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Abstract: Semi-supervised classification is one of the core methods to deal with incomplete tag
information without manual intervention, which has been widely used in various real problems for
its excellent performance. However, the existing algorithms need to store all the unlabeled instances
and repeatedly use them in the process of iteration. Thus, the large population size may result in
slow execution speed and large memory requirements. Many efforts have been devoted to solving
this problem, but mainly focused on supervised classification. Now, we propose an approach to
decrease the size of the unlabeled instance set for semi-supervised classification algorithms. In
this algorithm, we first divide the unlabeled instance set into several subsets with the information
granulation mechanism, then sort the divided subsets according to the contribution to the classifier.
Following this order, the subsets that take great classification performance are saved. The proposed
algorithm is compared with the state-of-the-art algorithms on 12 real datasets, and experiment results
show it could get a similar prediction ability but have the lowest instance storage ratio.

Keywords: semi-supervised classification; co-training method; instance selection; granular computing;
information granulation

1. Introduction

Co-training is a semi-supervised learning technique in which two classifiers are trained
on separate, complementary views of the same data, with the idea that the two views
contain different but complementary information [1–5]. In the context of co-training, a
view refers to a different representation of the same data. For example, if the data is a set of
documents, one view could be the text of the documents, while the other view could be
the meta-data associated with the documents, such as the author or the date of publication.
The basic idea behind co-training is that the two classifiers learn from each other and the
labeled data so that they become more accurate over time. In each iteration of co-training,
the classifiers make predictions on the unlabeled data, and the most confident predictions
are used to label more data. This newly labeled data is then used to retrain both classifiers,
and the process repeats. Research on co-training has shown that it can be an effective
technique for semi-supervised learning, especially in domains where the two views of the
data are indeed complementary.

It is also worth mentioning that co-training has been applied to a variety of domains,
including natural language processing (NLP), computer vision, and bioinformatics. In the
field of NLP, co-training has been used to improve the performance of sentiment analysis,
text classification, and topic modeling [6]. In computer vision, co-training has been used for
image classification and object detection [7]. In bioinformatics, co-training has been used
for protein function prediction and gene expression analysis [8]. One of the strengths of
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co-training is its ability to handle large and complex datasets, where traditional supervised
learning methods may struggle. For instance, in NLP, co-training has been shown to be
effective when dealing with imbalanced datasets, where the number of positive instances
is much smaller than the number of negative instances. In such scenarios, co-training
can effectively leverage the information contained in the unlabeled data to improve the
performance of the classifier. Another area of application for co-training is in data privacy,
where it is often the case that only a limited amount of labeled data is available for training
machine learning models. In these scenarios, co-training can effectively leverage the
information contained in the unlabeled data to improve the performance of the classifier,
without compromising privacy or security [9].

In recent years, several variations and extensions of co-training have been proposed
to address its limitations and improve its performance. For instance, some researchers
have proposed using multiple views of the data rather than just two to capture more
information and make the semi-supervised learning process more robust [10]. Another
line of research has focused on developing new co-training algorithms that are able to
handle noisy or conflicting views of the data [11]. These algorithms aim to identify and
discard unreliable predictions made by one of the classifiers so that the other classifier can
make better predictions in the absence of high-quality supervision. Additionally, there has
been a growing interest in using deep learning models for co-training. For instance, one
approach is to use generative models, such as Generative Adversarial Networks (GANs),
to generate synthetic samples that can be used to augment the labeled data [12]. By using
these synthetic samples in co-training, it is possible to effectively increase the size of the
labeled data, leading to improved performance. Meanwhile, co-training can handle high-
dimensional, complex data representations with deep learning models. For instance, some
researchers have proposed using deep neural networks as the classifiers in co-training and
have shown that this can lead to improved performance in various applications, including
image classification, sentiment analysis, and document classification [13]. Overall, the field
of co-training and semi-supervised learning is rapidly evolving, and there is a wealth of
ongoing research aimed at improving the performance and robustness of these algorithms.
As such, it is an exciting and promising area of study for anyone interested in machine
learning and data science.

Although co-training plays an important role in the semi-supervised classification
task, large-scale data poses a huge challenge to the efficiency of its modeling [14]. Existing
co-training-based semi-supervised classification algorithms usually need to traverse all
unlabeled samples multiple times to find high-confidence elements or valuable classifica-
tion information, but large-scale unlabeled instances make it difficult to achieve efficient
modeling. Some literature proposes using different subsets of unlabeled samples after
division to improve the efficiency of the algorithm; it does not consider the differences in
the contribution of different unlabeled samples to the algorithm. However, it takes a great
challenge for traditional semi-supervised classification algorithms based on co-training to
handle large-scale data in terms of compatibility, effectiveness, and timeliness. Instance
selection as an important data reduction method can solve the large-scale classification
problem by reducing the labeled instances depending on enough label information to
achieve the aim [15,16]. Therefore, traditional instance selection methods cannot be ap-
plied to the semi-supervised classification problem because there exists a small number
of labeled instances with little labeled information. Moreover, each instance is seen as a
basic processing unit to judge whether it is selected or not [17]. It is difficult to follow this
approach to dealing with large-scale unlabeled instances, and there is a need to solve this
problem from a new perspective.

Granular computing is a methodology for processing and analyzing complex data
by partitioning it into smaller, more manageable pieces [18–22]. These smaller pieces, or
granules, can then be further analyzed and processed to provide insights into the original
data. The goal of granular computing is to simplify complex problems by reducing their
complexity to more manageable pieces. This approach has been applied to a variety of
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problems in machine learning, including clustering, classification, and feature selection.
Meanwhile, granular computing and co-training are both techniques that can be used to
improve classification accuracy. Granular computing can be used to reduce the complexity
of the data by partitioning it into smaller, more manageable pieces [23]. Once the data
has been partitioned into granules, co-training can be used to train multiple models on
each granule. This approach can be particularly effective in semi-supervised learning
applications where labeled data is limited. Nevertheless, the contribution of each kind
of information granularity with a large difference to the classifier has not received suf-
ficient attention, so its efficiency has dropped dramatically, and information could be
redundant [24,25].

For the problem based on the above analysis, this paper has proposed an effective
instance selection for a co-training-based semi-supervised classification task using the
granulation mechanism, which deals with the large data using the information particles as
the basic processing unit rather than each instance and considers the different contribution
of granularity to the classifier. The contribution of this paper is as follows:

• Proposing a progressive instance selection mechanism to reduce unlabeled instances
by the significant variation in classification accuracy.

• Giving a novel unlabeled information granulation mechanism based on the extent to
which the unlabeled instance improves the performance of the classifier, and it avoids
the influence of human subjective factors.

• Adaptive determining in which unlabeled information granulation is ultimately saved
according to its contribution to the classification performance.

• Verifying the proposed method could largely reduce the unlabeled data size and keep
the original classification performance by the experiment result on the real datasets.

The rest of this paper is listed as follows. Section 2 introduces related work about
co-training-based semi-supervised classification algorithms. Section 3 analyzes the effect of
unlabeled instances on the classifier and has proposed an effective instance selection for
co-training-based semi-supervised classification. Section 4 verifies the effectiveness of the
proposed method. Section 5 concludes this paper.

2. Related Work

A co-training-based semi-supervised classification algorithm needs to cooperate with
different classifiers from multiple perspectives at the same time to realize the utilization of
unlabeled data, and it has become the focus of research with its higher effectiveness [3,26].
According to the different learning strategies, the existing co-training algorithms are mainly
divided into two categories: the ones based on the sample set augmentation and the ones
based on regularization.

Co-training algorithms based on sample set augmentation, which use classifiers from
different perspectives to select high-confidence unlabeled samples and corresponding
prediction labels from the unlabeled sample set, alternately assign the newly added samples
to different classifiers for retraining and finally repeat the above process until the prediction
results converge. In such algorithms, how to efficiently select labeled samples with high
confidence is the bottleneck that restricts the efficiency of the algorithm. Paper [27] divides
the sample space into a set of equivalence classes and uses cross-validation to determine
how to label unlabeled samples. Paper [28] uses voting to select unlabeled samples with
high confidence; In order to improve the robustness of the collaborative training algorithm,
and papers [29,30] use filtering to screen the newly added unlabeled samples instead of
using them all [31].

Co-training algorithms based on regularization use the information provided by dif-
ferent perspective classifiers as the regularization term of the learning object, and transform
the semi-supervised multi-view learning problem into an optimization problem [32,33].
In order to improve the training efficiency of such algorithms, Sun et al. [34] propose a
sequential training method that uses the union of different unlabeled sample subsets and
labeled sample set L on the basis of dividing the unlabeled sample set into ten subsets
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of equal size, the union of the first unlabeled sample subset and set L is first used for
modeling, and then the next unlabeled sample set, some elements of the utilized unlabeled
sample set participate in the modeling, and the union modeling of set L. Finally, repeat
the previous step until all unlabeled sample subsets are utilized. Existing difference-based
semi-supervised classification algorithms need to traverse all unlabeled samples multiple
times to find high-confidence elements or valuable classification information, but the mas-
sive scale of unlabeled data makes it difficult to achieve efficient modeling. Although some
literature proposes to use different subsets of unlabeled samples after division to improve
the efficiency of the algorithm, it does not consider the differences in the contribution of
different unlabeled samples to the algorithm.

In conclusion, the existing large-scale co-training-based supervised classification al-
gorithms mainly improve the training efficiency from the view of optimization design.
However, the time complexion is difficult to reduce and obtain a greater improvement for
the large problem, and it still suffers from the large training burden of using the whole of
the unlabeled instances to participate in the training process.

3. Main Content

For the given training set T, which is the union of the labeled instance set
L = {x1, x2, · · · , xl} and the unlabeled instance set U = {xl+1, xl+2, · · · , xl+u}, where
xi denotes the training instance, l and u are the number of labeled instances and unlabeled
instances, and i = 1, 2, · · · , l + u. Semi-supervised classification algorithms simultaneously
use the labeled instance set L, and unlabeled instance set U to train a classifier f (x) with
good performance. A co-training-based semi-supervised classification algorithm uses the
idea of compatible complementarity of multiple views to learn the final classifier. It assumes
that the data has multiple sufficient and conditional independence views, and the classifier
trained on one view can offer supplemental information to the classifiers on the other view.
The supplemental information is achieved by selecting the most trusted unlabeled instances
and pseudo-labels. Nevertheless, several iterations are required, and each iteration must
scan the whole of the unlabeled instances set to the most trusted instances. The large-scale
unlabeled instance carries difficulty in efficiently learning the final classifier.

Instance selection, as one of the most important data preprocessing technologies
to reduce dataset size, is widely used for classification problems, as is the fact that the
contribution of training instances with the different locations in the space to learn a classifier
varies greatly. Numerous studies have shown that the training instances can be divided
into critical instances and non-critical instances, where critical instances mainly define
the class boundary and separate the instances of the same label from the ones from other
labels [16]. Meanwhile, the number of critical instances is significantly smaller than that
of non-critical instances in most real-world datasets. Therefore, the process requires an
effective way to reduce the training set to a relatively small subset by selecting critical
instances and preserving the original data information. Compared with the performance
on the original training set, the efficiency of training the classifier on the reduced set can be
significantly improved on the reduced subset.

Traditional instance selection methods for supervised classification tasks start with
each instance as the most basic processing unit, critical instances are selected by the con-
tribution of each labeled instance to the classifier. The contribution of an instance to the
classifier is usually measured by its location in the input space and the difference with
its nearest neighbors on the label. Although the instance selection is very efficient for
supervised classification tasks, it is difficult to apply directly to semi-supervised classifica-
tion tasks because of its limitations. Different from supervised classification, there exists
a large number of unlabeled instances and few labeled instances for the semi-supervised
classification tasks. Only labeled instances take labeled information to the learner, and this
information is vital to learn a classifier with good performance, so it cannot reduce labeled
instances. Otherwise, the generation ability of the obtained classifier could significantly
decrease. On other hand, traditional instance selection needs the labeled information of
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each instance to execute data reduction, while this condition is not met for the unlabeled in-
stances. Moreover, the way of treating each instance as the basic process unit is undesirable
for large-scale problems because it is very time-consuming.

To overcome this difficulty, we have proposed a novel instance selection with the
granulation mechanism. This proposed method consists of two key processes: unlabeled
information granulation and granulation selection.

3.1. Unlabeled Information Granulation

Unlabeled instance selection aims to reduce the unlabeled instance set U, and the
original unlabeled information remains relatively unchanged. Unlabeled information is ex-
pressed by the contribution of unlabeled instances to learn the classifier for semi-supervised
learning, and it is closely related to the feature of semi-supervised classification algorithms.
For co-training-based semi-supervised classification algorithms, the contribution of the
unlabeled instance to learn the final classifier mainly depends on the determination of
predictive label consistency of the classifiers trained with different views, as well as its
location in the input space. The unlabeled instances located in different regions in the
input space have different contributions to the classifier [35]. Figure 1 shows a 2-dimension
binary classification problem to learn a linear classifier, where two labeled instances from
different classes are represented by blue circle and yellow circle. The unlabeled instances
nearby the decision boundary have much more of a contribution than the ones far from the
decision boundary.

Figure 1. An example of a binary semi-supervised classification problem.

This difference in the contribution of unlabeled instances to the classifier yields the
possibility of executing an instance selection. Compared with the abundant labeled informa-
tion of the labeled instances, unlabeled instances bring a limited classification contribution
to the learner. Due to the presence of a large number of unlabeled instances with limited
classification information, it is difficult to select critical unlabeled instances with their
contribution one by one. Furthermore, semi-supervised classification should not reduce
unlabeled instances one by one from an execution efficiency perspective. This process is a
disaster, especially for classification algorithms with high time complexity. Therefore, we
adopt the idea of granular computing to divide the unlabeled instance set U into m disjoint

subsets Ui, U =
⋃ m

∑
i=1

Ui. All the instances in the same subset Ui are considered as a basic

information granularity to participate in the learning process. In this way, it can greatly
improve learning efficiency by only processing a small number of units. Meanwhile, the
contribution of a subset Ui is easy to obtain compared with the single unlabeled instance.
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Data partition, as one of the important data granulation techniques, plays a crucial
role in granular computing. There are three key factors to performing data partition for the
co-training-based semi-supervised classification tasks.

• Divided unlabeled instance subsets have the unbalanced information for the final
classifier to obtain a relatively small number of aim subsets to achieve data reduction.

• Number of divided subsets is determined by the characteristics of unlabeled instances
and the contribution to the classifier rather than the subjective prior determination.

• Data partition should use the contribution of the unlabeled instances to the semi-
supervised classifier and close together with the distinguishing feature of co-training.

Therefore, we utilize a similar framework as a Tri-Training [36] method to perform
data partition. Each initial decision tree classifier fr(x) is independently trained on the
different set Br sampled from the labeled set L using Bootstrap sampling method, where
r = 1, 2, 3. Owning to the feature of Bootstrap sampling, the sample set Br has a large
difference, as well as the classifier fr(x) on it. Then it iteratively retrains each classifier with
the enlarged labeled set L, which is created by introducing several confident unlabeled
instances and their pseudo-label until none of the classifiers changes. The confident
unlabeled instance and its pseudo-label obtained by each classifier are provided by the
remaining two classifiers. Specifically, if the two classifiers have the same prediction for the
same unlabeled instances, these instances are considered to have high labeling confidence
and are added to the labeled training set of the third classifier. In this way, we can estimate
the frequency f re(xi) at which each unlabeled instance xi is selected as a confident element
during this process. Finally, the unlabeled set U is divided into several subsets according to
the condition that all the unlabeled instances xi in the same subset have the same frequency.
The pseudocode of the proposed method is presented in Algorithm 1.

A decision tree (DT) is chosen as the basic classifier for the Tri-training algorithm
for its unique advantages in Algorithm 1, that is, learning features, high efficiency, and
instability. Both the conditional probability distribution information for the class and the
local geometry information in the input space are used to learn the classifier of DT, and
this kind of information is very comprehensive. Furthermore, the time complexion of DT is
approximately linear of time complexion to efficiently process large-scale data. Finally, the
instability of DT is sensitive to data change for its instability, this is constructive to instance
selection [37].

The measurement f re(xi) is the frequency at which each unlabeled instance xi is
selected as the confident instance for three classifiers in the whole training process, and it
reflects each unlabeled instance xi to learn the final classifier. The large value of frequency
f re(xi) means the unlabeled instance xi is always chosen and has a large contribution to
the final classifier. A different value of f re(xi) also indicates different degrees of effect on
classification performance. Different from previous methods to evaluate the contribution
with a real number, the measurement metrics takes a limited integer value. It is constructive
to divide the unlabeled set U into several subsets according to the possible value of the
measurement f re(xi). Moreover, the number n = max

xi∈U
f re(xi)−min

xi∈U
f re(xi) of discrete

values of the measurement f re(xi) is not subjectively predetermined; it depends on the
effect of unlabeled instances on the classifier.
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Algorithm 1 Unlabeled information granulation algorithm
Input : Training set T = L

⋃
U, where the labeled set L = {x1, x2, · · · , xl} and

the unlabeled instance set U = {xl+1, xl+2, · · · , xl+u}, decision-tree
classification algorithm.

Output : The divided unlabeled instance subsets Uh, U =
⋃n

h=1 Uh.

1 Initialization : f re(xi) = 0 for xi ∈ U, L1 = L2 = L3 = L, Update = 1 ;
foreach r ∈ {1, 2, 3} do

2 Train the decision tree classifier fr(x) on the set Br sampled from the set L
using Bootstrap sampling method;

end
while Update= 1 do

foreach r ∈ {1, 2, 3} do
3 Updater = 0;

foreach xi ∈ U do
if f j(xi) = fk(xi) (j, k 6= r) then

4 f re(xi) = f re(xi) + 1, Lr = Lr
⋃{(xi, f j(xi))}, Updater = 1;

end
end

end
foreach r ∈ {1, 2, 3} do

if Updater = 1 then
5 Re-train the decision tree classifier fr(x) on the new set Lr, Update = 1;

end
end

end
6 n = Max f −Min f + 1, where Max f = max

xi∈U
f re(xi) and Min f = min

xi∈U
f re(xi);

foreach h ∈ {1, 2, · · · , n} do
7 Uh = {xi ∈ U : f re(xi) = h− 1 + Min f };

end
Return The divided unlabeled instance subset Uh;

3.2. Granulation Selection

After the unlabeled data granulation with data partition, divided subsets of unlabeled
instances must be finally chosen to train the semi-supervised classifier. It is undesirable
to randomly select several divided subsets as the final result for different contributions
to the classifier. According to the same value of f (xi) of the instances xi ∈ Uh, the order
of contribution from smallest to largest is U1, U2, · · · , Um, where m is the number of the
divided unlabeled instance subsets. To keep the full information of the unlabeled set U
with the smaller number of divided unlabeled instance subsets as much as possible, we
adopt the way of one subset by one subset in reverse order. In this way, it is constructive to
search the smaller number of subsets with much more auxiliary classification information
to the learner in the following process. Moreover, this method relies solely on the value
f (xi) over the divided subset to select results without any limitation to the classifier.

Let Acc(Ug) be the measurement of classification performance for the classifier trained
on the set Uh and the labeled set L, the change on the classification performance
∆(Ug−1) = Acc(Ug

⋃
Ug−1)− Acc(Ug−1) between Ug and Ug−1, g = 2, 3, · · · , m. Acc(Ug)

evaluates the effect of the set Uh to the semi-supervised learner classification performance,
and ∆(Ug − 1) indicates the effect of adding set Ug−1 to set Ug. If the value of ∆(Ug−1) is
small relative to Acc(Ug), then merging set Ug−1 with set Ug is difficult to train a strong
semi-supervised classifier. Therefore, the following condition (1) is set to judge whether it
merges set Ug−1 with set Ug or not.
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Acc(Ug
⋃

Ug−1)− Acc(Ug−1)

Acc(Ug)
≥ α, (1)

where α ∈ (0, 1), g = 2, 3, 4, · · · , m. Many papers suggest that the critical value α = 0.05
to obtain a significant change in performance [38]. Above all, the pseudocode of the
granulation selection is presented in Algorithm 2.

In Algorithm 2, the early stopping condition is used to prevent performing too many
iterations. The classifier trained on set L

⋃
Ug

⋃
Ug−1 may improve the classification per-

formance of the one on the set L
⋃

Ug because it adds more unlabeled sample information
from the set Ug−1. Moreover, the unsupervised information of the set Ug that is construc-
tive to improve the classification performance could be more than the set Ug−1, where
g = 2, 3, · · · , m. Therefore, the subset Uj is difficult to satisfy condition (1) if the previous
subset Ui cannot meet, where 1 ≤ j < i ≤ m. In this way, this selection process can be
terminated early and obtain a lower number of divided unlabeled instance subsets.

Algorithm 2 Granulation selection algorithm
Input : Training set T = L

⋃
U, where the labeled set L = {x1, x2, · · · , xl} and

the unlabeled instance set U = {xl+1, xl+2, · · · , xl+u}, decision-tree
classification algorithm, and semi-supervised classification algorithm f ,
critical value α = 0.05.

Output : The reduced set Us of the set U.

1 Run Algorithm 1 with decision tree to get m divided subsets Uh, U =
m⋃

h=1
Uh ;

2 Train semi-supervised classifier with the set Um to obtain Acc∗, Us = Um ;
foreach g ∈ {m− 1, · · · , 2} do

3 Ũg = Us
⋃

Ug ;
4 Train semi-supervised classifier with the set Ũg to obtain Acc(Ũg) ;

if Acc(Ũg)−Acc∗

Acc∗ ≥ α then
5 Us = Ũg ;
6 Acc∗ = Acc(Ũg) ;

else
7 Get out of the loop

end
end
Return The set Us;

3.3. Complexity Analysis

Complexity analysis is very important for evaluating the classifier, and it starts with
two main steps of the proposed method. The first step includes the frequency in which an
unlabeled instance is selected as a trust element and the frequency discretization, where the
former mainly depends on the time complexion of the basic classifier and the latter is linear
with the number of unlabeled instances. A decision tree is selected as the basic classifier in
this method of the approximately linear time complexity O(dml log(l)) with the size l of
labeled instances and m features. Meanwhile, the efficiency of a decision tree is very high
to predict the label for the unlabeled instances with the time complexity O(d), where d is
the depth of the tree. Thus, it can efficiently process big data, which has massive unlabeled
data, to offer the pseudo-labels of the linear time complexion that is linearly related to the
size of the data. Therefore, the time complexity of the first step is O(dml log(l) + du). The
time complexity of the second step relies on the complexity of the adopted semi-supervised
algorithm and the number of iterations n. In each iteration, the semi-supervised classifier
is trained using the subset of unlabeled set U rather than all the instances, and its time
complexity is proportional to the size of the labeled instance subset. Meanwhile, the early
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stopping condition is constructive in reducing the number of iterations. In conclusion,
the time complexity of the proposed method is approximately linear with the number
and the dimension of labeled instances and unlabeled instances, and it is proportional
to the time complexity of the adopted semi-supervised classifier that is used to get the
classification accuracy.

4. Experiments

To verify the effectiveness and efficiency of the proposed algorithm for real problems,
extensive experiments on real datasets have been implemented against the typical method
under differently labeled rations.

4.1. Experiment Setup

Twelve large datasets of different types are randomly selected to evaluate the per-
formance of the algorithms from the KEEL-dataset repository [31] and LIBSVM-dataset
repository [39], where each data has larger than 4000 instances. The basic information of
the selected datasets is listed in Table 1.

Table 1. Summary of twelve datasets.

Dataset Size Features Classes

combined 98,528 101 3
connect-4 67,557 126 3
covtype 581,012 54 7

letter 20,000 16 26
optdigits 5620 65 10
pendigits 10,992 17 10
phoneme 5404 5 2

ring 7400 21 2
seismic 98,528 51 3
texture 5500 41 11

usps 9298 257 10
winequality 4898 11 7

Further, a typical image dataset of five generic categories called NORB [40] is se-
lected to test the performance of the proposed method for high-dimensional datasets. The
following Figure 2 shows examples of the training image and test image of the dataset.

Figure 2. The examples of NORB dataset.

For each dataset, about 3/4 of the data is selected as the training set and the rest as
the test set, where each training set is the union of the labeled subset L and the unlabeled
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subset U. To effectively verify the generalization performance of the proposed algorithm
for real data, the proportion of labeled instances (PL) to the total training instances has
different values. According to the suggestion of the paper [36], the value of PL includes
20%, 40%, 60%, and 80%.

The most commonly used method for evaluating semi-supervised classification al-
gorithms is the performance measurement of algorithms on the datasets. Classification
accuracy (Acc) and Cohen’s kappa (Kappa) [41] on the test set are used to measure the
generation ability of algorithms, and executing time (ET) in seconds of learning the classifier
is applied to estimate training efficiency. Besides the above two performance indicators, the
number of the selected unlabeled instances to learn the semi-supervised classifier is also an
important measure of the performance of instance selection. Therefore, the proportion of
the selected unlabeled instances (PS) to the total unlabeled instances is adopted to eliminate
the impact of dataset size.

Tri-training (Tri) [36] is selected as the representative co-training semi-supervised
classification algorithm for its good performance, and the improved Tri-training algorithm
trained on the result based on the proposed instance selection is denoted as ISTri. To
verify whether there is a significant difference in the performance between Tri and ISTri
on different data, the Wilcoxon signed rank test [42] is selected for its weaker data distri-
bution assumptions and good statistical performance on the real datasets, where the null
hypothesis is that the proposed algorithm performance is significantly different from each
of the other algorithms on the same multiple datasets. The p-value of the test is computed
to judge whether the null hypothesis is rejected or not under the given significant level α. If
the p-value is larger than α, then the null hypothesis should be accepted. Otherwise, the
null hypothesis is rejected, and there exists a significant difference between the proposed
algorithm and another algorithm. The significant level α = 0.05. All the experiment is
executed in Python 3.10 on Windows 10 on a PC of Intel(R) Xeon(R) Silver 4280 CPU
(2.10 GHz) and 160 GB RAM.

4.2. Experimental Analysis

This section concretely compares the performance of the proposed algorithm with
the Tri algorithm from the perspective of classification performance, execution time, and
proportion of the selected unlabeled instances on twelve medium-dimensional datasets, as
well as a typical high-dimensional dataset. Furthermore, the effect of the proportion of the
selected unlabeled instances on the algorithm’s performance is also studied.

4.2.1. Classification Performance

Classification accuracy and Cohen’s Kappa are two common measurements to evaluate
the classification performance of the classifier, where the latter is an important complement
to the former for the class-imbalance problem.

Table 2 lists the classification accuracy on the selected data sets, where the mean and
median of classification accuracy on all the datasets are at the back of this table. Meanwhile,
the p-value of the Wilcoxon signed rank test between the two algorithms is also listed in
the last row of Table 2. Figure 3 intuitively shows the comparison of classification accuracy
of the two algorithms on different datasets under different label proportions.

The following comparative analysis is done from a single perspective and a holistic
perspective. It can be found that the ISTri algorithm obtains very similar classification
accuracy with the Tri algorithm on each dataset under the same labeled rate PL = 0.2, 0.4, 0.6,
and 0.8 from Figure 2. To compare the classification accuracy of different algorithms from a
holistic perspective, descriptive statistical analysis is made. The means of the classification
accuracy of the ISTri algorithm on all the datasets under different PLs are 0.851, 0.873, 0.889,
and 0.894, and the ones of the Tri algorithm are 0.857, 0.874, 0.886, and 0.893. This numeric
result also corroborates the absolute difference between the two algorithms on the mean
of classification accuracy under the same PL value is very small. Meanwhile, the medians
of the classification accuracy of the ISTri algorithm on all the datasets under different PLs
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are 0.890, 0.920, 0.933, and 0.947, and the ones of the Tri algorithm are 0.896, 0.919, 0.930,
and 0.942. Therefore, the absolute difference between the two algorithms on the median of
classification under the same PL value is also very small.

Table 2. Classification accuracy of two algorithms on the selected datasets.

Data
PL = 0.2 PL = 0.4 PL = 0.6 PL = 0.8

Tri ISTri Tri ISTri Tri ISTri Tri ISTri

combined 0.815 0.821 0.823 0.824 0.831 0.830 0.834 0.837
connect-4 0.792 0.801 0.823 0.822 0.829 0.837 0.845 0.848
covtype 0.896 0.894 0.923 0.924 0.938 0.939 0.947 0.948

letter 0.895 0.886 0.932 0.927 0.951 0.947 0.960 0.959
optdigits 0.967 0.951 0.977 0.975 0.984 0.984 0.980 0.974
pendigits 0.978 0.976 0.988 0.986 0.990 0.990 0.992 0.990
phoneme 0.859 0.845 0.871 0.877 0.898 0.903 0.900 0.905

ring 0.917 0.905 0.915 0.917 0.922 0.928 0.938 0.945
seismic 0.729 0.731 0.731 0.734 0.741 0.744 0.744 0.746
texture 0.934 0.918 0.966 0.961 0.971 0.973 0.972 0.973

usps 0.930 0.921 0.951 0.947 0.949 0.949 0.959 0.963
winequality-white 0.567 0.565 0.585 0.583 0.624 0.638 0.641 0.642

Mean 0.857 0.851 0.874 0.873 0.886 0.889 0.893 0.894
Median 0.896 0.890 0.919 0.920 0.930 0.933 0.942 0.947

p-value 0.064 0.519 0.058 0.129

Figure 3. The comparison of classification accuracy between two algorithms on the selected datasets.

Finally, the Wilcoxon signed rank test between two algorithms classification accuracy
is made to avoid the effect of the subjective judgment. p-values of this test under different
PL are 0.060, 0.720, 0.375, and 0.206; these values are all larger than the given significant
level of 0.05. Thus, there exists no significant difference in the classification accuracy
between two algorithms.

Besides classification accuracy, Cohen’s kappa is also used to evaluate the classification
performance of the learner, which can solve the problem that accuracy does not compensate
for hits that can be attributed to mere chance. Similar to the result of Table 2, Table 3 lists
Kappa of two algorithms under different labeled proportions, as well as the descriptive
statistics and p-value of the Wilcoxon signed-rank test. Figure 4 shows the comparison of
the Kappa of the two algorithms.

Figure 4 shows the ISTri algorithm also obtains quite a similar Kappa as the Tri
algorithm on each dataset under the same labeled rate PL = 0.2, 0.4, 0.6, and 0.8. A
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descriptive statistical analysis of kappa is made to compare the classification accuracy
of different algorithms from a holistic perspective. The means of the Kappa of the ISTri
algorithm on all the datasets under different PL are 0.739, 0.777, 0.806, and 0.814, and the
ones of the Tri algorithm are 0.744, 0.775, 0.798, and 0.810. The absolute difference between
the two algorithms on the mean of Kappa under the same PL value is very small from this
numeric result. Meanwhile, the medians of the classification accuracy of the ISTri algorithm
on all the datasets under different PL are 0.818, 0.855, 0.878, and 0.904, and the ones of the
Tri algorithm are 0.833, 0.852, 0.872, and 0.895. Thus, the absolute difference between the
two algorithms on the median of classification under the same PL value is also very small.
Therefore, there exists a small difference between these two algorithms about Kappa from
the above descriptive statistical results.

To make a more objective comparative evaluation, Wilcoxon signed rank test between
two algorithms classification accuracy is made. p-values of this test under different PLs
are 0.168, 0.519, 0.028, and 0.041, where the first two values are both larger than the given
significant level of 0.05 and the latter two are smaller than 0.05. So, there exists no significant
difference in the classification accuracy between two algorithms under PL = 0.2 and 0.4,
while it exists no significant difference in the classification accuracy between two algorithms
under PL = 0.6 and 0.8. Combing with the medians of Kappa on all the datasets, the ISTri
algorithm achieves a better performance than the Tri algorithm under PL = 0.6 and 0.8.

The reason for the fact that the ISTri algorithm gets no significant difference classifi-
cation in accuracy with the Tri algorithm corroborates the effectiveness and availability
of the proposed unlabeled instance selection. It chooses the unlabeled instance subset
by selecting the frequently confident ones identified by two other classifiers, where these
selected unlabeled instances take much more ancillary information to the classifier than
others. In other words, the proposed instance selection method obtains enough classifica-
tion information as all the unlabeled instances so that the ISTri algorithm gets a similar
classification performance as Tri algorithm.

Table 3. Kappa of two algorithms on the selected datasets.

Data
PL = 0.2 PL = 0.4 PL = 0.6 PL = 0.8

Tri ISTri Tri ISTri Tri ISTri Tri ISTri

combined 0.708 0.717 0.720 0.722 0.733 0.740 0.737 0.743
connect-4 0.371 0.415 0.478 0.486 0.519 0.550 0.555 0.568
covtype 0.831 0.827 0.875 0.876 0.900 0.902 0.915 0.916

letter 0.891 0.881 0.929 0.924 0.949 0.944 0.958 0.958
optdigits 0.963 0.945 0.975 0.972 0.982 0.982 0.978 0.972
pendigits 0.976 0.973 0.987 0.985 0.989 0.989 0.991 0.989
phoneme 0.649 0.613 0.694 0.705 0.752 0.765 0.758 0.771

ring 0.834 0.810 0.830 0.835 0.844 0.855 0.876 0.891
seismic 0.566 0.570 0.571 0.577 0.588 0.591 0.590 0.594
texture 0.926 0.908 0.962 0.956 0.967 0.970 0.968 0.970

usps 0.922 0.912 0.945 0.940 0.943 0.943 0.954 0.959
winequality-white 0.294 0.294 0.339 0.344 0.408 0.437 0.439 0.443

Mean 0.744 0.739 0.775 0.777 0.798 0.806 0.810 0.814
Median 0.833 0.818 0.852 0.855 0.872 0.878 0.895 0.904

p-value 0.168 0.519 0.028 0.041
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Figure 4. The comparison of Kappa between two algorithms on the selected datasets.

4.2.2. Selection Rate

The proportion of the selected instances to the original instances is an indicator to
evaluate the reduction performance of instance selection. In our proposed method, the
selected unlabeled instances and labeled instances reconstitute the training set that is used
to efficiently learn the classifier. Therefore, the reduction performance of unlabeled instance
selection affects the training efficiency of the classifier. Table 4 lists the PS of the proposed
method under different labeled proportions.

It can be found that the value of PS on each dataset is significantly smaller than
one under different PLs from Table 4. This result indicates the proposed method does
obviously reduce the unlabeled instances, and the reformed training set with the selected
unlabeled instances and labeled instances is smaller than the original set. Own to the
different characteristics of the dataset, the values of PS on different datasets have significant
differences. Especially for the winequality–white dataset, the proposed method finally
saves a storage rate of up to 25% unlabeled instances. To carefully evaluate the selection
proportion of the proposed algorithm from a global perspective, descriptive statistics are
also computed on all the datasets. The means of PS on all the datasets under different PL
are 0.539, 0.598, 0.618, and 0.648, and the medians are 0.568, 0.627, 0.661, and 0.693. The
proposed instance selection method can reduce at least 30% of unlabeled instances from
the average state.

There exist two reasons for the higher reduction ratio. Firstly, all the unlabeled
instances have different levels of contributions to learning the classifier, and the number of
unlabeled instances with large contributions is less than the ones with small contributions.
On the other hand, our method aims to select the unlabeled instances with high confidence
which have high contributions to the classifier. Thus, this experiment result has confirmed
the effectiveness of the proposed algorithm.
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Table 4. PS of ISTri algorithm on the selected dataset.

Data PL = 0.2 PL = 0.4 PL = 0.6 PL = 0.8

combined 0.486 0.522 0.491 0.517
connect-4 0.585 0.641 0.629 0.672
covtype 0.670 0.728 0.761 0.808

letter 0.513 0.603 0.671 0.696
optdigits 0.531 0.603 0.651 0.718
pendigits 0.733 0.808 0.847 0.857
phoneme 0.590 0.653 0.682 0.693

ring 0.552 0.614 0.618 0.668
seismic 0.395 0.425 0.406 0.433
texture 0.686 0.743 0.745 0.779

usps 0.591 0.645 0.708 0.693
winequality–white 0.131 0.191 0.212 0.241

Mean 0.539 0.598 0.618 0.648
Median 0.568 0.627 0.661 0.693

4.2.3. Training Efficiency

Training efficiency is also an important indicator to evaluate the performance of the
classification algorithms, where the execution time (in seconds) on the selected data is
the common metric to measure training efficiency. Table 5 lists the execution time of two
methods under different PLs on the selected datasets, and the simple statistical result is
also listed in the bottom two rows of this table.

Table 5. ET of two algorithms on the selected datasets.

Data
PL = 0.2 PL = 0.4 PL = 0.6 PL = 0.8

Tri ISTri Tri ISTri Tri ISTri Tri ISTri

combined 643.075 322.514 588.245 388.624 1328.337 795.159 1365.614 943.540
connect-4 11.757 5.905 14.787 8.466 18.317 10.916 21.232 13.493
covtype 768.997 395.715 1050.317 605.054 1336.295 815.328 1645.704 1036.018

letter 19.530 8.666 24.332 13.058 28.442 16.382 32.392 19.873
optdigits 6.763 3.204 7.974 4.502 9.265 5.615 10.407 6.582
pendigits 10.211 5.318 12.743 7.457 14.877 9.088 17.419 10.739
phoneme 5.076 2.556 6.293 3.506 7.417 4.386 8.888 5.325

ring 17.100 7.655 22.455 12.564 28.235 16.736 34.692 21.797
seismic 395.678 149.781 548.484 287.580 571.574 367.503 1038.199 511.116
texture 9.762 5.089 12.413 7.262 15.022 9.156 17.441 11.058

usps 45.562 24.265 59.183 38.108 73.571 50.979 89.867 66.263
winequality–white 6.142 2.468 7.805 3.846 9.200 5.121 10.698 6.351

Mean 161.638 77.761 196.253 115.002 286.713 175.531 357.713 221.013
Median 14.428 6.780 18.621 10.515 23.276 13.649 26.812 16.683

Table 5 shows that the ISTri algorithm has much less execution time on each dataset
under the same value of PL. Meanwhile, the means of ET of the ISTri algorithm on all the
datasets under different PL are 77.761, 115.005, 175.531, and 221.013, while the ones of
the Tri algorithm are 161.638, 196.253, 286.73, and 221.013. Additionally, the medians of
ET of the ISTri algorithm on all the datasets under different PL are 6.780, 10.515, 13.649,
and 16.683, while the ones of the Tri algorithm are 14.428, 18.621, 23.276, and 26.812. This
descriptive statistical result also corroborates the ISTri algorithm being able to obtain much
less execution time than the Tri algorithm. The execution time of algorithms is affected by
the dataset size, and its value is positively correlated with the amount of data.

To effectively compare the training efficiency of the algorithm, a speedup ratio named
SR = ET(Tri)/ET(ISTri) is defined, where ET(Tri) and ET(ISTri) are the execution time of
the Tri algorithm and IStri algorithm on the same dataset. This new relative indicator can
eliminate the effect of data volume on the algorithm performance, and it evaluates the
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difference between the two algorithms’ performance from a relative perspective. Table 6
lists the SR between two algorithms under different labeled proportions.

Table 6. SR between two algorithms on the selected datasets.

Data PL = 0.2 PL = 0.4 PL = 0.6 PL = 0.8

combined 1.994 1.764 1.671 1.447
connect-4 1.991 1.747 1.678 1.574
covtype 1.943 1.736 1.639 1.588

letter 2.254 1.863 1.736 1.630
optdigits 2.111 1.771 1.650 1.581
pendigits 1.920 1.709 1.637 1.622
phoneme 1.986 1.795 1.691 1.669

ring 2.234 1.787 1.687 1.592
seismic 2.642 1.907 1.555 2.031
texture 1.918 1.709 1.641 1.577

usps 1.878 1.553 1.443 1.356
winequality-white 2.489 2.029 1.797 1.684

Mean 2.113 1.760 1.652 1.613
Median 1.993 1.759 1.660 1.590

The result of Table 6 shows that the value of SR on each data is significantly greater
than one on each dataset under different PLs, and it confirms that the proposed algorithm
obtains higher training efficiency than the original algorithm. Especially, the ISTri algorithm
obtains a training efficiency of more than two times higher than the Tri algorithm on dataset
letter, optdigits, ring, seismic, and winequality–white under PL = 0.2. ISTri algorithm also
obtains nearly 1.5 times higher training efficiency than the Tri algorithm on most datasets
when PL = 0.2, 0.4, and 0.6. Simple statistical result lists that the means of SR on all the
dataset under different PLs are 2.113, 1.760, 1.652, and 1.613, and the medians are 1.993,
1.759, 1.660, and 1.590. Therefore, the ISTri algorithm achieves a training efficiency of more
than 0.5 times higher than the original algorithm from a global perspective.

The reason for the higher training efficiency of the ISTri algorithm is that it uses the
reduced unlabeled instance subset rather than the original unlabeled instance set to learn
the classifier. As we all know, the training time of the classifier is negatively correlated
with the training set size. The larger the training set, the longer the training time. For the
semi-supervised classification tasks, unlabeled instances make up a large proportion of
the training set. Moreover, the proposed instance selection method can effectively and
efficiently compress unlabeled instances while retaining most of the information valid
for the classifier, and this result can be verified by the low proportion of the selected
unlabeled instances.

4.2.4. High-Dimensional Problem

The proposed method has obtained a good performance on twelve medium-dimensional
datasets in the previous experiment. In this section, a high-dimensional representative
image classification dataset called NORB is selected, in which each image is converted to a
2047-dimensional vector by the package SciPy. Table 7 lists classification accuracy, Kappa,
execution time, and selection ratio under different labeled ratios.

Table 7. The performance of two algorithms on NORB.

PL
Acc Kappa ET

PS-ISTri
Tri ISTri Tri ISTri Tri ISTri

0.2 0.980 0.971 0.974 0.968 481.778 271.731 0.326
0.4 0.987 0.982 0.984 0.979 621.516 514.607 0.424
0.6 0.994 0.992 0.992 0.990 795.907 686.806 0.499
0.8 0.996 0.995 0.994 0.993 936.799 836.467 0.514
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As the result in Table 7 shows, the ISTri algorithm efficiently and effectively processes
the high-dimensional problems and achieves comparable results to the Tri algorithm. The
absolute difference in Acc between two algorithms under different values of PL are 0.009,
0.005, 0.002, and 0.001, as well as the one on Kappa, are 0.006, 0.005, 0.002, and 0.001. In
the worst case, the largest difference between Acc and Kappa is 0.009 and 0.006, and this
difference is very small relative to the overall performance of the algorithm. Therefore,
there exists a negligible difference between Acc and Kappa under different values of PL.
The execution time of the ISTri algorithm is much less than the Tri algorithm under the
same PL. The ratio SR between them is 1.773, 1.208, 1.159, and 1.120; all the values are
larger than one. Therefore, the ISTri algorithm obtains higher training efficiency than the Tri
algorithm. The last column of Table 7 also lists the unlabeled selection proportion; the value
of PS is 0.326, 0.424, 0.499, and 0.514; the values are significantly smaller than one. To sum
up, the proposed instance selection method greatly reduces the size of unlabeled instances
while it can preserve the classification information to learn the classifier. Meanwhile, the
execution time of the IStri algorithm is much less than the Tri algorithm under each value
of PL, and the ratio SR between them is also larger than 1. Moreover, the selection ratio of
unlabeled instances under different PLs is 0.326, 0.424, 0.499, and 0.514, which shows that
the ISTri algorithm uses fewer unlabeled instances to constitute the training set. This result
demonstrates that the ISTri algorithm has a higher training efficiency than the Tri algorithm.

4.2.5. Effect of Labeled Proportion

The proposition of the labeled instances to all the training instances plays an important
role in the performance of the learner for the semi-supervised classification tasks. Therefore,
we study the effect of PL on the classifier from three metrics: classification performance,
selection rate, and training efficiency. Figures 5–7 separately show the effect of PL on three
metrics. Moreover, the Friedman test is used to compare whether there exists a significant
difference in each metric under the different values of PL or not, where the null hypothesis
is that there does not exist a significant difference against the alternative that there is a
significant difference.

Figure 5. Classification performance of ISTri algorithm under different PL.

Figure 5 shows the change in classification performance of the proposed method under
different PLs, where the left fig describes classification accuracy and the right fig for Kappa.
There exists a noticeable difference in the value of Acc on almost all datasets except data
combine, pendgitits, and seismic from Figure 5a. The value of Kappa also has a significant
change on each dataset under different PL, especially for dataset connext-4, phoneme,
winequality–white from Figure 5b. Meanwhile, the p-values of the Friedman test on Acc
and Kappa are 4.02 × 10−7 and 5.49 × 10−7, both smaller than the given significant level
of 0.05. So, PL affects the classification performance of the proposed method. Moreover,
Figure 5 also shows the value of Acc is positively correlated to PL on these datasets, i.e., its
value significantly increases by the increasing PL, as well as this similar result for Kappa.
The descriptive statistics of Acc and Kappa over all the datasets under different values
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of PLs also verify this result from Tables 3 and 4. The labeled instances take much more
valuable label information that is critical to learn the classifier than unlabeled instances, so
PS plays a key role in the classification performance of the classifier for semi-supervised
classification problems. This fact explains why the classification performance of the ISTri
algorithm is positively correlated with PS. Nevertheless, the ISTri algorithm still obtains no
significant difference from the Tri algorithm.

Figure 6 shows the change of the metric PS under different PLs. The value of PS
fluctuates greatly on each dataset, and this result is also proved by the numeric results
in Table 4. The p-value of the Friedman test on PS is 1.38 × 10−6. smaller than the given
significant level of 0.05. Therefore, there exists a significant difference in PS under different
values of PL. Similar to the performance of Acc and Kappa under different PLs, the value
of PS is also positively correlated with PL. The unlabeled instances selection of the ISTri
algorithm mainly depends on the agreement on the pseudo-labels offered by the classifiers
on the labeled instance subsets, where the parameter PL controls the number of labeled
instances. The classification ability of multi-view classifiers trained on the labeled instance
subsets increasingly improves as the enlarging value of PL so that the likelihood that
predictive labels for each unlabeled instance are the same could increase obviously. In this
way, the final selection of unlabeled data increases significantly.

The change in speedup ratio (SR) under different PLs is shown in Figure 7, where the
baseline SR = 1 is also plotted on it. It can be found that all the value of SR on each dataset
under different values of PL is larger than one. The metric SR has significantly different
values on each dataset under different PLs, and it can be validated by the result of Table 6.
The p-value of the Friedman test on SR is 3.73 × 10−7, smaller than the given significant
level of 0.05. Therefore, there exists a significant difference in SR under different values
of PL. Meanwhile, SR is negatively correlated with PL on each dataset from Figure 7. SR
evaluates the ratio of the execution time between the ISTri algorithm and the Tri algorithm,
and the main difference between them is the number of unlabeled instances that are used
to learn the classifier. The selected number of unlabeled instances continues to increase
with the increasing value of PL for the ISTri algorithm, and it also induces its execution
time to get longer. This result explains the reason that SR is negatively correlated with PL.

Figure 6. The change of PS under different PL.
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Figure 7. The change of SR under different PL.

5. Conclusions

For the problem of massive unlabeled instances bringing a great challenge to efficiently
train co-training-based semi-supervised classification algorithms, this paper has developed
an unlabeled instance selection algorithm based on the granulation mechanism. Different
from the previous approaches from the view of algorithm optimization, it takes advantage
of data reduction to avoid the difficulty of using domain knowledge to improve the
efficiency of algorithms. The proposed method treats the unlabeled instances with the
same frequency at which the trust instance is selected as the basic information granulation
rather than each unlabeled instance; it is constructive to significantly improve execution
efficiency. The selection of each unlabeled instance subset into the training set depends
on its contribution to the current classification performance; this operation is guaranteed
to have strong adaptability for different datasets and algorithms. The advantage of the
proposed method is verified by the experiment results on the medium-dimensional and
high-dimensional datasets. Especially it has a comparable classification performance with
the typical algorithm, while it has high execution efficiency and fewer unlabeled instances
within the training set. The proposed method can be widely used for driverless car obstacle
recognition, mobile phone face recognition, temperature monitoring in greenhouses, and
other large-scale application scenarios. Finally, this paper provides a potentially effective
solution to improve the training efficiency of other kinds of semi-supervised classification
algorithms. Future research work will explore the application of proposed algorithms in
practical systems such as text classification, image classification, and pattern recognition.
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