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Abstract: With its special, arch-shaped array structure, a frequency diverse arc array (FDAA) can
perform beam scanning in 360 degrees in azimuth and in arbitrary ranges by selectively activating
array elements in different positions, utilizing array element phase compensation, and adopting a
frequency offset design. In this paper, a beampattern synthesis and optimization method for FDDA
using the virtual array element based on the geometric configuration of FDDA is proposed. First, the
position of the virtual array element is determined by the direction of the target, and then activated
array elements are selected. Afterwards, the frequency offset of each array element is set up on the
equiphase surface to obtain the dot-shaped beampattern. Finally, amplitude weighting is introduced
to suppress the increased sidelobe level of the dot-shaped beampattern, which is caused by inverse
density weighting of the arch-shaped array structure. Simulation results validate the proposed
method for beampattern synthesis and optimization in FDAA.

Keywords: frequency diverse arc array (FDAA); virtual array element; beampattern synthesis;
sidelobe suppression

1. Introduction

Frequency diverse array (FDA) radar was first proposed in 2006 as a system radar with
a high degree of freedom [1]. Compared with a conventional phased array radar [2], FDA
has a small frequency offset between radar antenna elements, so the phase superposition
relationship of the transmitted signal in the far field changes with the target range, forming
a beampattern related to range, angle, and time. FDA has time variations within each
pulse and possesses flexible beam scanning characteristics [3,4]. Therefore, FDA has a
wide range of applications, such as in the fields of target localization [5–7] and interference
suppression [8–10].

FDA has been receiving increasing attention due to its unique range and angular
spatial focusing properties [11–14]. To optimize the FDA dot-shaped beampattern, range-
angle coupling in the FDA beampattern can be removed by using nonlinear array element
spacing to break the periodicity of FDA [15] and by using a logarithmically increasing
frequency offset [16]. The performance of the transmitted energy that is focused by in-
creasing the frequency offset with quadratic and cubic power functions, as opposed to
logarithmic functions, is greatly improved in the range dimension [17]. Random frequency
offset has been used to achieve low beam sidelobes [18], but it is complex to implement.
A symmetrical multicarrier FDA based on convex optimization was proposed [19] and
shown to be capable of forming a dot-shaped beampattern and improving the performance
of energy focusing and sidelobe suppression. The beampattern performance produced
by using the new functional frequency offset obtained by combining natural logarithm
and sine functions [20] and by using the Hamming window function frequency offset
proposed in [21] is better than that produced by using logarithmic frequency offset and
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other functional frequency offsets. Methods such as symmetric logarithmic frequency
offset [22], discrete Fourier transform [23], and Taylor windowing [24] also perform well
in suppressing sidelobes in the range domain and angle domain, resulting in superior
dot-shaped beampatterns. To suppress interference of the FDA beampattern, FDA is com-
bined with the multiple-input multiple-output (MIMO) system, and simulated results
verified the ability of FDA-MIMO to suppress interference in different scenarios [25]. The
focus beam synthesis method based on the genetic algorithm, proposed in [26] to optimize
the frequency offset increment, can synthesize single-point and multipoint transmission
beams, and can also suppress sidelobes. FDA can also use adaptive [27], multibeam [28],
broadband applications [29], and reconfigurable [30] thinned array methods to reduce
sidelobe levels and reduce interference.

Because of its single linear structure, a conventional FDA has certain angle limitations
in beam scanning. Under extreme angle conditions, the antenna gain will decrease [31], and
the mainlobe beam will widen, which is not beneficial to target monitoring. For application
scenarios that require the antenna to scan in all directions in various fields, the antenna
needs to produce a narrower mainlobe beam with a lower sidelobe level [32]. In this case,
circular array geometry is valuable for antenna beamforming. A frequency diverse arc array
(FDAA) is proposed to achieve the wide beam scanning capacity. It is capable of 360-degree
omni-directional beam scanning because it selectively activates array elements, utilizes precise
phase compensation, and has special symmetrical logarithmic frequency offset. FDAA consists
of antenna array elements with a uniform angular distribution on an arc-shaped structure.
On the basis of FDA beam scanning, the array elements on the arc are activated circularly,
so FDAA can flexibly manipulate the azimuth angle of the beam scanning. Furthermore,
FDAA imposes an additional frequency offset on each operating array element and provides
a method for controlling the beampattern in the target range domain and angle domain.
Therefore, FDAA can monitor the selected target area in all directions covering 360 degrees,
leading to more accurate and reliable locking of the target area.

By taking advantage of the arc structure, FDAA performs beam scanning through
selectively activating operating array elements, but it has the problem of excessive beam
spacing, and, thus, excessive beam granularity, leading to failure to meet the needs of
certain scenarios [33]. To minimize the losses of antenna gain and power transmission, in
this study, we propose a new beam scanning method for FDAA based on virtual array
elements. This method can set a virtual reference at any position within the antenna
aperture, and, based on the virtual array element, flexibly perform beam scanning through
phase shifting on the equiphase surface, thereby reducing the span of beam pointing. This
method effectively avoids the loss of antenna gain during scanning. To reduce the effects
of inverse density weighting of FDAA, we obtain a better dot-shaped beampattern by
optimizing amplitude weighting.

2. Structure Model of FDAA

The FDAA adopts open horn-shaped directional array elements that integrate trans-
mitting. As shown in Figure 1, a series of antenna elements are evenly arranged along the
arc to form an FDAA. The total number of array elements inside the entire arc is N, the
array radius is R, the angular spacing between adjacent array elements on the arc is dc, and
the angular distance between adjacent array elements on the arc is ∆φ. The aperture angle
formed by the operating elements selected and activated is φ.

Similar to a linear aperture synthesized by multiple array elements in a conventional
FDA [34], the FDAA is also composed of multiple array elements. However, each array
element of the FDAA is located outside the circular arc structure surface and is selected
as an operating array element through feed activation, and then beampattern synthesis is
achieved by configuring the phase.

To analyze the structure of FDAA more thoroughly, as shown in Figure 2, Take the true
north direction of the 0th element f0 as the reference direction. The angle θ of the target P of
the far-field is the angle between the target direction and north. The range of θ is [0, 360◦) ,
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and the N array elements along the arc are numbered clockwise. Aperture angleformed
φ includes activated array elements such as f−M, . . . , f−1, f0, f1, . . . , fM, and the frequency
of the 0th array element is fc, and each working array element is symmetrically arranged
on both sides. In addition, an additional frequency offset is included between the array
elements. The method for selecting the array element as the reference array element is
expressed by:

f0 = round
(

θ

∆φ

)
= round

(
θ

360/N

)
(1)

where round(·) represents the rounding operation and ∆φ represents the angle between
adjacent array elements, which can also be referred to as beam granularity. In the work
of FDAA, expected signals, interference signals, and noise from different directions will
be received at the same time. The core task of the system processing is to reduce the
interference and noise effect of the desired target signal energy to the greatest advantage.
When the total number of array elements is small, the array element spacing will be
large, and there will be a large error in selecting the reference array element, which is not
conducive to antenna beam scanning. Therefore, increasing the number of array elements
appropriately can reduce the array element spacing and correct the phase error between
array elements.
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3. FDAA Beampattern Synthesis and Optimization Method Based on Virtual
Array Element

Through the introduction of the FDAA structure in the second section, we can see that,
due to wide array element spacing, errors occur in selecting the reference array element for
the target. Therefore, in this section, an FDAA beampattern synthesis and optimization
method based the virtual array element is proposed. The specific process is described
in Figure 3. First, the virtual array element is determined as the reference array element.
Then, operating array elements are selected and activated. Next, the phase compensation
and frequency design are performed in order to form an equiphase surface. Finally, the
beampattern synthesis and optimization are completed.
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The beam granularity ∆φ should be selected based on the radar system. It is limited
by the array element spacing of the array antenna, and it is related to the total number
of elements N of FDAA, generally the half-power beam width. The selection of the array
element spacing should avoid the occurrence of grating lobes. If the coupled wave voltages
of the array elements tend to be additive in phase, a large reflection can occur, thereby
forming an observation blind area. Usually, to avoid serious mismatching of the array
elements near the grating lobes, measures such as the residual method or wide-angle
matching should be taken.

3.1. Setup of Virtual Array Element and Activation Method of Operating Array Element

As shown in Figure 4, the angle θ between the selected direction and north, measured
clockwise, is the beam pointing direction, i.e., the desired target pointing direction of the
beam. The position of the intersection between the desired pointing line and the arc front
is the position of the virtual array element. When the total number of array elements is
large enough, the position of the selected virtual array element is approximately in the
middle position of adjacent array elements. Then the central angle of the m-th array element
relative to the virtual array element is:

φm =


φ1,...,M = (m− 0.5) · ∆φ

φ0 = 0
φ−M,...,−1 = (m + 0.5) · ∆φ

(2)

where m = −M, . . . , 0, . . . , M.
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With the position of the virtual array element defined, due to the nonlinear distribution
of the spatial phase difference caused by the special curvature of the FDAA, a single array
element can only contribute to the gain of the main beam of the array in a certain area. Thus,
at different scanning angles, it is necessary to activate appropriate array elements to form
an operating array, and to use the feed system to selectively activate the operating array
elements accordingly. The relationship between the horizontal length L of the operating
array composed of activated array elements and the maximum beamwidth θBW of the
far-field target P in the angle domain is expressed as:

L = k · λ

θBW
(3)

where k is the 3 dB beamwidth coefficient, which is usually in the range of (0.88, 1.2), and
λ is the wavelength [31]. The three-dimensional structure of the FDAA antenna is shown
in Figure 5. The horizontal length of the active array elements forming the operating array
can be expressed as:

L = 2R sin(φ/2) (4)

The value of L is related to the angle between adjacent elements, from which the aperture
angle of the activated array element is obtained as:

φ = 2arcsin(
kc

2R fcθBW
) (5)

where c is the speed of light and fc is the carrier frequency. According to the geometry of
the arc structure, the total number of activated array elements can be expressed as:

NA = 2 ·
⌊

φ

2 · ∆φ

⌋
+ 1 (6)

where b·c represents the rounding operation. As shown in Figure 1, NA = 2M + 1, so NA
is an odd number.
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Figure 5. FDAA activated elements expansion diagram.

With the virtual array element as the reference, the activated operating array elements
are renumbered on both sides. The elements along the arc are numbered 1, . . . , M in
the clockwise direction, and the elements along the arc are numbered −1, . . . , −M in the
counter-clockwise direction.

3.2. Phase Compensation

As shown in Figure 6, with the defined operating array elements, there is a phase
difference between each array element and the virtual array element. Thus, phase compen-
sation is required to allow for scanning on the equiphase surface. Using the corresponding
spatial phase difference obtained from the spatial travel difference in the operating array
elements, spatial phase compensation between the operating array elements and the virtual
array element is made, achieving the formation of the equiphasic surface. As shown in
Figure 6, the spatial distance between an operating array element and the virtual array
element can be expressed as:

Dm = 2R sin2(φm/2) (7)

On the equiphase surface formed based on the spatial distance, the required phase
compensation of the operating array element relative to the virtual array element is:

∆ϕm =
2π fc

c
· Dm (8)
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3.3. Design of Frequency Offset

Affected by the structure of FDAA, special frequency offsets are designed according
to the position of the virtual array element to obtain a single maximum beampattern with
precise focusing. Suppose that the length L of a conventional linear FDA is the same as
that of the proposed FDAA, and both are symmetrical arrays. The distance between the
m-th array element in the linear FDA and the reference array element, xlm, and the distance



Electronics 2023, 12, 2231 7 of 15

between the m-th array element and the reference array element on the equiphase surface
of the FDAA, xcm, can be respectively expressed as:

xcm = R sin φm (9)

xlm = |m| · 2R sin(φ/2)
M

(10)

Thus, the distribution coefficient of the m-th array element in FDAA is:

β(m) =
xcm

xlm
=

M
2 sin(φ/2)

· sin φm

|m| (11)

With the increase in array elements, the distribution coefficient presents a trend of first
increasing and then decreasing, which is consistent with the characteristic of “sparse in the
middle and dense on both sides” of FDAA formed by inverse density weighting.

The equiphase surface shown in Figure 7 is not uniform in terms of spacing. The
equiphase surface consists of m activated operating array elements. The carrier frequency
is fc. Using f0 of the reference array element as the reference point, the frequency of the
transmitted signal of the m-th array element is designed as:

fm = fc + ∆ fm (12)

where ∆ fm is the frequency offset of the m-th array element, which can be chosen to be
∆ fm1 or ∆ fm2:

∆ fm1 = ∆ f · ln(β(m) ·m + 1) (13)

∆ fm2 = ∆ f ·
(

0.54− 0.46 cos(
2πβ(m) ·m

2M
)

)
(14)

where ∆ f is a fixed frequency offset, and fm1 is a frequency offset based on symmetric
logarithm. According to the array structure of the equiphase plane of FDAA, the removal of
range-angle coupling can be accomplished by using logarithmic frequency offset distributed
symmetrically on both sides. In addition, fm2 is a frequency offset based on a cosine window
function. Compared with Hamming frequency offset, Hamming frequency offset has better
performance in reducing amplitude of the sidelobes. The effectiveness of the two frequency
offsets is compared to determine the best frequency offset.
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3.4. Beampattern Synthesis

As shown in Figure 8, assuming that the target under monitoring satisfies the far-field
approximation condition at any place, the target is at point P. According to FDA antenna
fundamentals [2], the signal emitted by the m-th array element can be expressed as:

Xm(t) = Am exp(j2π fmt), 0 < t < T (15)
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where Am represents the complex weight of the m-th array element and T represents the
pulse duration of the transmission. The distance between the m-th array element and the
target point should be:

rm = r− xcm sin θ ≈ r− R sin φm sin θ (16)

where r is the distance from the target, θ is the direction of the target, as well as fc � ∆ fm
and r � R sin φm sin θ. Then the total signal at the far-field target under monitoring P is:

X(t, r, θ) =
M
∑
−M

Xm
(
t− rm

c
)

=
M
∑
−M

Am exp
{

j2π( fc + ∆ fm)
(

t− r−R sin φm sin θ
c

)}
≈ exp

[
j2π fc

(
t− r

c
)] M

∑
−M

Am exp
[
j2π ln(β(m) · |m|+ 1)∆ f

(
t− r

c
)]

× exp
(

j2π fc
R sin φm sin θ

c

)
(17)
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In order for the target under monitoring to have a single peak at the desired range 
and azimuth ( )0 0,r θ , the complex weight mA  can be calculated as: 
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0
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2
0
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exp 2

M

M
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r r
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c

R R
j f

c

θ π β

φ θ θ φ
π

−  −  = − ⋅Δ ⋅ ⋅ +  
  

 − −
×  
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Therefore, the array factor of FDAA can be expressed as:

AF(t, r, θ) =
M
∑
−M

Am exp
[
j2π∆ f · ln(|β(m) ·m|+ 1) ·

(
t− r

c
)]
·

exp
(

j · 2π fc
xcm sin θ

c

) (18)

In order for the target under monitoring to have a single peak at the desired range and
azimuth (r0, θ0), the complex weight Am can be calculated as:

Am = exp
{

j
[

2π∆ fmr0

c
− 2π fcxcm sin θ0

c
− ∆ϕm

]}
(19)

Then the beampattern at the expected target can be expressed as:

B(t, r0, θ0) =

∣∣∣∣−M
∑
M

exp
[

j2π
(

t− r−r0
c

)
· ∆ f · ln(|β(m) ·m|+ 1)

]
× exp

[
j2π fc

R sin φm(sin θ−sin θ0)−2R sin2(φm/2)
c

]∣∣∣ (20)
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3.5. Sidelobe Suppression

As shown in Figure 9, due to the special, arc-shaped surface structure of FDAA,
after the formation of the equiphase surface, the spacing of operating array elements is
sparse in the middle and dense on both sides. This phenomenon, called inverse density
weighting, leads to high sidelobes of the antenna pattern, which is not conducive to the
beam concentration at the target. The impact of this phenomenon can be clearly seen in
Figure 10.
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The purpose of amplitude weighting is to quantify excitation amplitudes of the array
elements in the array under the condition of uniform excitation of the antenna, and then
to improve the sidelobe level of the antenna. The quality of weighting with a window
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function has a key effect on the beam performance. To reduce the problem of high sidelobes
caused by inverse density weighting and to make the beam more concentrated at the target,
we use two window functions, Hamming and Taylor windowing, which are suitable for
non-uniform arrays, to optimize the amplitude weighting.

The Hamming window function is a special cosine window function [21]. Compared
with the Hamming window, it can attenuate the sidelobe more. The Hamming window
function can be expressed as:

w1(n) = 0.54− 0.46 · cos
(

2πn
2M

)
,−M ≤ n ≤ M (21)

The peak sidelobes generated by the Taylor window function [24] and the Hamming
window function are relatively close, so the two functions have similar performance. In
addition, the sidelobes far away from the main lobe are gradually attenuated. The Taylor
window function is expressed as

w2(n) = 1 + 2
M

∑
a=−M

Fa · cos
(

2πX(n)a
2NA

)
(22)

Its related coefficients can be calculated using:

Fa =

(−1)a+1∏M
k=−M

(
1−

a2

σ2

A2+(k−0.5)2

)
2∏M

j=−M

(
1− a2

j2

) ,−M ≤ a ≤ M (23)

σ2 =
NA

2

A2 + (NA − 0.5)2 (24)

with

A =
ln(B +

√
B2 − 1)

π
(25)

B = 10−
S
20 (26)

It should be noted that S is an optimizable negative number; S = −51 is used for
the calculation.

4. Comparative Analysis of Simulation Results
4.1. Analysis of Simulation Results before Optimization

The sidelobe levels fundamentally reflect the strength of the space array antenna’s
ability to suppress the interference signal sources. The sidelobe interference signal power
can be reduced as much as possible under the premise of maintaining the power of the
target signal. In an array antenna, sidelobe performance is closely related to tactical and
technical radar parameters. The two performance parameters, 3 dB main lobe band width
(BW) and peak sidelobe level (PSLL), play a deciding role in the anti-clutter interference
ability of the whole system.

According to the density weighting theory of a phased array antenna, density weight-
ing is the design of antenna array elements with non-equal spacing, which can achieve the
sidelobe level reduced by amplitude weighting and simplify the feeder grid design without
losing the transmitted power. However, the resolution of FDAA array is affected by the ar-
cuate structure, which forms a fixed non-uniform array of “sparse in the middle and dense
on both sides” after the equiphase plane, which is just the opposite of the density-weighted
optimization method.

In the simulation experiment, the parameters shown in Table 1 are used. Figure 11a–c
corresponds to a conventional FDA based on symmetric logarithmic frequency offset.
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Figures 11d–f and 11g–i present the simulation results at two symmetrical and non-uniform
frequency offsets of fm1 and fm2, both forming a single dot-shaped beam, and removing
the range-angle coupling of the FDAA. However, we can see the effect caused by FDAA
inverse density weighting and the more noticeable interference around the dot-shaped
beam at the target. In contrast, FDAA performs better at fm1, which will be optimized by
amplitude weighting, described in the next subsection.
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Table 1. Simulation parameters.

Parameters Symbol Value

Carrier frequency fc 10 GHz
Frequency offset ∆ f 30 kHz
Element number NA 33
Element spacing dc 0.015 m

Array radius R 0.3056 m
Array radian φ π/2

Desired target range r0 25 km
Desired target angle θ0 10◦

4.2. Analysis of Simulation Result after Optimization

As shown in Figure 12a–c, in the beampattern after Hamming window amplitude
weighting in the FDAA, the dot-shaped beam optimization effectiveness is quite noticeable,
the first-order sidelobe in the range domain is greatly suppressed, and the sidelobe levels
around the main lobe in the range domain are significantly reduced. Compared with the
angle domain before optimization, the overall sidelobe level is reduced, and the removal of
sharp peaks is noticeable. As shown in Figure 12d–f, the dot-shaped beampattern after the
Taylor window amplitude weighting is very similar to that with the Hamming window
amplitude weighting. Additionally, the sidelobe level distribution in the range domain is
smoother, which is beneficial to the engineering implementation. The main lobe beam is
narrower in the angle domain, but the level of the first order sidelobe is slightly higher.
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Finally, the patterns of array antennas are compared concisely. In the range domain
shown in Figure 13, it can be seen that, after optimization, the width of the main lobe
is reduced, the sidelobes are narrowed, and the interference suppression and focusing
effectiveness are significantly improved. From the angle domain in Figure 14, it can
be seen that with the Hamming window amplitude weighting, the sidelobe is reduced
greatly and the main lobe is widened; with the Taylor window amplitude weighting, the
sidelobe is reduced to a lesser extent, and the main lobe is widened to a lesser extent.
Compared with before optimization, after using Hamming and Taylor window functions
for amplitude weighting optimization, the sidelobe suppression of the FDAA antenna
pattern is remarkable, reducing the impact of inverse density weighting.
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5. Conclusions

In this paper, FDAA is shown to have the problem of inverse density weighting on
the equiphase surface of each operating array element. This leads to high sidelobe level,
causing interference to the dot-shaped beampattern for target monitoring. To tackle this
problem, we have proposed a beampattern synthesis and optimization method for FDAA
based on virtual array elements. This method performs beampattern synthesis by setting
up the position of the virtual array element, configuring the phase compensation of the
operating array elements, and designing special frequency offsets for FDAA beams, thereby
reducing the beam granularity error between adjacent array elements. This method uses
amplitude weighting to optimize the beam, which greatly reduces the effect of inverse
density weighting on the beam, and effectively solves the interference of sidelobes on the
target. This method yields a superior dot-shaped beampattern and peak-to-sidelobe ratio.
As a result, it improves radar antenna measurement accuracy and resolution. FDAA, a new
type of structural array antenna, achieves 360-degree omni-directional beam scanning by
selectively activating array elements and implementing precise phase compensation, so it
provides a new idea for radar, communication, and target monitoring in specific real-world
scenarios. The feasibility and effectiveness of the method are verified by simulation results.
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