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Abstract: The multimodal segmentation of medical images is essential for clinical applications
as it allows medical professionals to detect anomalies, monitor treatment effectiveness, and make
informed therapeutic decisions. However, existing segmentation methods depend on paired images
of modalities, which may not always be available in practical scenarios, thereby limiting their appli-
cability. To address this challenge, current approaches aim to align modalities or generate missing
modality images without a ground truth, which can introduce irrelevant texture details. In this paper,
we propose the energy-basedsemantic augmented segmentation (ESAS) model, which employs the
energy of latent semantic features from a supporting modality to enhance the segmentation perfor-
mance on unpaired query modality data. The proposed ESAS model is a lightweight and efficient
framework suitable for most unpaired multimodal image-learning tasks. We demonstrate the effec-
tiveness of our ESAS model on the MM-WHS 2017 challenge dataset, where it significantly improved
Dice accuracy for cardiac segmentation on CT volumes. Our results highlight the potential of the
proposed ESAS model to enhance patient outcomes in clinical settings by providing a promising
approach for unpaired multimodal medical image segmentation tasks.

Keywords: unpaired multimodal; medical image; energy-based model; semantic feature extraction

1. Introduction

In contemporary clinical practice, the application of imaging modalities has brought
about a paradigm shift in the identification and management of diverse pathologies and
medical ailments. These advanced technologies offer intricate depictions of internal tissue
and organ structures, facilitating medical practitioners in the detection of anomalies, track-
ing treatment efficacy, and making informed therapeutic judgments [1]. Notably, computed
tomography (CT) and magnetic resonance imaging (MRI) are widely utilized imaging
modalities, particularly in rendering precise anatomical details of cardiac structures [2].

Medical image analysis relies heavily on accurate segmentation, which is a pivotal
process that partitions an image into distinct regions based on its intensity or other relevant
features. Segmentation aims to isolate structures or tissues of interest within the image.
However, the unique imaging characteristics and underlying physical principles governing
image formation necessitate the development of separate segmentation methods for CT
and MRI data. Thus, modality-based segmentation strategies are employed to meet the
specific requirements of each imaging modality. Various traditional algorithms have
been proposed to assist in organ segmentation, including thresholding, region-based
methods and graph cut techniques [3]. Thresholding is a classic and straightforward
approach for segmenting images with light objects against dark backgrounds [4], as it
involves fewer calculations. Region growing is a common example of a region-based
method [5], but its effectiveness depends on the selection of seed points, and it can result in
under-segmentation when dealing with tissue that is not uniform. To address this issue,
researchers have proposed adaptive methods [6] that learn homogeneous criteria for the
region, but their efficiency still depends on the tissue’s homogeneity. Graph cut represents
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the image as an undirected weighted graph, requiring careful selection of seed points
labelled as “object” and “background” [7], so it cannot always be automated. Notably, deep
learning-based methodologies have shown promising results in several medical image
analysis tasks through their reliance on vast amounts of annotated data [8]. U-Net [9] is
a common approach that uses an “encoder–decoder” structure, where the encoder part
extracts the image features and the decoder part uses them to generate the segmentation
results. It has strong accuracy and reliability in segmentation tasks, especially for small
target segmentation in medical images. SegNet [10] is also a commonly used method
that uses an “encoder–decoder” structure similar to U-Net but introduces the indexing of
the maximum pooling layer in the decoder part to improve the accuracy and robustness
of image segmentation. This method has also achieved good results in medical image
segmentation tasks [11].

However, independent modality utility may lead to the omission of comparative
modality information, which refers to information that can be derived by comparing images
from different imaging modalities. Certain tissues may appear differently in different imag-
ing modalities due to variations in their physical properties, and this difference can be lever-
aged to improve the accuracy of the segmentation model [12]. Consequently, multimodality
learning has emerged as a rapidly evolving approach in the medical imaging field.

Leveraging the comparative modality information by training segmentation models
using both CT and MRI data can lead to the development of more accurate and robust
multimodal segmentation methods, which are extensively utilized in multimodal learn-
ing. Previous studies have demonstrated the efficacy of joint learning from multimodality
data in enhancing the accuracy of medical image segmentation. Various strategies have
been proposed in the literature to accomplish this objective. One such approach is the
early fuse strategy, where multiple modalities are concatenated as a network input [13–15].
Recent works have also employed intermediate multimodal representations to fuse infor-
mation [16,17]. These strategies effectively enable the fusion of information from different
modalities, resulting in more accurate and robust segmentation models.

The above-mentioned multimodal segmentation methods rely on paired modality
images, which necessitates that the input images are both paired and registered across
multiple modalities. However, acquiring paired images may not always be possible due
to various reasons, such as the high cost of certain inspections, the significant challenge
of processing large amounts of paired multimodal data, and the time-consuming and
labor-intensive task of labelling. The high cost of MRI inspection often results in a common
scenario where patients only undergo CT inspection, leading to a unimodal image that may
have limitations in medical segmentation or diagnosis due to the absence of comparative
modality information. To simplify the discussion, we refer to the more accessible data as
the query modality and the lacking modality as the support modality. In this context, there
exists an independent support modality dataset that is unpaired with the query modality.
The objective of this work is to address the challenge of unpaired multimodal medical
image segmentation by leveraging the complementary information available from the
support modality to improve the accuracy of medical image segmentation. In this paper,
unpaired multimodal indicates that for both the training and validation stages, the same
patient only has images of one of the modalities.

To leverage prior semantic knowledge from unpaired support modality, several ap-
proaches have been proposed. Some methods [18,19] have used special network structures
with shared parameters. Nie et al. [18] proposed a Y-shaped network, a widely-used late
fusion scheme for multimodal learning. Valindria et al. [19] proposed an X-shaped network.
They developed dual-stream encoder–decoder architectures, assigning specific feature
extractors to the data for each modality separately to explore cross-modality information.
However, similar approaches may not effectively capture the intricate relationship. Some
methods [20–23] have emphasized image synthesis. Jiang et al. [20] and Zhang et al. [21]
proposed to eliminate the gap between different modalities with the generative adversarial
network (GAN) for multimodal segmentation. In recent years, some unsupervised domain
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adaptation methods [22,23] have been proposed which intend to reduce the gap between
source and target domains by leveraging source domain-labelled data to generate labels
for the target domain. Nevertheless, these methods introduce additional networks from
features to high-definition pictures. This part is mainly for generating texture and style
information, which is not helpful for segmentation. Other methods employ knowledge
distillation [24,25]. Li et al. [24] proposed a novel mutual knowledge distillation scheme
to better exploit modality-shared knowledge with mutual guidance of model outputs,
integrating cross-modality knowledge in a mutual-guided way instead of directly fusing
multimodality knowledge by joint training. Dou et al. [25] reused network parameters by
sharing all convolution kernels across CT and MRI and only employed modality-specific
internal normalization layers that compute respective statistics. Meanwhile, the authors
of [25] introduced a novel loss term by explicitly constraining the Kullback–Leibler (KL)
divergence [26] of derived prediction distributions between modalities. But the strategies
of these methods need manual design, and their distillation strategies are not necessar-
ily perfect.

Instead of generating a support modality image without a ground truth, this work pro-
poses to leverage the latent energy of semantic features. Specifically, this paper introduces a
novel approach called the energy-based semantic augmented segmentation (ESAS) model,
which utilizes the semantic priors of the support modality to enhance the segmentation
performance on the query modality data. In this case, CT is the query modality, and MRI is
the support modality, as CT images are more accessible. ESAS can also be extended to other
unpaired multimodal medical segmentation tasks. In detail, ESAS utilizes a U-Net [9] archi-
tecture and extracts latent semantic features from the support modality. To extract semantic
features from the query modality and support modality in a common space, we leverage a
shared-parameter decoder with independent batch normalization layers. Further, as in the
validation stage, only the query modality is accessed, ESAS learns an energy-based model
and leverages the latent semantic features’ energy of the support modality to transport
semantic features of the query modality to that of the support modality. Finally, it combines
the complete semantic features, including semantic comparative modality information,
for segmentation. Overall, ESAS leverages the latent semantic features’ energy of the
support modality to generate semantic comparative modality information, which can be
used to assist in segmentation. We conduct experiments on the MM-WHS 2017 challenge
dataset [2] to validate the efficiency of our ESAS method. The results of the experiments
show that our proposed ESAS framework substantially improves the Dice accuracy for
cardiac segmentation on CT volumes. The main contributions of this work are summarized
as follows:

- The proposed ESAS, which leverages the latent semantic features’ energy of the sup-
port modality to generate semantic comparative modality information, is a novel and
general method that can be applied to most unpaired multimodal image-learning tasks;

- Instead of generating a whole image, this work only transforms the semantic features,
making the approach lightweight and efficient;

- Extensive experiments on the MM-WHS 2017 challenge dataset [2] demonstrate the
effectiveness of the proposed method, ESAS, which outperforms the state-of-the-
art methods.

2. Materials and Methods

To implicitly leverage the schema of unpaired modalities, in this work, we introduce
a novel unpaired multimodal medical image segmentation method named energy-based
semantic augmented segmentation (ESAS). The overall approach is depicted in Figure 1,
which highlights the key steps of our method.
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(a)

Residual

(b)

Figure 1. An overview of our proposed energy-based semantic augmented segmentation (ESAS)
framework. First, using a pre-train model, ESAS trains modality-specific encoders and shared-
parameter decoders with individual batch normalization layers. The pre-trained model architecture
is shown in (a). Ux and Uy represent the original image input of the query modality and support
modality, respectively, while zx and zy represent their semantic information, respectively, and Ũx

and Ũy represent the segmentation results. Additionally, the energy-based model (EBM) is also
pre-trained. Second, only the query modality is utilized for training and in the inference stages, as it
is shown in (b). Semantic features of the query modality are transported to the support modality.
At last, semantic features are combined with a residual block and then input into the decoder Dec
for segmentation. (a) Unpaired multimodal pre-trained architecture of the ESAS; (b) training and
inference without the support modality architecture of the ESAS.

Firstly, we introduce the structural design of a pre-trained model with shared param-
eters. By sharing the same parameters across different modalities, the ESAS can ensure
that the learned features are consistent and compatible across modalities. Following the
pre-trained model, we introduce an energy-based model for image translation. This model
aims to generate realistic images from one modality to another. By learning to translate
images between modalities, we can bridge the gap between different data sources and
enable the use of more available information for segmentation.

2.1. Pre-Trained Model with Shared Parameters

Inspired by [25], which employed the same set of CNN kernels to extract features for
both modalities rather than using modality-specific encoders/decoders with early/late
fusions. In our approach, we utilize a shared convolutional layer in the decoder for
both modalities, while employing separate CNN convolutional layers for each modal-
ity’s encoder. It gives hope for the extraction of more expressive and robust universal
representations through the use of these modality-independent kernels. Calibration of
the model’s feature extraction is important for this purpose. Normalizing the internal
activation to a Gaussian distribution is a common practice for improving convergence
speed and network generality.
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Let x ∈ Sk
g denote the activation in the kth layer, Sk

g is the gth group of activations in
the layer for which the mean and variance are computed. The normalization layer is:

y =
x− E[x]√
Var[x] + ε

· γ + β, (1)

where γ and β denote the trainable scale and shift. There are different ways to define Sk
g,

e.g., batch normalization [27], instance normalization [28], group normalization [29], etc.
We utilize distinct internal normalization techniques for each modality since the CT

and MRI data possess dissimilar statistics that necessitate distinct normalization methods;
otherwise, this could produce defective features. To be more precise, separate variable
scopes are used to implement normalization layers for different modalities (i.e., CT and
MRI), while a shared variable scope is used to construct convolution layers. For each
training iteration, the samples from each modality are loaded separately into sub-groups
and passed through shared convolution layers and independent normalization layers to
generate logits. These logits are then used to compute the loss.

Since there is a skip connection for the U-shaped network used here, the image-to-
image translation needs to be verified. To verify the effectiveness of the image-to-image
transition that will be discussed later, we use the intermediate results of the encoder and
downsampled ground truth to train a simple decoder Dec′ for the support modality at the
same time. During training, DC and CE loss need to be calculated[30]:

L = DC + CE, (2)

where DC denotes the Dice coefficient and CE means cross-entropy. The Dice loss and
cross-entropy loss can be calculated by

DC = 1−
2

C
∑

i=1
xi x̂i

C
∑

i=1
(xi + x̂i)

, (3)

CE = −
C

∑
i=1

xi log(x̂i), (4)

where C, xi and x̂i represent the number of classes, the ground truth (0 or 1), and the
predicted class probability, respectively.

The model will be trained by minimizing L1 + λL2.

• L1: the loss measures the difference between the full-sized segmentation results of the
U-shaped network and the ground truth.

• L2: the loss measures the difference between the low-resolution inference results of
the simple decoders Dec′ and the downsampled ground truth.

2.2. Energy-Based Modal

Given an observed image x ∈ RD sampled from distribution pdata, an energy-based
model is defined as follows:

pθ(x) =
exp(−Eθ(x))

Z(θ)
, (5)

where Eθ(x) : RD → R is the scalar energy function parameterized by θ and Z(θ) denotes
the partition function:

Z(θ) =
∫

exp(−Eθ(x))dx. (6)

To calculate the energy of all x, which cannot be solved in high dimensions, we need
some way to approximate or avoid directly calculating Z(θ).



Electronics 2023, 12, 2174 6 of 13

The model can be trained by maximizing the log-likelihood

L(θ) =
1
N

N

∑
i=1

logpθ
(xi) ≈ Ex∼pdata log(pθ(x)) (7)

with the given data points {xi}N
i=1 observed from the data distribution. The derivative of

the negative log-likelihood is

−∂L(θ)
∂θ

= Ex∼pdata

[
∂

∂θ
Eθ(x)

]
−Ex̃∼pθ

[
∂

∂θ
Eθ(x̃)

]
, (8)

where the second expectation term under pθ is intractable. We will approximate it via
Markov chain Monte Carlo (MCMC) such that the EBM can be updated by gradient
descent [31].

To sample x̃ ∼ pθ via MCMC, we rely on Langevin dynamics that recursively compute
the following step [32]:

x̃t+1 = x̃t − ηt

2
∂

∂x̃t Eθ

(
x̃t)+√ηtεt, εt ∼ N (0, I), (9)

where ηt is the step size typical with polynomially decay to ensure convergence and εt is a
Gaussian sample to capture the data uncertainty and ensure sample convergence.

Given two domains X and Y , our input images are sampled on the marginal distri-
butions PX and PY . Suppose we want to translate from X to Y (i.e., from CT to MRI). We
can achieve this by performing image-to-image translation in the latent semantic space
obtained from the previous pre-trained encoder.

Specifically, we consider a pre-trained model for the input image u as follows:

Encoding: zx = Encx(u) , u ∼ PX
zy = Ency(u) , u ∼ PY

Decoding: ũ = Dec(zx) (or Dec(zy)),

(10)

where Encx(·), Ency(·) and Dec(·) represent the encoder and decoder, and zx and zy
represent the semantic information extracted by the corresponding encoder.

To adapt PX to PY , we aim to learn an EBM Ex→y such that:

pθ(zy) =
1

Z(θ)
exp(−Ex→y(zy)), zy = Ency(y). (11)

In practice, we use a 3D convolutional network as the EBM. The learning process of
Ex→y is very simple by adopting Equation (9):

z̃t+1
y = z̃t

y −
ηt

2
∂

∂z̃t
y

Ex→y

(
z̃t

y

)
+
√

ηtεt, (12)

where z̃0
y = zx = Encx(x), x ∼ PX . After T Langevin steps, the reconstructed Dec(z)

will serve as a better result, where z is the concatenate of zx and z̃T
y . As the encoders are

pre-trained, the above method only requires optimization of the EBM before training a new
decoder Dec. Meanwhile, zx and zy are the last latent space that is not involved in the skip
connection in the U-shaped network.

3. Experiments and Results
3.1. Dataset and Implementation Details

We evaluate the proposed method on the Multimodality Whole Heart Segmentation
Challenge 2017 (MM-WHS 2017) dataset, which contains unpaired 20 MRI and 20 CT



Electronics 2023, 12, 2174 7 of 13

volumes as training data and the annotations of 7 cardiac substructures, including the
left ventricle blood cavity (LV), the right ventricle blood cavity (RV), the left atrium blood
cavity (LA), the right atrium blood cavity (RA), the myocardium of the left ventricle
(MYO), the ascending aorta (AA), and the pulmonary artery (PA) [2]. We set MRI as the
support modality and CT as the query modality. We randomly split 20 CT volumes and
20 MRI volumes into five folds and utilize five-fold cross-validation. All experiments
were conducted based on Python 3.10.9, PyTorch 1.13.1, and Ubuntu 20.04. All training
procedures were performed on a single NVIDIA A100 GPU with 40GB memory, taking
about 3 h for training.

For data pre-processing, we use the same pre-processing (code for data pre-processing
in nnU-Net: https://github.com/MIC-DKFZ/nnUNet/blob/v1.7.1/nnunet/preprocessing/
preprocessing.py, accessed on 20 April 2023) and argumentation (code for data augmentation
in nnU-Net: https://github.com/MIC-DKFZ/nnUNet/blob/v1.7.1/nnunet/training/
data_augmentation/default_data_augmentation.py accessed on 20 April 2023) method
as nnU-Net [30] and use the patch-based training mode with a patch size of 64× 64× 64.
We train our network for 1000 epochs with a batch size of 2. The Adam [33] algorithm
(documentation and implementation of Adam in Pytorch: https://pytorch.org/docs/
stable/generated/torch.optim.Adam.html, accessed on 20 April 2023) is leveraged to
optimize the network with β1 and β2 of 0.9 and 0.999, respectively, as they are good default
settings for the tested machine learning problems [33]. Furthermore, we adopt the “poly”

learning rate policy where the initial learning rate 10−4 is multiplied by
(

1− epoch
max_epoch

)p

with p = 0.9. For EBM, the number of Langevin steps is default set to 20.
We list the network configurations of our proposed ESAS in Table 1. In detail, the

“Dilated Conv3D” is a type of convolution that can “inflate” the kernel by inserting holes
between the kernel elements [34], the “ConvTranspose3D” is used to upsample the feature
maps of the previous layer, which involves expanding the size of the feature maps by
padding zeros and then applying a convolution operation to them [35]. The “Decoder”
row indicates the configuration of the decoder Dec in the pre-training stage. For Dec, used
in the training and inference stage, we design a residual block to combine multimodal
semantic features.

Table 1. The network configurations of our proposed energy-based semantic augmented segmenta-
tion (ESAS) model, reporting the operators, input size, output size, and kernel size. The stride can be
inferred easily based on the input and output size as we apply padding equal to 1. Specifically, ESAS
uses P to denote the patch size, and C to denote the base number of filters.

Architecture Modules Operators Input Size Output Size Kernel Size

Encoder

Down1

Conv3D + Batch
Norm +
LeakyReLU

P3 × 1 P3 × C 33

Dilated Conv3D +
Batch Norm +
LeakyReLU

P3 × C (P/2)3 × C 33

Down2

Conv3D + Batch
Norm +
LeakyReLU

(P/2)3×C (P/2)3 × 2C 33

Dilated Conv3D +
Batch Norm +
LeakyReLU

(P/2)3 × 2C (P/4)3 × 2C 33

https://github.com/MIC-DKFZ/nnUNet/blob/v1.7.1/nnunet/preprocessing/preprocessing.py
https://github.com/MIC-DKFZ/nnUNet/blob/v1.7.1/nnunet/preprocessing/preprocessing.py
https://github.com/MIC-DKFZ/nnUNet/blob/v1.7.1/nnunet/training/data_augmentation/default_data_augmentation.py
https://github.com/MIC-DKFZ/nnUNet/blob/v1.7.1/nnunet/training/data_augmentation/default_data_augmentation.py
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
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Table 1. Cont.

Architecture Modules Operators Input Size Output Size Kernel Size

Encoder

Down3

Conv3D + Batch
Norm +
LeakyReLU

(P/4)3 × 2C (P/4)3 × 4C 33

Dilated Conv3D +
Batch Norm +
LeakyReLU

(P/4)3 × 4C (P/8)3 × 4C 33

Down4

Conv3D + Batch
Norm +
LeakyReLU

(P/8)3 × 4C (P/8)3 × 8C 33

Dilated Conv3D +
Batch Norm +
LeakyReLU

(P/8)3 × 8C (P/16)3 × 8C 33

Residual Conv0 Conv3D (P/16)3 × 16C (P/16)3 × 16C 33

Decoder

Up1

ConvTranspose3D
+ Batch Norm +
LeakyReLU

(P/16)3×16C (P/8)3×8C 33

Conv3D + Batch
Norm +
LeakyReLU

(P/8)3 × 16C (P/8)3 × 8C 33

Up2

ConvTranspose3D
+ Batch Norm +
LeakyReLU

(P/8)3 × 8C (P/4)3 × 4C 33

Conv3D + Batch
Norm +
LeakyReLU

(P/4)3 × 8C (P/4)3 × 4C 33

Up3

ConvTranspose3D
+ Batch Norm +
LeakyReLU

(P/4)3 × 4C (P/2)3 × 2C 33

Conv3D + Batch
Norm +
LeakyReLU

(P/2)3 × 4C (P/2)3 × 2C 33

Up4

ConvTranspose3D
+ Batch Norm +
LeakyReLU

(P/2)3 × 2C P3 × C 33

Conv3D + Batch
Norm +
LeakyReLU

P3 × 2C P3 × C 33

Output Conv3D P3 × C P3 ×O 33

EBM

Conv1
Conv3D + Batch
Norm +
LeakyReLU

(P/16)3 × 8C (P/16)3 × 4C 33

Conv2
Conv3D + Batch
Norm +
LeakyReLU

(P/16)3 × 4C (P/16)3 × 2C 33

Conv3 Conv3D (P/16)3 × 2C (P/16)3 13

3.2. Comparison with Other Methods

To demonstrate the effectiveness of our method, we use a base model with only CT
data as our baseline and compare our method with other multimodality learning methods.
The quantitative results in whole heart segmentation are shown in Table 2. Our results
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(the last two rows) outperform the existing state-of-the-art results. In order to make the
comparison fair, the value of the Dice score listed in the penultimate row of the table uses
the same evaluation method as the previous method, resize-based; in the last row, we use
the patch-based method to perform the evaluation on the original image, which is more
practical and more convenient to be used directly by doctors, because the output map is
not cropped.

Table 2. Quantitative comparison between our method and other multimodality segmentation
methods. Here, we take CT as the query modality and MRI as the support modality. The Dice scores
of all heart substructures and the average of them are reported here. Since the results for most cases
have been detailed in [24] and our setup is similar to it, we directly refer to it for these results. In
addition, the largest and second largest Dice scores are in bold.

Method Mean Dice
Dice of Substructure of Heart

MYO LA LV RA RV AA PA

Baseline 0.8706 0.8702 0.8922 0.9086 0.8386 0.8460 0.9252 0.8134
Fine-tune 0.8769 0.8716 0.9040 0.9079 0.8443 0.8526 0.9274 0.8305
Joint-training 0.8743 0.8665 0.9076 0.9123 0.8278 0.8492 0.9302 0.8266
X-Shape [19] 0.8767 0.8719 0.8979 0.9094 0.8551 0.8444 0.9343 0.8240
Jiang et al. [20] 0.8765 0.8723 0.9054 0.9073 0.8338 0.8525 0.9484 0.8156
Zhang et al. [21] 0.8850 0.8781 0.9112 0.9134 0.8514 0.8631 0.9430 0.8342

Ours 0.8945 0.8961 0.9230 0.9045 0.8661 0.8685 0.9492 0.8539
Ours (patch-based) 0.9267 0.9183 0.9405 0.9411 0.9323 0.9343 0.9530 0.8669

3.3. Ablation Study of Key Components

In order to ensure that each individual component of our framework is effective and
contributes to the overall performance, we conducted an ablation study. This involves
systematically removing specific parts of the framework and evaluating the results. By
doing so, we can identify which components are most critical and make informed decisions
about where to focus our efforts to improve the framework further.

In detail, we use a base model with only CT data as our baseline. The results of our
ablation study are presented in Table 3. The table displays the performance of the system
with each individual component removed, as well as the overall performance when all
components are included. The results clearly show that the removal of certain components
leads to a significant deterioration in performance.

Table 3. Ablation study of key components in our framework, where the mean Dice scores of all
heart substructures by patch-based method evaluation are reported. In addition, the largest Dice
scores are in bold.

MR Simple Decoder EBM Mean Dice
Dice of Substructure of Heart

MYO LA LV RA RV AA PA

0.9245 0.9126 0.9368 0.9371 0.9287 0.9343 0.9503 0.8718
X 0.9247 0.9130 0.9381 0.9387 0.9312 0.9357 0.9513 0.8651
X X 0.9250 0.9163 0.9375 0.9395 0.9312 0.9361 0.9512 0.8635
X X X 0.9267 0.9183 0.9405 0.9411 0.9323 0.9343 0.9530 0.8669

Specifically, in the second row of the table, we introduced MRI as an additional
modality and employed a shared-parameter model. This approach resulted in a slight
improvement in the accuracy of the segmentation results, compared to using CT as the
single modality. In the third row of the table, we further improved the segmentation
results by incorporating a simple decoder into our model. This decoder allows for the
direct decoding of semantic information into segmentation results, thereby simplifying
the overall segmentation process and increasing its efficiency. Finally, in the last row of
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the table, we explored the transfer of semantic information learned from CT to MRI using
EBM. This technique allowed us to effectively transfer the knowledge learned from one
modality to another, resulting in even more accurate segmentation results. This approach
demonstrated the effectiveness of our method in leveraging pre-existing knowledge from
one imaging modality to improve segmentation results in another modality. This indicates
that each individual component plays an important role in the overall performance of the
system and that all components are necessary to achieve the best results. Figure 2 shows
some visualization comparisons.

Figure 2. Qualitative comparison of the segmentation results from ablation study. From left to right
are the CT image inputs, the results of the baseline model trained with CT images only, the results
of the model learned jointly using unpaired MR images, the results of the pre-trained model with
shared parameters as described in Section 2.1, the results of the model after introducing EBM, and
the ground truth.

Through our ablation study, we were able to confirm the effectiveness of each compo-
nent in our framework and gain a better understanding of the relative importance of each
component. This information can help us to refine our framework further and develop
more effective ones in the future.

3.4. Proof-of-Concept Verification of the EBM

As shown in Figures 2 and 3 and Table 3, EBM has an effect on the improvement
of results. We conduct a proof-of-concept verification which verified that the EBM can
effectively translate information from one type of medical image (CT) to another type (MRI)
rather than pre-learned shared parameters with “skip connections” between the two types
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of images. To do this, we used random images and the MRI information translated by the
EBM (i.e., using different “Langevin steps”, or iterations of the model) to feed a simplified
decoder in a pre-trained model, then calculated the difference between the segmentation
results obtained by the decoder and the ground truth, or the actual segmentation of the
images. By doing this, we were able to determine whether the EBM was successfully
learning to translate information between the two types of images or simply relying on
pre-learned parameters to generate its results. This is an important step in validating
the effectiveness of the EBM model in translating medical image data between different
imaging modalities. The results are shown in Figure 4.

Figure 3. Mean Dice evaluated during training. The blue line shows the mean Dice on the validation
set when pre-training the shared-parameter decoder, and the orange line shows the one when training
the new decoder after we have trained the EBM.

Figure 4. Comparison under different translation results. The horizontal axis represents the number
of iterations of Langevin steps, while the vertical axis represents the Dice coefficient results. When
using EBM, our results are better than those of random images (the green dotted line) because we use
the decoder with shared parameters that keep our semantic features in the same space. The results
obtained from the original MRI images (the grey dotted line) should be an upper bound.

4. Conclusions

We proposed the energy-based semantic augmented segmentation (ESAS) model, a
new approach for cross-modality image segmentation which leverages the latent seman-
tic features’ energy of the support modality to generate semantic comparative modality
information. This is a novel and general method that can be applied to most unpaired mul-
timodal image learning tasks. To achieve this, we developed a framework that involves the
use of a pre-trained model with shared parameters, which is then used to train an energy-
based model that leverages the modality-shared knowledge. We conducted experiments
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on the MM-WHS 2017 dataset to evaluate the performance of our method. The results of
our experiments demonstrate that our proposed approach is effective in improving the
segmentation performance of query modality images by incorporating prior knowledge
from supporting modality images. Overall, we believe that our novel framework could
provide a valuable contribution to the field of cross-modality image segmentation, and has
the potential to be applied to a range of medical imaging applications.
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X.W.; visualization, S.C. and C.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are publicly avail-
able. This data can be found from: http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/
(accessed on 28 February 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cao, X.; Yang, J.; Gao, Y.; Guo, Y.; Wu, G.; Shen, D. Dual-core steered non-rigid registration for multi-modal images via

bi-directional image synthesis. Med. Image Anal 2017, 41, 18–31. [CrossRef] [PubMed]
2. Zhuang, X.; Li, L.; Payer, C.; Štern, D.; Urschler, M.; Heinrich, M.P.; Oster, J.; Wang, C.; Smedby, Ö.; Bian, C.; et al. Evaluation of

algorithms for multi-modality whole heart segmentation: An open-access grand challenge. Med. Image Anal. 2019, 58, 101537.
[CrossRef]

3. Liu, X.; Guo, S.; Yang, B.; Ma, S.; Zhang, H.; Li, J.; Sun, C.; Jin, L.; Li, X.; Yang, Q.; et al. Automatic organ segmentation for CT
scans based on super-pixel and convolutional neural networks. J. Digital Imaging 2018, 31, 748–760. [CrossRef] [PubMed]

4. Moltz, J.H.; Bornemann, L.; Dicken, V.; Peitgen, H. Segmentation of liver metastases in CT scans by adaptive thresholding and
morphological processing. In Proceedings of the MICCAI workshop, New York, NY, USA, 6 September 2008; Volume 41, p. 195.

5. Chang, Y.L.; Li, X. Adaptive image region-growing. IEEE Trans. Med. Imaging 1994, 3, 868–872. [CrossRef] [PubMed]
6. Pohle, R.; Toennies, K.D. Segmentation of medical images using adaptive region growing. In Proceedings of the Medical Imaging

2001: Image Processing, Davis, CA, USA, 18–22 June 2001, Volume 4322; pp. 1337–1346.
7. Luo, S.Review on the methods of automatic liver segmentation from abdominal images. J. Comput. Commun. 2014, 2, 1. [CrossRef]
8. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; Van Der Laak, J.A.; Van Ginneken, B.; Sánchez, C.I.

A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef] [PubMed]
9. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of

the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich,
Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241.

10. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

11. Alqazzaz, S.; Sun, X.; Yang, X.; Nokes, L. Automated brain tumor segmentation on multi-modal MR image using SegNet. Comput.
Vis. Media 2019, 5, 209–219. [CrossRef]

12. Han, Z.; Chen, Q.; Zhang, L.; Mo, X.; You, J.; Chen, L.; Fang, J.; Wang, F.; Jin, Z.; Zhang, S.; et al. Radiogenomic association
between the t2-flair mismatch sign and idh mutation status in adult patients with lower-grade gliomas: An updated systematic
review and meta-analysis. European Radiol. 2022, 32, 5339–5352. [CrossRef] [PubMed]

13. Kamnitsas, K.; Ledig, C.; Newcombe, V.F.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B. Efficient multi-scale
3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 2017, 36, 61–78. [CrossRef] [PubMed]

14. Zhou, C.; Ding, C.; Lu, Z.; Wang, X.; Tao, D. One-pass multi-task convolutional neural networks for efficient brain tumor
segmentation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st
International Conference, Granada, Spain, 16–20 September 2018; Proceedings, Part III 11; Springer: Berlin/Heidelberg, Germany,
2018, pp. 637–645.

15. Pereira, S.; Pinto, A.; Alves, V.; Silva, C.A. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE
Trans. Med. Imaging 2016, 35, 1240–1251. [CrossRef] [PubMed]

16. Tseng, K.L.; Lin, Y.L.; Hsu, W.; Huang, C.Y. Joint sequence learning and cross-modality convolution for 3D biomedical
segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26
July 2017; pp. 6393–6400.

17. Dolz, J.; Gopinath, K.; Yuan, J.; Lombaert, H.; Desrosiers, C.; Ayed, I.B. HyperDense-Net: A hyper-densely connected CNN for
multi-modal image segmentation. IEEE Trans. Med. Imaging 2018, 38, 1116–1126. [CrossRef] [PubMed]

http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/
http://doi.org/10.1016/j.media.2017.05.004
http://www.ncbi.nlm.nih.gov/pubmed/28533050
http://dx.doi.org/10.1016/j.media.2019.101537
http://dx.doi.org/10.1007/s10278-018-0052-4
http://www.ncbi.nlm.nih.gov/pubmed/29679242
http://dx.doi.org/10.1109/83.336259
http://www.ncbi.nlm.nih.gov/pubmed/18296257
http://dx.doi.org/10.4236/jcc.2014.22001
http://dx.doi.org/10.1016/j.media.2017.07.005
http://www.ncbi.nlm.nih.gov/pubmed/28778026
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
http://dx.doi.org/10.1007/s41095-019-0139-y
http://dx.doi.org/10.1007/s00330-022-08607-8
http://www.ncbi.nlm.nih.gov/pubmed/35169897
http://dx.doi.org/10.1016/j.media.2016.10.004
http://www.ncbi.nlm.nih.gov/pubmed/27865153
http://dx.doi.org/10.1109/TMI.2016.2538465
http://www.ncbi.nlm.nih.gov/pubmed/26960222
http://dx.doi.org/10.1109/TMI.2018.2878669
http://www.ncbi.nlm.nih.gov/pubmed/30387726


Electronics 2023, 12, 2174 13 of 13

18. Nie, D.; Wang, L.; Gao, Y.; Shen, D. Fully convolutional networks for multi-modality isointense infant brain image segmentation.
In Proceedings of the 2016 IEEE 13Th international symposium on biomedical imaging (ISBI), Prague, Czech Republic, 13–16
April 2016; pp. 1342–1345.

19. Valindria, V.V.; Pawlowski, N.; Rajchl, M.; Lavdas, I.; Aboagye, E.O.; Rockall, A.G.; Rueckert, D.; Glocker, B. Multi-modal
learning from unpaired images: Application to multi-organ segmentation in CT and MRI. In Proceedings of the 2018 IEEE winter
conference on applications of computer vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 547–556.

20. Jiang, J.; Hu, Y.C.; Tyagi, N.; Zhang, P.; Rimner, A.; Mageras, G.S.; Deasy, J.O.; Veeraraghavan, H. Tumor-aware, adversarial
domain adaptation from CT to MRI for lung cancer segmentation. In Proceedings of the Medical Image Computing and Computer
Assisted Intervention—MICCAI 2018: 21st International Conference, Granada, Spain, 16–20 September 2018; Proceedings, Part III
11; Springer: Berlin/Heidelberg, Germany, 2018; pp. 777–785.

21. Zhang, Z.; Yang, L.; Zheng, Y. Translating and segmenting multimodal medical volumes with cycle-and shape-consistency
generative adversarial network. In Proceedings of the IEEE conference on computer vision and pattern Recognition, Salt Lake
City, UT, USA, 18–22 June 2018; pp. 9242–9251.

22. Vesal, S.; Gu, M.; Kosti, R.; Maier, A.; Ravikumar, N. Adapt everywhere: Unsupervised adaptation of point-clouds and entropy
minimization for multi-modal cardiac image segmentation. IEEE Trans. Med. Imaging 2021, 40, 1838–1851. [CrossRef] [PubMed]

23. Zhao, Z.; Zhou, F.; Xu, K.; Zeng, Z.; Guan, C.; Zhou, K. LE-UDA: Label-efficient unsupervised domain adaptation for medical
image segmentation. IEEE Trans. Med. Imaging 2022, 42, 633–646. [CrossRef] [PubMed]

24. Li, K.; Yu, L.; Wang, S.; Heng, P.A. Towards cross-modality medical image segmentation with online mutual knowledge
distillation. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020;
Volume 34, pp. 775–783.

25. Dou, Q.; Liu, Q.; Heng, P.A.; Glocker, B. Unpaired multi-modal segmentation via knowledge distillation. IEEE Trans. Med.
Imaging 2020, 39, 2415–2425. [CrossRef] [PubMed]

26. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [CrossRef]
27. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the International Conference on Machine Learning. PMLR, Lille, France, 6–11 July 2015; pp. 448–456.
28. Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Instance normalization: The missing ingredient for fast stylization. arXiv 2016,

arXiv:1607.08022.
29. Wu, Y.; He, K. Group normalization. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany,

8–14 September 2018; pp. 3–19.
30. Isensee, F.; Jaeger, P.F.; Kohl, S.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based

biomedical image segmentation. Nat. Methods 2021, 18, 203–211. [CrossRef] [PubMed]
31. Song, Y.; Kingma, D.P. How to train your energy-based models. arXiv 2021, arXiv:2101.03288.
32. Welling, M.; Teh, Y.W. Bayesian learning via stochastic gradient Langevin dynamics. In Proceedings of the 28th International

Conference on Machine Learning (ICML-11), Bellevue, DC, USA, 28 June–2 July 2011; pp. 681–688.
33. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on

Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; Conference Track Proceedings.
34. Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. In Proceedings of the 4th International Conference

on Learning Representations, ICLR 2016, San Juan, Puerto Rico, 2–4 May 2016; Conference Track Proceedings.
35. Zeiler, M.D.; Krishnan, D.; Taylor, G.W.; Fergus, R. Deconvolutional networks. In Proceedings of the 2010 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 2528–2535.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TMI.2021.3066683
http://www.ncbi.nlm.nih.gov/pubmed/33729930
http://dx.doi.org/10.1109/TMI.2022.3214766
http://www.ncbi.nlm.nih.gov/pubmed/36227829
http://dx.doi.org/10.1109/TMI.2019.2963882
http://www.ncbi.nlm.nih.gov/pubmed/32012001
http://dx.doi.org/10.1214/aoms/1177729694
http://dx.doi.org/10.1038/s41592-020-01008-z
http://www.ncbi.nlm.nih.gov/pubmed/33288961

	Introduction
	Materials and Methods
	Pre-Trained Model with Shared Parameters 
	Energy-Based Modal

	Experiments and Results
	Dataset and Implementation Details
	Comparison with Other Methods
	Ablation Study of Key Components
	Proof-of-Concept Verification of the EBM

	Conclusions
	References

