonstrate how the rigorous formalization of QoS policies
helps the implementation of DDS. Additionally, we model the QoS policies using feature
modeling to improve the efficiency of DDS development. Based on that, we propose a
QoS management layer to facilitate implementing DDS in smart grid domains. Finally, we
develop several use case experiments to simulate DDS communication in one domain in a
smart grid.

The rest of this paper is structured as follows. Section 2 describes the related research
on modeling different aspects of DDS including the QoS policies. It also describes some
of the research done on adopting DDS in smart grids. Section 3 provides an overview
of DDS, in terms of entities and layers. It also presents the formalization of QoS policies
using OCL. Section 4 describes the proposed feature model to facilitate adopting DDS in a
smart grid. In this section, we also describe the proposed QoS management layer. Section 5
demonstrates the implementation and the validation of the proposed research. Section 6
concludes the study with a discussion about future research.

2. Related Research

There is little research on formalizing QoS policies of DDS. In a modeling perspective,
the formalization of QoS policies is part of DDS modeling. This section provides a summary
of existing research on DDS modeling. We also discuss some of the research on adopting
DDS to smart grids.

Perez and Gutierrez [19] studied the use of DDS QoS policies to support the quality
requirements of real-time systems on an end-to-end basis. In particular, they focus on
modeling quality policies for data delivery and timeliness using Modeling and Analysis of
Real-Time Embedded Systems (MARTE) [21]. In their study, the importance of modeling the
QoS policies in DDS is thoroughly described. They show that not only can the development
process be improved, but also the quality of communication.

The study by Wang et al. [16] proposed tailoring the discovery mechanism of DDS for a
warfare system based on the properties and requirements of the system. The tailored model
interacts with other layers in DDS including the layers adjacent to the discovery model

Electronics 2023, 12, 2246 3 of 20

and other distant layers, such as the interface layer. Beckmann and Dedi [22] proposed a
model-driven approach for customizing DDS to support Wireless Sensor Networks (WSNs).
They introduced a layer underlying DCPS in DDS to ease the implementation of DDS for
WSNs. In our previous study [23], we defined the missing behaviors of DCPS to improve
the level of the completeness of the DDS standard using UML [24]. The improved model is
used as the base for designing configurable DDS to support the devices that have limited
computing resources.

With regard to adopting DDS in smart grids, multiple studies [25,26] have already
established this research track. For instance, the study by Youssef et al. [25] proposed the
adoption of DDS to the communication system in smart grids. The authors justified their
study by the fact that DDS improves reliability and addresses latency requirements. In
their study, the authors demonstrated their approach by implementing DDS in a simulated
environment. The results of their research show that DDS can meet both latency and
reliability requirements. Reference [26] also proposed adopting DDS in smart grids. In
this study, the authors showed a use case by adopting DDS in a simulated micro-grid
environment. The results of this research demonstrate the ability of DDS to support large-
scale data sharing with imposed quality requirements.

Compared to the above, this study aims at facilitating the development of DDS in the
context of smart grids. In particular, the key contribution points can be summarized as
follows: (a) formalizing the semantics of the QoS policies in the DDS standard; (b) adopt-
ing feature modeling to improve the understandability of QoS policies and to ease the
implementation of DDS; (c) proposing a QoS management layer based on the predictive
configuration approach to enhance the performance of DDS.

3. Formalizing QoS Policies Using Dependency Analysis and Structural Relations

This section describes the proposed techniques for formalizing the semantics of DDS
QoS policies. The process involves two main techniques, including dependency analysis
and structural relations definitions.

3.1. Background

DDS [13] is a standard middleware publish/subscribe protocol. It is designed to
support quality communication in large-scale data-centric distributed systems. DDS is
structured in two layers. The upper layer is the Data Local Reconstruction Layer (DLRL),
and the lower layer is the Data Centric Publish-Subscribe (DCPS). DLRL provides an
interface to applications to integrate with DDS, while DCPS defines the core DDS entities
and functionalities. In implementation, DLRL is an optional layer residing on top of DCPS.
On the other hand, DCPS is the core required layer, since it consists of the main entities
in DDS.

The DCPS consists of the multiple entities. For instance, the Domain Participant is the
entity that represents the participation of an application in a data domain. This entity is
responsible for creating other DDS entities such as publishers, subscribers, and topics. The
Publisher is the entity responsible for disseminating data in DDS and it includes a Data
Writer. The Subscriber is the entity responsible for receiving data and it includes a Data
Reader. A Topic is the entity that represents data objects that are communicated among
participants. The QosPolicy is the abstract entity that is the root for all DDS QoS policies.

3.2. Modeling QoS Entities

The DDS standard defines 22 QoS policies to support quality data communication. To
form comprehensive understanding of those policies, we categorize them into five types
as follows:

1. Service configuration, which is concerned with configuring DDS and define its
runtime environment;

2. Data delivery, which is concerned with delivering and presenting data samples to
remote applications;

Electronics 2023, 12, 2246 4 of 20

3. Data availability, which is concerned with controlling the availability of data in DDS;
4. Data timeliness, which is concerned with distributing data based on the defined

time constraints;
5. Resource control, which is concerned with controlling the computing resources such

as the memory.

Figure 1 shows the categorization with relationships among QoS policies. In the figure,
each policy is defined as a class inheriting the abstract QosPolicy class. We formalize each
QoS policy of the categories using OCL expressions based on the class diagrams. We first
define a class diagram for each category. The class diagram is then used as the base for
describing OCL expressions for the QoS policies involved in the category. We use the term
service interchangeably with DDS and the application term refers to an application using DDS.
Due to the large number of QoS policies and limitations on paper’s size, we choose one
representative QoS policy for each category to describe and apply the proposed approach.
Consequently, the approach in this study can be generalized to all DDS QoS policies.

QosPolicy

name : string

LifespanQosPolicy

OwnershipQosPolicy

OwnershipStrengthQosPolicy

WriterDataLifecycleQosPolicy
ReaderDataLifecycleQosPolicy

TransportPriorityQosPolicy

PresentationQosPolicy

PartitionQosPolicy

ReliabilityQosPolicy

LivelinessQosPolicy

DurabilityQosPolicy

ResourceLimitsQosPolicy

DestinationOrderQosPolicy

DurabilityServiceQosPolicy

HistoryQosPolicy

UserDataQosPolicy

TopicDataQosPolicy

GroupDataQosPolicy

LatencyBudgetQosPolicy

TimeBasedFilterQosPolicy

DeadlineQosPolicy

EntityFactoryQosPolicy

Data Availability
Resource Control

Data Delivery

Data Timeliness
Service Configuration

Figure 1. Different categories of DDS QoS policies.

3.2.1. Service Configuration

This category is concerned with the QoS policies that are used for configuring the service
and define the DDS runtime environment. It involves PartitionQosPolicy, LivelinessQosPolicy,
EntityFactoryQosPolicy, UserDataQosPolicy, TopicDataQosPolicy, GroupDataQosPolicy, Own-
ershipQosPolicy, and OwnershipStrengthQosPolicy. These policies are based on the class
diagram shown in Figure 2. The class diagram contains classes corresponding to the in-
volved policies and they are related to the DomainParticipants, Entity, TopicDataQosPolicy,
Publisher, Subscriber, Topic, DataReader, and DataWriter. It is worth mentioning that in the
following class diagrams the number “1” and the symbol “*” denote multiplicity, which
defines cardinality among the objects.

User_Data

This policy is used to attach additional information about the application, such as
security and access credentials. The information may be specific to the components (e.g.,
data writers and data readers) of the application under consideration. Such information
can be used by a remote application for their own purposes, such as authentication. The
following shows an OCL expression for the policy, where the symbol ˆ denotes the hasSent

Electronics 2023, 12, 2246 5 of 20

operation, which results in “true” if a message of the concerned operation is sent.

context UserDataQosPolicy inv:

if pub.pubUserData.value =

sub.subUserData.value

then pubˆget_discovered_participant_data()

else pubˆignore_participant()

endif

Publisher

create_datawriter()

delete_datawriter()

begin_coherent_changes()

end_coherent_changes()

lookup_datawriter()

DataReader

Subscriber

create_datareader()

delete_datareader()

begin_access()

end_access()

lookup_datareader()

Topic

type_name : string

name : string

*

1

create_publisher()

create_topic()

create_subscriber()

ignore_subscription()

get_builtin_subscriber()

assert_liveliness()

delete_subscriber()

delete_publisher()

delete_topic()

get_discovered_participant_data()

ignore_participant()

DomainParticipant

DomainEntity

pubPartitionName

subPartitionName

LivelinessQosPolicy

lease_duration : Duration_t

kind : LivelinessQosKind

autoenable_created_entities : boolean

EntityFactoryQosPolicy

Entity

enable()

set_qos()

get_qos()

UserDataQosPolicy

value [*] : char

subUserData

pubUserData

TopicDataQosPolicy

value [*] : char

pubTopicData

subTopicData

GroupDataQosPolicy

datavalue [*] : char

pubGroupDatasubGroupData

OwnershipQosPolicy

kind : OwnershipQosKind

OwnershipStrengthQosPolicy

value : long

*

1

sub

pub

pubFactory

pub

sub
topicData

DataWriter

write()

write_w_timestamp()

assert_liveliness()

PartitionQosPolicy

name [*] : string

pubsub

wLiveliness

rLiveliness

rOwnership wOwnership

dataWriter

sub pub

pub

dataWriter

dataReaderdataReader

topic

topic

dataReader

dataWriter

ownership

11

11

11

11

11

11

1

1

1

1

1

1

1

1

1
1

1

1

1

1 1

1

Figure 2. Class diagram of the service configuration.

The expression describes that if the publishing participant and the subscribing par-
ticipant have the same user data, then the publishing participant accesses the data for
communication. If not, the subscribing participant is ignored. Note that the way how
the value of UserDataQosPolicy is used in the expression may vary depending on the
agreement between the publisher and the subscriber. For instance, instead of the equality,
non-equal relational operations such as “<” or “>” may be used if agreed by the publisher
and subscriber.

Electronics 2023, 12, 2246 6 of 20

3.2.2. Data Delivery

This category describes the set of QoS policies that can be used to define how the DDS
should deliver and present data samples to remote applications. Figure 3 shows the class
diagram of DDS entities that are related to the QoS policies in this category.

Publisher

create_datawriter()

begin_coherent_changes()

end_coherent_changes()

DataReader

Subscriber

create_datareader()

begin_access()

end_access()

Topic

type_name : string

name : string

PresentationQosPolicy

access_scope : PresentationQosAccessScopeKind

coherent_access : boolean

ordered_access : boolean

DataWriter

write()

write_w_timestamp()

*

1

*

1

DestinationOrderQosPolicy

kind : DestinationOrderQosKind

ReliabilityQosPolicy

kind : ReliabilityQosKind

max_blocking_time : Duration_t

ResourceLimitsQosPolicy

max_samples : long

max_instances : long

max_samples_per_instance : long

publishersubscriber

pPresentationsPresentation

dataReader

dataReader

rDestinationOrder wDestinationOrder

dataWriter

dataWriter

dataWriterdataReader

topictopic

wResourceLimits

rResourceLimits

dataWriter

writerReliability

readerReliability

dataReader

Figure 3. Class diagram of data delivery QoS policies.

Reliability

This QoS policy is concerned with the reliability level of data delivery. It is used to
control how data writers and readers should treat data samples. The policy applies to both
the data writers and data readers under the same topic. It offers —BEST_EFFORT and
RELIABLE. These settings control the reliability of data delivery. The BEST_EFFORT setting
allows DDS to perform best effort delivery when communicating data. This means data
delivery is not guaranteed. The RELIABLE setting ensures data delivery to all interested
data readers. Reliable delivery is achieved by resending data until data are received and
confirmed by all data readers via acknowledgements.

The attribute kind in the ReliabilityQosPolicy class is used to set the reliability type.
If the reliability is set to RELIABLE setting, then the service blocks the data writer from
writing further data sample until the receipt of the previous sample has been confirmed.
The Reliability policy is dependent on the ResourceLimits policy. This is because in case
of the RELIABLE setting, the limits specified by the ResourceLimits policy can control the
number of samples and the maximum blocking time of this policy. The RELIABLE setting
is considered to be higher and it overrides the BEST_EFFORT setting. To associate a data
writer and a data reader, the offered kind must be higher than or equal to the requested kind,
as illustrated by the following OCL constraint.

context ReliabilityQosPolicy inv:

dataWriter.topic.dataReader ->

forAll(dr|dr.readerReliability

.kind <= writerReliability.kind) and

writerReliability.kind = RELIABLE implies

wResourceLimits.max_samples_per_instance

= LENGTH_UNLIMITED

Electronics 2023, 12, 2246 7 of 20

The expression specifies that in order to associate readers with a writer, the kind of the
readers must be less than or equal to the kind of a writer. Additionally, if the kind of the writer
is set to RELIABLE, then the max_samples_per_instance must be set to LENGH_UNLIMITED,
specifying that there is no limit on the length of the data sample.

3.2.3. Data Availability

This category describes the set of QoS policies that can be used to define how the
service should control the availability of data. The QoS policies under this category control
aspects, such as queuing and storing data. Figure 4 shows the class diagram of DDS entities
that are related to the QoS policies in this category.

DataWriter

write()

write_w_timestamp()

register_instance()

register_instance_w_timestamp()

unregister_instance()

unregister_instance_w_timestamp()

dispose()

dispose_w_timestamp()

Topic

type_name : string

name : string DataReader

read()

take()

take_instance()

* 1 1

*

DurabilityQosPolicy

kind : DurabilityQosKind

HistoryQosPolicy

kind : HistoryQosKind

depth : long

LifespanQosPolicy

duration : Duration_t

WriterDataLifecycleQosPolicy

autodispose_unregistered_instances : boolean

Data DataSample SampleInfo
1

value 1

expiration_time: Time_t
source_timestamp : Time_t

instance_state : InstanceStateKind
<<create>>

*

dataReader

topic

dataReader

topicdataWriter

dataWriter dataWriter

dataReader

drDurabilitydataWriter

dwDurability

dSample
sampleInfo

dwDataLifecycle

Figure 4. Class diagram of data availability QoS policies.

History

This QoS policy is used to control the behavior of the service when the value of a topic
instance keeps changing before they are communicated to all interested data readers. To
illustrate, it specifies the maximum number of data samples to be kept in an entity. Different
settings can be used with this policy. For example, data values can be kept until a publisher
retrieves and delivers them to interested data readers. Regarding the number of kept data
samples, this policy provides two settings, which are KEEP_LAST and KEEP_ALL.

The attribute kind in the class HistoryQosPolicy is used to specify one of settings of this
policy. The KEEP_LAST setting allows the service to keep the latest values of the topic
instance and it will discard older values. If this setting is chosen, the attribute depth can be
used to specify the maximum number of data values. On the other hand, the KEEP_ALL set-
ting allows the service to keep all data values until they are delivered to all interested data
readers. This QoS policy depends on the ResourceLimits policy. Therefore, the setting of the
policy should be consistent with the setting of the ResourceLimits policy. To illustrate, the at-
tribute depth of this policy should be consistent with the attribute max_samples_per_instance
of the ResourceLimits policy. For consistency, the max_samples_per_instance attribute must be
greater than or equal to depth. The following OCL expression describes the constraint.

context HistoryQosPolicy inv:

participant.kind = KEEPLAST implies

depth =< ResourceLimits.

max_samples_per_instance and

depth = maximumNumber

Electronics 2023, 12, 2246 8 of 20

The expression specifies that if the policy is set to KEEP_LAST, then the depth must be
less than or equal to the max_samples_per_instance attribute in the ResourceLimits policy.

3.2.4. Data Timeliness

This category describes the set of QoS policies that can be used to define the latency of
the distributed data. The policies under this category define latency at different levels. For
example, some define latency at the DDS level (e.g., Deadline), while others define latency
at the transport layer (Transport_Priority). Figure 5 shows the class diagram of DDS entities
that are related to the QoS policies in this category.

DataWriter

write()

write_w_timestamp()

Topic

type_name : string

name : string

DataReader

read()

take()

* 1

1 *

DeadlineQosPolicy

period : Duration_t

TimeBasedFilterQosPolicy

minimum_separation : Duration_t

LatencyBudgetQosPolicy

duration : Duration_t

TransportPriorityQosPolicy

value : long DataSample
msgTransportPriority

Data
1

value

Figure 5. Class diagram of data timeliness QoS policies.

Deadline

This QoS policy can be used to specify the frequency of writing data samples by a data
writer. The rate that is set by the data writer represents the minimum required frequency of
a data reader. Figure 5 shows the class diagram of this policy. The period attribute specifies
the writing frequency. It is necessary that the writing frequency at the data writer side must
be less than or equal to the period that is specified by the data reader. This is specified by
the following OCL expression.

context DeadlineQosPolicy inv:

participant.Topic.DataWriter ->

forAll(dReader|dReader.Deadline.period

>= dWriter.Deadline.period)

On the data reader, the Deadline policy should be consistent with the TimeBasedFilter.
This means that the frequency of receiving data on a data reader must be greater than
or equal to the time interval between data samples specified by the minimum_separation
attribute in the TimeBasedFilterQosPolicy class, as specified by the following OCL expression.

context DataReader inv:

participant.Deadline.period >=

participant.minimum_separation.

TimeBasedFilter

3.2.5. Resource Control

This category describes the set of QoS policies that can be used to control the computing
resources (i.e., memory). The policies under this category define memory related constraints.

Electronics 2023, 12, 2246 9 of 20

Figure 6 shows the class diagram of DDS entities that are related to the QoS policies in
this category.

DataWriter

write()

write_w_timestamp()

Topic

type_name : string

name : string

DataReader

read()

take()

* 1 1 *

Data

DataSampleSampleInfo

1 value
expiration_time: Time_t
source_timestamp : Time_t

instance_state : InstanceStateKind

1

ReaderDataLifecycleQosPolicy

autopurge_nowriter_samples_delay : Duration_t

autopurge_disposed_samples_delay : Duration_t

DurabilityServiceQosPolicy

service_cleanup_delay : Duration_t

history_kind : HistoryQosKind

history_depth : long

max_samples : long

max_instances : long

max_samples_per_instance : long

HistoryQosPolicy

kind : HistoryQosKind

depth : long

ResourceLimitsQosPolicy

max_samples : long

max_instances : long

max_samples_per_instance : long

Figure 6. Class diagram of resource control QoS policies.

Durability_Service

This QoS policy is used in conjunction with the Durability QoS policy to specify the
behavior of deleting data samples from a data writer cache. It controls the deletion behavior
when durability is set to TRANSIENT or PERSISTENT. The policy can also provide a way
to specify the settings of the History and ResourceLimits policies, since they have similar
characteristics. The setting of these three policies should be compatible. The following
OCL expression describes some constraints based on the properties of the above three
QoS policies.

context DurabilityServiceQosPolicy inv:

self.service_cleanup_delay > 0 and

self.History.kind =

KEEP_LAST_HISTORY_QOS implies

self.history_depth > 0 and

self.ResourceLimits.

max_samples >= self.history_depth and

ResourceLimits.

max_samples_per_instance >=

self.history_depth

The constraints are defined on the DurabilityServiceQosPolicy class, where the attribute
service_cleanup_delay is used to specify the time duration for deleting samples from a data
writer. The expression specifies that if the service_cleanup_delay is set for a specific duration
and it is set to keep the last history, then the depth in the history policy must be greater
than zero. It also specifies that the maximum samples to be managed by a data writer
(i.e., specified by ResourceLimitsQosPolicy class) should be greater than or equal to the depth
specified by the HistoryQosPolicy class.

Electronics 2023, 12, 2246 10 of 20

4. Modeling QoS Features and the Management Layer

Managing the QoS policies of DDS is a complex task, especially in a distributed
environment such as a smart grid and with renewable energy resources [27–30]. This is
due to several factors, such as device heterogeneity and domain requirements [31]. To
simplify the implementation of DDS QoS policies in smart grid domains, we adopt feature
modeling [32], where we describe QoS attributes in terms of features. We also propose a
QoS management layer in which we control QoS integrity, tuning, and reconfiguration.
The rest of this section describes the feature modeling and the QoS management layer
based on the defined structural relations in Section 3.

4.1. Feature Modeling

A feature can be described as an integration of one or multiple attributes to represent
a functional unit. Modeling the QoS policies into features allows an application to tailor
the nonfunctional requirements of DDS by selecting and integrating necessary features
based on the requirements of the application. Consequently, multiple benefits can be
achieved to improve the performance of an application. For instance, realizing the number
of features and the required resources for each feature allows for adopting DDS even with
constrained devices. Additionally, understanding features composition allows for selecting
only required QoS attributes that serve the application’s main objectives. In fact, designing
DDS QoS policies into features improves the understanding of the behavior of each QoS
policy and its relationship with other policies.

Figure 7 illustrates the proposed feature model of DDS QoS policies based on the
categorization defined in Figure 1. The model defines the above five Categorize (i.e.,
Data Availability, Resource Control, Data Delivery Service Configuration, and Data Timeliness).
Each feature is composed of multiple child features. The filled triangle under each main
feature represents inclusive selection. This means multiple features can be chosen together.
Exclusive selection is denoted using the empty triangle (e.g., the kind feature can be either
automatic or manual). The filled circles represent mandatory features, while the empty
circle denotes optional features. The dashed line can be used to represent dependency
among features. Its worth noting that due to limitation on paper size, the feature model in
Figure 7 has been reduced in size. The set of features under each category are represented
in Figure 1.

Based on the above-defined feature model, we use FeatureIDE [33] to implement the
defined models in Section 3. FeatureIDE is a tool that can be used in a form of plug-in with
the Eclipse integrated development environment (IDE). It is considered a feature-oriented
development tool. Figure 8 shows a partial implementation of the feature model that is
defined in Figure 7. In this implementation, two feature groups are considered, which
are DataDelivery and ResourceControl. In this study, the QoS policies are designed based
on inheritance and overriding. Inheritance represents the relationship between a parent
feature and a child feature, and it is defined below.

QosPolicy

DataAvailability

History LifespanWriterDataLifecycleDurability

ResourceControl

ReaderDataLifecycleResourceLimits DurabilityService

PresentationDestinationOrderReliability

DataDelivery

Service Configuration

Liveliness

EntityFactory

Partition

OwnershipStrength

UserData

GroupData

Ownership

TimeBasedFilter LatencyBudget Deadline

DataTimeliness

TransportPriority

depthkind

PresentationDestinationOrderReliability

.

. kind

automatic manual

kindminimum_separation

.

Mandatory

Optional

Alternative

Or

Dependency

Figure 7. Feature model of DDS QoS policies based on defined categories.

Electronics 2023, 12, 2246 11 of 20

Qo
sP
ol
icy

Da
ta
De

liv
er
y

Re
lia
bi
lit
y

kin
d

re
lia
bl
e

be
st
eff

or
t

m
ax

bl
oc

kin
g
tim

e

De
st
in
at
io
nO

rd
er

Pr
es
en

ta
tio

n

Re
so
ur
ce
Co

nt
ro
l

Re
ad

er
Da

ta
Lif
ec
yc
le

Re
so
ur
ce
Lim

its

m
ax

in
st
an

ce
s

m
ax

sa
m
pl
es

pe
ri
ns
ta
nc

e

le
ng

th
un

lim
ite

d
le
ng

th
lim

ite
dm

ax
sa
m
pl
es

Du
ra
bi
lit
yS
er
vic

e

QoSPolicy

DataDelivery

Reliability

kind

reliable

max_blocking_time

DestinationOrder

Presentaion

ResourceControl

ReaderDataLifecycle

ResourceLimits

max_instances

max_samples_per_instance

length_unlimited

max_samples

Configurations Advanced Configuration Source

best_effort

DurabilityService

eclipse-workspace - DDS/configs/ResourceControl.xml - Eclipse IDE

ResourceControl.xml

valid, 32 possible configurations

length_limited

feature model configuration

Figure 8. Implementation of DataDelivery and ResourceControl in FeatureIDE.

Definition 1. The c f eature and the p f eature relationship

∀cls′ : class(p f eature)∃cls′′ : class(c f eature) • cls′ = cls′′;
∀r′ : relation(p f eature)∃cls′′ : rel(c f eature) • r′ = r′′ ∧ ∀entity′ :
end(r′)∃entity′′ : end(r′′) • entity′ = entity′′;

Definition 2. The c f eature overrides p f eature iff

∃element′ : sd(p f), overrides′′ : sd(c f) • name(overrides′) = name(overrides′′);
∃b′ : bd(p f eature), b′′ : bd(c f eature) • name(b′) = name(b′′);

Definition 1 specifies when a child feature inherits a parent feature. In the definition,
end(r) represents the set of the ends in a given relationship r. On the other hand, Definition 2
defines the override process. It specifies when a child feature overrides a parent feature. The
element represents a name of an entity. Additionally, sd represents the structural properties
the feature, which is defined as class(f) ∪ relations(f). The bd represents the behavioral
properties of a feature.

4.2. DDS QoS Management Layer

Managing the QoS policies in DDS is a complex task due to several factors. For instance,
different QoS policies are tightly coupled, which means controlling a policy might affect
other policies [34]. Additionally, understanding the behavior of each policy is a key aspect
in adopting any QoS policy [35]. Furthermore, since the QoS policies in DDS are designed
to address different concerns (e.g., reliability, latency), their control needs to be established
at different layers (e.g., application, transport, network). In fact, adopting one QoS policy
requires dealing with multiple DDS entities. Thus, we propose a DDS QoS management
layer (QoSML). QoSML is designed to manage the QoS policies to ease the development
of DDS. QoSML is based on two software design principles, which are modularity and
extendibility. The layer serves multiple purposes including improving the efficiency of
hardware resources (i.e., CPU, response time) and to reduce QoS configuration complexity.

One of the major functionalities of QoSML is managing QoS dependency. This is
accomplished through defining the structural relationships among DDS QoS policies.
QoSML is also used to define and implement the feature control approach that is provided
in Section 3. To illustrate, the layer is used to hold QoS management data. These data are
defined and controlled in the layer in a form of metadata. Two metadata types are defined.
The first, is the metadata that defines the dependency and the structural relations among
the QoS policies. This type works as a descriptive file that combines DDS entities and QoS
policies and defines their relationships and constraints. The second type is the metadata

Electronics 2023, 12, 2246 12 of 20

that defines the feature modeling configurations. The latter works as a configuration file to
facilitate QoS agreements in each communication scenario. Configuration metadata are
generated from FeatureIDE in of XML files. QoSML is designed to be a part of a DDS layer,
as shown in Figure 9. This means that the application layer has direct access to QoSML.

Application Layer

Data Domains Communication

Networking

QoSML

DDS Entities + QoS Policies

DDS

Figure 9. Different layers in DDS and placement of QoSML.

As mentioned above, QoSML is proposed to control QoS using metadata and configu-
ration files. In QoSML, QoS control is performed when the application is idle to improve
the efficiency of hardware resources. This means that the layer adopts a predictive metadata
reconfiguration mechanism. Algorithm 1 shows the process of predicting metadata update
at a publisher or subscriber. The process starts when a publisher/subscriber receives data
interest request. This request is generated and exchanged between applications in the
form of topic publication/subscription. Metadate files are updated regularly based on a
preconfigured frequency threshold to ensure the consistency of QoS among communicating
applications. The threshold can be set based on the frequency of data exchanged or other
factors, such as the number of new publishing/subscribing applications in a data domain.

Algorithm 1 Updating dependency and features metadata

1: procedure MDU(Input: participant ID, Output: new metadata)
2: while participant is on do
3: if participant is new then
4: create metadata files for participant
5: else
6: if QoS policies requirements changed then
7: update QoS policies dependency metadata
8: update feature configuration metadata
9: calculate MURt at time t

10: if MURt < UTF then
11: change metadata
12: change metadata UTF to new UTFt
13: else
14: keep old UTF
15: end if
16: end if
17: end if
18: end procedure

The algorithm takes as input the ID of the new participant and compares it with the
set of preexisting participant IDs. If it is a new participant (i.e., not registered before),
a structural relations metadata file is generated and stored. Additionally, configuration
metadata based on selected QoS policies is generated and stored. If the participant has been
previously registered with the publisher/subscriber, the algorithm looks the pre-generated
metadata files and match them based on the participant ID. If the metadata update request
(MUR) at a given time (t) is less than the update threshold frequency (UTF), we change

Electronics 2023, 12, 2246 13 of 20

the frequency value (i.e., UTF) to the new update rate (i.e., MUR). Then, we update the
metadata files for the participant. Otherwise, we keep the old update frequency rate and
discard the update request. The goal of this prediction algorithm is to improve the response
time and optimize computing resources during communication runtime. In fact, this model
can be used to measure the precision bound of the update threshold, which can contribute
to improving the overall communication in DDS.

5. Use Case and Validation

This section presents an overview of the experiments’ setup. It describes the simulated
domain where DDS is implemented in the consumption domain in a smart grid to monitor
energy consumption. It also describes the implementation of QoSML. Finally, the section
provides performance results based on the defined use case.

5.1. Experiment Components and Setup

To test the proposed approach, we build an environment to simulate sensor communi-
cation in the smart grid consumption domain. The exchanged data in the communication
scenarios represent metering and sensing data. The exchanged data are distributed to mul-
tiple interested entities (e.g., grid operators, utility centers). The data are used for different
purposes, such as estimating power demand and evaluating power utilization. Figure 10
shows different DDS communication scenarios. In the figure, it can be seen that one device
can be connected to multiple others. This means that one type of data (e.g., sensor reading,
meter reading) might be required by multiple interested entities. This is typical in a smart
grid environment, since the main concept is to connect multiple applications with each
other to maximize connectivity and enhance domain knowledge [28,36–38]. The figure also
shows that there are two types of DDS-based communications, i.e., wired and wireless. In
the wired setting, sensor devices are connected to each other via Ethernet. On the other
hand, Wi-Fi is used for wireless sensor communication.

smart

meter

edge

node

Customer Domain Communication

(ethernet, Z-Wave, Wi-Fi)

edge

 router

DDS

wireless

local

utility

servers

sensor

node

sensor

node

sensor

node

DDS

wired

Publishers/

Subscribers

Data Collection/

Control

Figure 10. Communication scenarios in consumption domain using DDS.

In the experiment, multiple devices with different hardware capabilities are used. The
hardware components are based on Raspberry Pi 4 with different memory size, ranging
from 1GB–4GB. The devices communicate to simulate sensors that exchange equipment
temperature and microelectromechanical pressure reading. Additionally, other devices
communicate to simulate smart meters that exchange data with utilities. All the communi-
cation in the experiments is based on DDS. The devices are configured to act as publishers,
subscribers, or both. Sensor nodes communicate their data wirelessly using IEEE 802.15.4
standard [39]. On the other hand, edge nodes and smart meters communicate their data

Electronics 2023, 12, 2246 14 of 20

based on Ethernet connection. As seen from the figure, the data flow in a bidirectional
manner, which means publisher nodes can also act as subscribers and vice versa.

5.2. QoS Features Analysis

Given the multiple categorizations of the QoS policies, we select DataDelivery and Re-
sourceControl to validate the approach. We perform the dependency analysis and structural
relation with the defined feature model of the QoS policies. Figure 8 shows the imple-
mented features using FeatureIDE. Given this implementation, we rigorously test the above
definitions (i.e., Definitions 1 and 2) against the possible QoS configurations. The purpose
of this test is to discover any conflict in feature compositions. We observe any invalid
configurations in these feature groups. Invalid composition results in an unexpected or
wrong behavior. This may result in communication hindering or even communication
failure. The overall purpose of the feature analysis test is to observe the impact of the
rigorous formalization of DDS QoS policies.

Table 1 shows seven feature composition tests. The first column in the table represents
the group number, which is used to define the selected features. The second column shows
the composed features. The third illustrates the possible configuration conflicts. The latter
represents the internal invalid behavior that may arise from composing the specified QoS
features in the group. The number shown represents the average number of invalid conflicts.
This means that the actual QoS conflicts may be higher than the represented number in
front of each group. The table shows that composing one group of QoS features may
result in significant errors if not performed correctly. For instance, consider the case with
Group 1, where four features (Reliability, ResourceLimits, Presentation, and DestinationOrder)
are composed. If this composition is performed incorrectly, 32 errors may arise, causing
unexpected behavior at runtime. The number of errors depends on the relationships and
the dependencies among the QoS features. The results in the table show only a subset of
DDS QoS policies. These experiments show the importance of defining the dependency
and structural relations that is presented in this study. In fact, without the proposed formal
definition, different implementations of DDS may not be compatible and runtime errors
are most likely to happen.

Table 1. Composed features of DataDelivery and ResourceControl.

Group # Composed QoS Features Possible QoS Conflicts

1 Reliability & ResourceLimits &
Presentation & DestinationOrder 32

2 Reliability & DestinationOrder &
ReaderDataLifecycle 8

3 Reliability & DurabilityService &
ReaderDataLifecycle 16

4 Reliability & DurabilityService &
ResourceLimits & Presentation 48

5 DestinationOrder & ResourceLimits &
Presentation 16

6 Reliability & DurabilityService &
Presentation 12

7 Reliability & ReaderDataLifecycle &
ResourceLimits 12

5.3. Resource and Performance Testing

Figure 11 illustrates the different layers that are implemented on each sensor node
in this performance testing. In the figure, the application layer is used to perform data

Electronics 2023, 12, 2246 15 of 20

sensing management and aggregation. QoSML is used to handle feature configuration, QoS
tuning management, and on demand re-configuration. Based on the chosen configurations,
metadata files are pre-generated before communication takes place according to the process
described in Algorithm 1. Metadata files are totally generated, stored, and managed solely
on this layer. This layer is designed to work on conjunction with DDS. This means that
an application has direct access to QoSML to perform configuration/re-configuration.
Consequently, this improves processing performance and response time, since the layer
generates and stores QoS metadata in advance. The figure also shows the DDS layer, where
the core functional and non-functional components are implemented.

QoSPolicy

DataDelivery

Reliability

kind

reliable

max_blocking_time

DestinationOrder

Presentaion

ResourceControl

ReaderDataLifecycle

ResourceLimits

max_instances

max_samples_per_instance

length_unlimited

max_samples

Configurations Advanced Configuration Source

best_effort

DurabilityService

eclipse-workspace - DDS/configs/ResourceControl.xml - Eclipse IDE

ResourceControl.xml

valid, 32 possible configurations

length_limited

QoSPolicy

DataDelivery

Reliability

kind

reliable

max_blocking_time

DestinationOrder

Presentaion

ResourceControl

ReaderDataLifecycle

ResourceLimits

max_instances

max_samples_per_instance

length_unlimited

max_samples

Configurations Advanced Configuration Source

best_effort

DurabilityService

eclipse-workspace - DDS/configs/ResourceControl.xml - Eclipse IDE

ResourceControl.xml

valid, 32 possible configurations

length_limited

QoSPolicy

DataDelivery

Reliability

kind

reliable

max_blocking_time

DestinationOrder

Presentaion

ResourceControl

ReaderDataLifecycle

ResourceLimits

max_instances

max_samples_per_instance

length_unlimited

max_samples

Configurations Advanced Configuration Source

best_effort

DurabilityService

eclipse-workspace - DDS/configs/ResourceControl.xml - Eclipse IDE

ResourceControl.xml

valid, 32 possible configurations

length_limited

QoSPolicy

DataDelivery

Reliability

kind

reliable

max_blocking_time

DestinationOrder

Presentaion

ResourceControl

ReaderDataLifecycle

ResourceLimits

max_instances

max_samples_per_instance

length_unlimited

max_samples

Configurations Advanced Configuration Source

best_effort

DurabilityService

eclipse-workspace - DDS/configs/ResourceControl.xml - Eclipse IDE

ResourceControl.xml

valid, 32 possible configurations

length_limited

DDS Function/Non-Functional Layer

Application Layer

QoSML

Figure 11. Structure of the implemented approach on sensor nodes.

Figure 12 shows CPU loads on the DDS publisher based on wireless communication
(i.e., Wi-Fi). The figure shows CPU loads on the publisher when sending data to multiple
participants, ranging from 1 to 30. Graph (a) illustrates the performance when the publisher
is set to communicate data based on Reliable setting. The CPU loads are measured with
and without QoSML. It can be seen from the graph that CPU loads are significantly
improved when QoSML is used. For instance, with the largest number (i.e., 30) of interested
subscribers, the CPU load with QoSML is only 65% compared to 100% when QoSML is
not used. Similar performance results are shown in graph (b) when the publisher is set to
communicate data based on the Best Effort setting.

0

10

20

30

40

50

60

70

1 5 10 15 20 25 30

C
P

U
 L

o
a

d

(%
)

of Participants

80

90

100

x

x

xx

x x x

QoSML

No QoSMLx

(a) Reliable setting

0

10

20

30

40

50

60

70

1 5 10 15 20 25 30

C
P

U
 L

o
a

d

(%
)

of Participants

x

x
x

x

x

x

x

80

90

100

QoSML

No QoSMLx

(b) Best effort setting

Figure 12. CPU load on the DDS publisher (wireless communication).

From both graphs in Figure 12, it can be seen that the CPU loads with the Reliable
setting are higher than the loads with Best Effort setting. This is because the Reliable
setting is computation dependent, which results in higher CPU consumption. Thus, CPU
performance is improved with QoSML, since the layer provides pre-configuration services
using stored QoS metadata. This significantly lowers CPU loads and improves response
time, since most of the reconfiguration and metadata management work is done IN advance.

Electronics 2023, 12, 2246 16 of 20

Figure 13 illustrates CPU loads of the publisher when DDS is set to communicate
based on Ethernet. As the above, the publisher sends data to the same range of interested
participants. Graph (a) shows THE publisher’s CPU loads with the Reliable setting. On
the other hand, graph (b) illustrates the loads with the Best Effort setting. Similar to the
above, QoSML significantly contributes to lowering the CPU loads in the publisher device
with both settings. For example, with the largest interested subscribers and with the
Reliable setting, the highest CPU load with 30 participant is 89% when QoSML is not
adopted. This is compared to only 40% of CPU load when QoSML is adopted. From both
Figures 12 and 13, it can be seen that when the number of interested subscriber increases,
the CPU loads increase as well. It can also be seen that QoSML contributes to reducing
CPU loads by half of the amount when QoSML is not implemented.

0

10

20

30

40

50

60

70

1 5 10 15 20 25 30

C
P

U
 L

o
a

d

(%
)

of Participants

80

90

100

x

x
xx

x
x x

QoSML

No QoSMLx

(a) Reliable setting

0

10

20

30

40

50

60

70

1 5 10 15 20 25 30

C
P

U
 L

o
a

d

(%
)

of Participants

x
xx

x

x

x

x80

90

100

QoSML

No QoSMLx

(b) Best effort setting

Figure 13. CPU load on the DDS publisher (wired communication).

Figure 14 shows the CPU loads of DDS subscriber based on Wi-Fi connectivity. Graph
(a) shows CPU loads on the subscriber based on the Reliable setting. It illustrates CPU loads
with and without QoSML. Improved CPU loads are seen in the graph when QoSML is
adopted. For example, with the largest number of participants (i.e., data received from
multiple publishers), the CPU load with QoSML is only 49%. This is compared to 100%
when QoSML is not used. Graph (b) shows similar performance when the subscriber is
set to Best Effort. In fact, QoSML reduces CPU loads by using metadata, which does not
require the subscriber to check the QoS setting upon receiving new data.

0

10

20

30

40

50

60

70

1 5 10 15 20 25 30

C
P

U
 L

o
a

d

(%
)

of Participants

80

90

100

QoSML

No QoSML

(a) Reliable setting

0

10

20

30

40

50

60

70

1 5 10 15 20 25 30

C
P

U
 L

o
a

d

(%
)

of Participants

80

90

100

QoSML

No QoSML

(b) Best effort setting

Figure 14. CPU load on DDS subscriber (wireless communication).

Figure 15 shows the CPU loads on the subscriber when it is set to communicate data
based on Ethernet. Similar to the above experiments, the figure shows two settings, which
are Reliable and Best Effort. Additionally, for each setting, the CPU loads are measured
with and without QoSML. As illustrated in the figure, QoSML reduces CPU loads and
improves response time. From both Figures 14 and 15, it can be seen that CPU loads
increase when Wi-Fi connection is used compared to Ethernet. Additionally, it is seen that
the CPU loads with Wi-Fi communication increase rapidly as the number of participants
increases. On the other hand, with Ethernet connection, CPU loads increase but not as
rapid as with Wi-Fi. This means that with Ethernet, we observe a linear increase. This is

Electronics 2023, 12, 2246 17 of 20

because Ethernet communication does not require extensive reliability management, which
is due to the nature of Ethernet. Overall, QoSML contributes to reducing CPU loads, as it
uses prediction, metadata management, and pre-configuration.

0

10

20

30

40

50

60

70

1 5 10 15 20 25 30

C
P

U
 L

o
a

d

(%
)

of Participants

80

90

100

QoSML

No QoSML

(a) Reliable setting

0

10

20

30

40

50

60

70

1 5 10 15 20 25 30

C
P

U
 L

o
a

d

(%
)

of Participants

80

90

100

QoSML

No QoSML

(b) Best effort setting

Figure 15. CPU load on DDS subscriber (wired communication).

To further test the approach, we study the impact of the proposed QoSML on reducing
CPU loads to improve communication efficiency. We analyze the highest CPU loads.
Those loads happen to be for the Reliable settings with both publisher and subscriber for
both wired and wireless communication. Figure 16 shows the CPU load breakdown with
wireless communication. In the figure, the loads are shown for three sampling groups based
on the number of participants—when data are sent/received from 1, 15, and 30 participants.
For each group, CPU loads are observed with and without the utilization of QoSML. Based
on the observation, CPU loads are categorized into three main tasks. The first is the task
related to the functional performance of DDS (e.g., sending/receiving/sorting data). The
second is the task related to QoS management (e.g., setting, tuning). The third is the task
related to network management.

0

10

20

30

40

50

60

70

1 15 30

C
P

U
 L

o
a

d

(%
)

of Participants

80

90

100

N
o

 Q
o

S
M

L

Q
o

S
M

L

N
o

 Q
o

S
M

L

Q
o

S
M

L

N
o

 Q
o

S
M

L

Q
o

S
M

L

QoS Management

DDS-Functional

Network

(a) Reliable publisher

0

10

20

30

40

50

60

70

1 15 30

C
P

U
 L

o
a

d

(%
)

of Participants

80

90

100

N
o

 Q
o

S
M

L

Q
o

S
M

L

N
o

 Q
o

S
M

L

Q
o

S
M

L

N
o

 Q
o

S
M

L

Q
o

S
M

L

QoS Management

DDS-Functional

Network

(b) Reliable subscriber

Figure 16. Illustration of CPU load (wireless communication).

Graph (a) in Figure 16 shows the illustration of the CPU load breakdown with the
Reliable setting for the publisher. It shows that when DDS is implemented with no QoSML,
the CPU loads are significantly higher than the loads with QoSML. It also shows that
QoS management task amounts to about 50% of the overall CPU load for each group.
Additionally, it can be seen that the rise of the CPU loads for the QoS management task has
a direct proportional relationship with the network task. This can be justified since reliable
communication in DDS is a network-oriented task. Graph (b) shows the illustration for the
CPU loads for the reliable subscriber. Similar behavior and breakdown is observed. From
both figures, we can conclude that the utilization of QoSML reduces CPU loads, since it
manages QoS through pre-configuration and stored QoS metadata, which does not require
the publisher/subscriber to check QoS compliance each time data are sent or received.

Figure 17 shows the CPU breakdown based on wired communication. Similarly, in this
test, the highest CPU load have been chosen. These CPU loads represent the Reliable setting

Electronics 2023, 12, 2246 18 of 20

for both publisher and subscriber. Graph (a) illustrates the CPU loads breakdown for the
publisher. The graph shows that the proposed QoSML reduces CPU loads by about 55% on
average. The graph also shows that the QoS management represents the highest CPU load
of the overall load when QoSML is not adopted. This is because at each communication
attempt (i.e., sending/receiving data), the QoS policies need to be validated, which results
in extra CPU loads. Graph (b) shows similar CPU load breakdown behavior. It also shows
that when QoSML is adopted, it significantly reduces the task related to QoS management.

0

10

20

30

40

50

60

70

1 15 30

C
P

U
 L

o
a

d

(%
)

of Participants

80

90

100

N
o

 Q
o

S
M

L

Q
o

S
M

L

N
o

 Q
o

S
M

L

Q
o

S
M

L

N
o

 Q
o

S
M

L

Q
o

S
M

L

QoS Management

DDS-Functional

Network

(a) Reliable publisher

0

10

20

30

40

50

60

70

1 15 30

C
P

U
 L

o
a

d

(%
)

of Participants

80

90

100

N
o

 Q
o

S
M

L

Q
o

S
M

L

N
o

 Q
o

S
M

L

Q
o

S
M

L

N
o

 Q
o

S
M

L

Q
o

S
M

L

QoS Management

DDS-Functional

Network

0

10

20

30

40

50

60

70

1 15 30

C
P

U
 L

o
a

d

(%
)

of Participants

80

90

100

N
o

 Q
o

S
M

L

Q
o

S
M

L

N
o

 Q
o

S
M

L

Q
o

S
M

L

N
o

 Q
o

S
M

L

Q
o

S
M

L

QoS Management

DDS-Functional

Network

0

10

20

30

40

50

60

70

1 15 30

C
P

U
 L

o
a

d

(%
)

of Participants

80

90

100

N
o

 Q
o

S
M

L

Q
o

S
M

L

N
o

 Q
o

S
M

L

Q
o

S
M

L

N
o

 Q
o

S
M

L

Q
o

S
M

L

QoS Management

DDS-Functional

Network

(b) Reliable subscriber

Figure 17. Illustration of the CPU load on wired communication.

6. Conclusions

In this study, we have presented modeling DDS QoS policies to improve connectivity
in distributed smart grid applications. We first formalize the QoS policies in DDS with
the objective of improving the completeness of DDS specification. In the formalization
process, we categorize the QoS policies into five different groups based on the semantics
and the purpose of each policy. We then provide a dependency analysis to illustrate the
structural relation among the QoS policies. Given the dependency, we formally describe
the constraints imposed by the policies using OCL. Furthermore, we explain the semantics
of some policies by providing utilization scenarios. We also propose QoS feature modeling
to facilitate DDS development and to ease implementation. Thus, we propose a QoS
management layer with the predictive configuration model to improve the efficiency of
DDS-enabled applications. We provided use cases where we implement the approach in
power consumption applications. The results show that the proposed approach facilitates
the development of QoS policies and improves resource utilization. For future research,
we plan to study the interaction behaviors of each DDS entity based on the utilized QoS
policies. We also plan to generalize the approach so it can be adopted in operation and
control applications in smart grids.

Author Contributions: Conceptualization: A.A.; methodology: A.A.; validation: A.A.; formal analy-
sis: A.A.; writing—original draft preparation: A.A.; writing—review and editing: A.A.; supervision:
A.A. All authors have read and agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to the Deputyship for Research & Innovation, Min-
istry of Education in Saudi Arabia for funding this research study through the project number 223202.

Conflicts of Interest: The authors declare that there was no disclosed possible conflict of interest
relevant to the research.

References
1. Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart Grid—The New and Improved Power Grid: A Survey. IEEE Commun. Surv. Tutor.

2012, 14, 944–980. [CrossRef]
2. Olivares, D.E.; Mehrizi-Sani, A.; Etemadi, A.H.; Cañizares, C.A.; Iravani, R.; Kazerani, M.; Hajimiragha, A.H.; Gomis-Bellmunt,

O.; Saeedifard, M.; Palma-Behnke, R.; et al. Trends in Microgrid Control. IEEE Trans. Smart Grid 2014, 5, 1905–1919. [CrossRef]
3. Kim, S.H.; Kim, J.S.; Maeng, S. Modeling and Evaluation of Serial Multicast Remote Procedure Calls (RPCs). IEEE Commun. Lett.

2009, 13, 283–285.

http://doi.org/10.1109/SURV.2011.101911.00087
http://dx.doi.org/10.1109/TSG.2013.2295514

Electronics 2023, 12, 2246 19 of 20

4. Kim, D.K.; Alaerjan, A.; Lu, L.; Yang, H.; Jang, H. Toward Interoperability of Smart Grids. IEEE Commun. Mag. 2017, 55, 204–210.
[CrossRef]

5. Xylomenos, G.; Ververidis, C.N.; Siris, V.A.; Fotiou, N.; Tsilopoulos, C.; Vasilakos, X.; Katsaros, K.V.; Polyzos, G.C. A Survey of
Information-Centric Networking Research. IEEE Commun. Surv. Tutori. 2014, 16, 1024–1049. [CrossRef]

6. Ekanayake, J.; Liyanage, K.; Wu, J.; Yokoyama, A.; Jenkins, N. Smart Grid Technology and Application; Wiley: Hoboken, NJ,
USA, 2012.

7. Qazi, A.; Hussain, F.; Rahim, N.A.; Hardaker, G.; Alghazzawi, D.; Shaban, K.; Haruna, K. Towards Sustainable Energy: A
Systematic Review of Renewable Energy Sources, Technologies, and Public Opinions. IEEE Access 2019, 7, 63837–63851. [CrossRef]

8. Tuballa, M.L.; Abundo, M.L. A review of the development of Smart Grid technologies. Renew. Sustain. Energy Rev. 2016,
59, 710–725. [CrossRef]

9. Sayed, K.; Gabbar, H. SCADA and Smart Energy Grid Control Automation. In Smart Energy Grid Engineering; Academic Press:
Cambridge, MA, USA, 2017; pp. 481–514.

10. Mahmood, A.; Javaid, N.; Razzaq, S. A review of wireless communications for smart grid. Renew. Sustain. Energy Rev. 2015,
41, 248–260. [CrossRef]

11. Alaerjan, A. Model-Driven Interoperability Layer for Normalized Connectivity Across Smart Grid Domains. IEEE Access 2021,
9, 98639–98653. [CrossRef]

12. Su, Y.; Jiang, P.; Chen, H.; Deng, X. A QoS-Guaranteed and Congestion-Controlled SDN Routing Strategy for Smart Grid. Appl.
Sci. 2022, 12, 7629. [CrossRef]

13. Object Management Group. Data Distribution Service (DDS). Technical Report. 2015. Number 2015-04-10. Available online:
www.omg.org (accessed on 15 February 2023).

14. Youssef, T.; Hariri, M.; Elsayed, A.T.; Mohammed, O.A. A DDS-Based Energy Management Framework for Small Microgrid
Operation and Control. IEEE Trans. Ind. Inform. 2017, 14, 958–968. [CrossRef]

15. Kang, W.; Kapitanova, K.; Son, S. RDDS: A Real-Time Data Distribution Service for Cyber-Physical Systems. IEEE Trans. Ind.
Inform. 2012, 8, 393–405. [CrossRef]

16. Wang, N.; Schmidt, D. Toward an Adaptive Data Distribution Service for Dynamic Large-scale Network-Centric Operation and
Warfare (NCOW) Systems. In Proceedings of the Proceedings of IEEE Military Communications Conference, San Diego, CA,
USA, 16–19 November 2008; pp. 1–7.

17. Object Management Group. The Real-Time Publish-Subscribe Protocol (RTPS) DDS Interoperability Wire Protocol Specification.
Technical Report. Version 2.2. 2014. Available online: www.omg.org (accessed on 15 February 2023).

18. Esposito, C.; Ciampi, M. On Security in Publish/Subscribe Services: A Survey). IEEE Commun. Surv. Tutori. 2015, 17, 966–997.
[CrossRef]

19. Perez, H.; Gutierrez, J. Modeling the QoS Parameters of DDS for Event-Driven Real-time Applications. J. Syst. Softw. 2015,
104, 126–140. [CrossRef]

20. Object Management Group. Object Constraint Language. Technical Report. Number 2014-02-03, Version 2.4. 2014. Available
online: www.omg.org (accessed on 15 February 2023).

21. Object Management Group. UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded Systems. Technical
Report. Number 2011-06-02, Version 1.1. 2011. Available online: www.omg.org (accessed on 15 February 2023).

22. Beckmann, K.; Dedi, O. sDDS: A Portable Data Distribution Service Implementation for WSN and IoT Platforms. In Proceedings
of the 12th International Workshop on Intelligent Solutions in Embedded Systems, Ancona, Italy, 29–30 October 2015; pp. 115–120.

23. Alaerjan, A.; Kim, D. Modeling Functional Behaviors of DDS. In Proceedings of the 17th IEEE International Conference on
Scalable Computing and Communications, San Francisco, CA, USA, 4–8 August 2017; pp. 1–7.

24. Object Management Group. OMG Unified Modeling Language. Technical Report. Number 2015-03-01, Version 2.5. 2015.
Available online: www.omg.org (accessed on 20 January 2023).

25. Youssef, T.; Elsayed, A.; Mohammed, O. Data Distribution Service-Based Interoperability Framework for Smart Grid Testbed
Infrastructure. Energies 2016, 9, 150. [CrossRef]

26. Shi, K.; Bi, Y.; Jiang, L. Middleware-based Implementation of Smart Microgrid Monitoring Using Data Distribution Service over
IP Networks. In Proceedings of the 2014 49th International Universities Power Engineering Conference (UPEC), Cluj-Napoca,
Romania, 2–5 September 2014; pp. 1–5.

27. Köksal, O.; Tekinerdogan, B. Obstacles in Data Distribution Service Middleware: A Systematic Review. Future Gener. Comput.
Syst. 2017, 68, 191–210. [CrossRef]

28. Ma, R.; Chen, H.; Huang, Y.; Meng, W. Smart Grid Communication: Its Challenges and Opportunities. IEEE Trans. Smart Grid
2013, 5, 36–46. [CrossRef]

29. Petersen, B.; Bindner, H.; Poulsen, B.; You, S. Smart Grid Communication Middleware Comparison—Distributed Control
Comparison for the Internet of Things. In Proceedings of the 6th International Conference on Smart Cities and Green ICT Systems,
Porto, Portugal, 22–24 April 2017; pp. 219–226.

30. Asbery, C.; Jiao, X.; Liao, Y. Implementation Guidance of Smart Grid Communication. In Proceedings of the 2016 North American
Power Symposium (NAPS), Denver, CO, USA, 18–20 September 2016; pp. 1–6.

31. NIST. Framework and Roadmap for Smart Grid Interoperability Standards; Technical Report; National Institute of Standards and
Technology: Gaithersburg, MD, USA, 2010.

http://dx.doi.org/10.1109/MCOM.2017.1600392
http://dx.doi.org/10.1109/SURV.2013.070813.00063
http://dx.doi.org/10.1109/ACCESS.2019.2906402
http://dx.doi.org/10.1016/j.rser.2016.01.011
http://dx.doi.org/10.1016/j.rser.2014.08.036
http://dx.doi.org/10.1109/ACCESS.2021.3096043
http://dx.doi.org/10.3390/app12157629
www.omg.org
http://dx.doi.org/10.1109/TII.2017.2756619
http://dx.doi.org/10.1109/TII.2012.2183878
www.omg.org
http://dx.doi.org/10.1109/COMST.2014.2364616
http://dx.doi.org/10.1016/j.jss.2015.03.008
www.omg.org
www.omg.org
www.omg.org
http://dx.doi.org/10.3390/en9030150
http://dx.doi.org/10.1016/j.future.2016.09.020
http://dx.doi.org/10.1109/TSG.2012.2225851

Electronics 2023, 12, 2246 20 of 20

32. Kang, K.; Cohen, S.; Hess, J.; Novak, W.; Peterson, A. Feature-Oriented Domain Analysis (FODA) Feasibility Study; Technical Report;
Carnegie Mellon University: Pittsburgh, PA, USA, 1990.

33. Leich, T.; Apel, S.; Marnitz, L.; Saake, G. Tool Support for Feature-Oriented Software Development—FeatureIDE:An Eclipse-Based
Approach. In Proceedings of the Workshop Eclipse Technology Exchange, San Diego, CA, USA, 16–17 October 2005; pp. 55–59.

34. Basem, A.M.; Ali, H. Data Distribution Service (DDS) based implementation of Smart grid devices using ANSI C12.19 standard.
In Proceedings of the 12th International Conference on Future Networks and Communications, Fukuoka, Japan, 14–16 June 2017;
pp. 394–401.

35. Pardo-Castellote, G. OMG Data Distribution Service: Real-Time Publish/Subscribe Becomes a Standard. RTC Magazine 2005, 14,
1–3.

36. Grammatikis, P.; Sarigiannidis, P. Securing the Smart Grid: A Comprehensive Compilation of Intrusion Detection and Prevention
Systems. IEEE Access 2019, 7, 46595–46620. [CrossRef]

37. Martínez, J.F.; Rodríguez-Molina, J.; Castillejo, P.; De Diego, R. Middleware Architectures for the Smart Grid: Survey and
Challenges in the Foreseeable Future. Energies 2013, 6, 3593–3620. [CrossRef]

38. Kim, D.; Lee, B.; Kim, S.; Yang, H.; Jang, H.; Hong, D.; Falk, H. QVT-Based Model Transformation to Support Unification of IEC
61850 and IEC 61970. IEEE Trans. Power Deliv. 2014, 29, 598–606. [CrossRef]

39. IEEE Std 802.15.4-2011; IEEE Standard for Local and Metropolitan Area Networks—Part 15.4: Low-Rate Wireless Personal Area
Networks (LR-WPANs). IEEE: Piscataway, NJ, USA, 2011. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2019.2909807
http://dx.doi.org/10.3390/en6073593
http://dx.doi.org/10.1109/TPWRD.2013.2278848
http://dx.doi.org/10.1109/IEEESTD.2011.6012487

	Introduction
	Related Research
	Formalizing QoS Policies Using Dependency Analysis and Structural Relations
	Background
	Modeling QoS Entities
	Service Configuration
	Data Delivery
	Data Availability
	Data Timeliness
	Resource Control

	Modeling QoS Features and the Management Layer
	Feature Modeling
	DDS QoS Management Layer

	Use Case and Validation
	Experiment Components and Setup
	QoS Features Analysis
	Resource and Performance Testing

	Conclusions
	References

