
Citation: Lan, Y.-K.; Chen, Y.-S.; Hou,

T.-C.; Wu, B.-L.; Chu, Y.-S.

Development Board Implementation

and Chip Design of IEEE 1588 Clock

Synchronization System Applied to

Computer Networking. Electronics

2023, 12, 2166. https://doi.org/

10.3390/electronics12102166

Academic Editor: Esteban

Tlelo-Cuautle

Received: 28 March 2023

Revised: 4 May 2023

Accepted: 8 May 2023

Published: 9 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Development Board Implementation and Chip Design of
IEEE 1588 Clock Synchronization System Applied to
Computer Networking
Yan-Kai Lan, Yee-Shao Chen, Ting-Chao Hou, Bo-Lin Wu and Yuan-Sun Chu *

Electrical Engineering Department, National Chung Cheng University, Chiayi 62102, Taiwan;
ggyy870224@gmail.com (Y.-K.L.); s8747226@gmail.com (Y.-S.C.); ieetch@ccu.edu.tw (T.-C.H.);
berlin880613@gmail.com (B.-L.W.)
* Correspondence: chu@ee.ccu.edu.tw

Abstract: With the vigorous development of industrial automation and the Internet of things, the
transmission of data is more dependent on immediacy, so network devices have higher and higher
requirements for time synchronization accuracy. The clock source of common network devices is
provided by the transistor oscillator in the server, but the oscillator will change with factors such as
aging and temperature, and it cannot be guaranteed that the oscillator in the server will work at the
same frequency. Time synchronization can be achieved by technologies such as IRIG-B, NTP, or IEEE
1588 (PTP), but the hardware cost of building IRIG-B is high, and NTP has the lowest cost, but it can
only provide time accuracy from milliseconds to microseconds. PTP can provide sub-microsecond
or even nanosecond time precision. It is a system of time synchronization mechanisms through
Ethernet transmission. In this article, we first propose a time synchronization system using the
development board and PDP protocol. On the Xilinx Zynq-7000 SOC platform of Petalinux, we
implement the hardware solution of Linux PTP. The hardware time stamp is 20 ns. To improve the
accuracy, the congenital frequency error between the oscillators must be considered. Therefore, a
PTP auxiliary time stamp with dynamic frequency compensation is proposed and designed into a
chip. Experimental results show that at 45 nm (TN40G) it can operate at 370 MHz and achieve 2.7 ns
resolution, which can be applied to more demands.

Keywords: IEEE 1588; precision time protocol; time synchronization; IoT

1. Introduction

In order to implement Industry 4.0 to achieve applications such as smart factories,
machine control, and data acquisition, it is necessary to use technologies such as the
Internet of things and sensors. Among them, the Internet of things connects computers and
other industrial equipment through the network, which will make the network structure
more and more large, and the transmission of data depends more on real-time. Common
network time synchronization methods include GNSS, NTP, and PTP, etc. The GNSS clock
signal is transmitted through radio waves and special equipment must be installed on
the application device, so the cost is relatively high. However, NTP has the lowest cost.
In the industrial Internet of things (IIoT), the network time protocol (NTP) can be used
for time synchronization [1,2]. NTP is low-cost and easy to use, but it can only provide
millisecond-level time precision, which cannot meet the precision required by modern
measuring instruments and industrial control. Therefore, the IEEE Society proposed the
Precision Time Synchronization Protocol (PTP) in 2002, also known as IEEE 1588. The
second edition of IEEE 1588–2008 [3] was revised in 2008, and the latest version is the
third edition of IEEE 1588–2019 [4], released in 2019. PTP is a synchronization protocol
for periodic packet exchange using Ethernet, using primary/secondary architecture; its

Electronics 2023, 12, 2166. https://doi.org/10.3390/electronics12102166 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12102166
https://doi.org/10.3390/electronics12102166
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-7511-8340
https://doi.org/10.3390/electronics12102166
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12102166?type=check_update&version=2

Electronics 2023, 12, 2166 2 of 19

advantage is that it can be achieved by using the existing Ethernet line, which makes the
deployment of the time synchronization network easier.

Regarding the research on IEEE 1588, B. Zhao [5] implemented a design scheme
of FPGA, DM9000, and DP83640 based on the detailed analysis of IEEE 1588 protocol
and the best primary clock algorithm (BMCA), through the integration of software and
hardware. Verified by experiment, the system can realize sub-microsecond level time
precision in synchronization with the primary clock and secondary clock. Their design
improved the time synchronization precision and simplified the hardware circuit design. N.
Moreira [6] discussed the implementation of the PTP function on the Xilinx Zynq-7000 SOC
development board. The experimental environment is to use one development board as
PTP primary and the other development board as PTP secondary and use an oscilloscope
and a computer to view the PPS (pulse-per-second) signals generated by the device and
the message of the PTP console at the same time. PPS is a signal that outputs a high logic
level once a second and the pulse width is generally 100 ms. It can be applied to smart
grids and substation automation systems and can meet reliability requirements. S. S. W.
Lee [7] proposed two architectures to realize the OpenFlow switch with the PTP function.
The first architecture is to embed the designed PTP module in a NetFPGA-based OpenFlow
switch. The second architecture is to use the designed PTP module as an add-on module to
work with a PTP unaware switch. The results show that the PTP module can implement
a software-defined time synchronization network, and can meet the precision standards
of microsecond-level small wireless base stations. Z. Idrees [8] compared common time
synchronization technologies, such as GPS, NTP, and PTP, and concluded that PTP is
the most stable clock synchronization technology, and also proposed many methods to
improve the accuracy of PTP, including boundary clock optimizations, modifications in
IEEE 1588 messaging, improved internal clock stability, etc. Due to the rapid development
of artificial intelligence algorithms and the establishment of smart factories, especially
distributed optimization (DO) on multi-agent networks, has been extensively studied [9].
Time synchronization is an important key. All devices on the network need to have a
common time reference so that all devices work together and take fast actions at precise
times.

In this paper, firstly, we implemented the Linux PTP hardware solution on the Xilinx
Zynq-7000 SOC platform of Petalinux. The hardware timestamp is 20 ns. To improve
accuracy, we propose an IEEE 1588 (PTP) chip design and implementation with dynamic
frequency compensation. Experimental results show that the 45 nm (TN40G) node can
work at 370 MHz with a resolution of 2.7 ns. The final calculated time offset is 10.8 ns. The
core of the IC we designed can be integrated into related communication chips, it can be
applied to a related communication network card, and this communication network card
has the function of fast time synchronization.

The rest of this article is structured as follows. In Section 2, we will introduce PTP.
In Section 3, we illustrate the implementation of system timestamps, including software
timestamps and hardware timestamps. In Section 4, we illustrate the IC design and
implementation of PTP hardware-assisted time stamping. Experimental results and analysis
will be placed in Section 5. Section 6 provides conclusions.

2. Precision Time Protocol Introduction

The PTP protocol sends periodic packets to each node in the network through the Eth-
ernet to confirm the system structure of the entire network and transmit time information
to achieve synchronization between different clocks. PTP defines a relay request–response
mechanism to measure the offset of Primary and Secondary. It calculates the sending and
receiving time by sending Sync, Delay_Req, Delay_Resp, and Follow_up packets, as shown
in Figure 1. Using the timestamp generated by the above-mentioned time synchroniza-
tion mechanism to calculate the round-trip time of the packet, the offset time and path
delay time between the two clocks can also be calculated. The Secondary will correct the

Electronics 2023, 12, 2166 3 of 19

local time according to the calculated offset time to achieve time synchronization with the
Primary.

Electronics 2023, 12, x FOR PEER REVIEW 3 of 18

Figure 1 is a schematic diagram of the implementation of the delay request–response

mechanism; assume that the time difference between Primary and Secondary is offset, the

transmission path delay between Primary and Secondary is delay, and the delays are sym-

metrical to each other.

Figure 1. Delayed request–response mechanism synchronization method.

After the above packet exchange, Secondary has four timestamps from t1~t4, such as

Equations (1) and (2)

t1 + delay = t2 − offset (1)

t3 − offset + delay = t4 (2)

After finishing, if Equation (3) is the time difference t_ms from the primary terminal

to the secondary terminal and Equation (4) is the time difference t_sm from the secondary

terminal to the primary terminal, the offset time of Equation (5) can also be calculated

(time offset) and the average path delay time of Equation (6) can also be calculated (mean

path delay). This basic synchronization message exchange is only applicable when t_ms

and t_sm time are approximately the same, when the difference between t_ms and t_sm

exceeds the set threshold, the delayAsymmetry value is required for error correction.

t_ms = t2 –t1 = delay + offset (3)

t_sm = t4 –t3 = delay − offset (4)

Offset =
(��� � ���)

�
 (5)

meanPathDelay =
(��� � ���)

�
 (6)

Figure 1. Delayed request–response mechanism synchronization method.

Figure 1 is a schematic diagram of the implementation of the delay request–response
mechanism; assume that the time difference between Primary and Secondary is offset,
the transmission path delay between Primary and Secondary is delay, and the delays are
symmetrical to each other.

After the above packet exchange, Secondary has four timestamps from t1~t4, such as
Equations (1) and (2)

t1 + delay = t2 − offset (1)

t3 − offset + delay = t4 (2)

After finishing, if Equation (3) is the time difference t_ms from the primary terminal
to the secondary terminal and Equation (4) is the time difference t_sm from the secondary
terminal to the primary terminal, the offset time of Equation (5) can also be calculated (time
offset) and the average path delay time of Equation (6) can also be calculated (mean path
delay). This basic synchronization message exchange is only applicable when t_ms and
t_sm time are approximately the same, when the difference between t_ms and t_sm exceeds
the set threshold, the delayAsymmetry value is required for error correction.

t_ms = t2 − t1 = delay + offset (3)

t_sm = t4 − t3 = delay − offset (4)

Offset =
(tsm− tsm)

2
(5)

Electronics 2023, 12, 2166 4 of 19

meanPathDelay =
(tms + tsm)

2
(6)

3. Implementation of System Timestamps (Including Software and Hardware Timestamps)

Figure 2 shows the network transmission protocol implemented by our system, which
is formulated according to the simplified TCP/IP protocol [10] of the OSI (Open System
Interconnection) Model. The OSI model is to formulate seven-layer standards for software
and hardware in the network and uses common standards to enable different systems to
communicate with each other. The TCP/IP protocol is currently a widely used network
transmission protocol for the merging of functional layers.

Electronics 2023, 12, x FOR PEER REVIEW 4 of 18

3. Implementation of System Timestamps (Including Software and

Hardware Timestamps)

Figure 2 shows the network transmission protocol implemented by our system,

which is formulated according to the simplified TCP/IP protocol [10] of the OSI (Open

System Interconnection) Model. The OSI model is to formulate seven-layer standards for

software and hardware in the network and uses common standards to enable different

systems to communicate with each other. The TCP/IP protocol is currently a widely used

network transmission protocol for the merging of functional layers.

Figure 2. Network transmission protocol of PTP protocol.

Figure 3 is the implementation architecture of the PTP protocol. In the agreement,

points A, B, and C are the positions where timestamps may be generated [11,12]. The syn-

chronization accuracy is greatly affected by the position where the timestamp is gener-

ated. Point A is at the application layer mark timestamp, this is the simplest way because

it can be realized by software, but the ji�er of the protocol stack delay is uncertain, and

the delay ji�er will cause a difference between about a few milliseconds ms and tens of

microseconds µs due to errors, this implementation method is not used by ordinary peo-

ple. Point B is to mark the timestamp between the network layer (IP layer) and the media

access control layer (MAC layer). This method avoids the uncertainty of protocol stack

delay ji�er, and can also be implemented by software, and the time accuracy can reach the

microsecond level. Point C is to mark the timestamp at the GMII (gigabit media-independ-

ent interface) close to the physical layer (PHY). GMII defines the logical and electrical

characteristics of the reconciliation sublayer (RS) and gigabit media-independent interface

(GMII) between CSMA/CD media access controllers and various PHYs. This method is

based on the combination of software and hardware and requires the assistance of hard-

ware auxiliary circuits. In the path that does not pass through the original packet to the

application layer of PTP, due to the delay ji�er of the physical layer is about the constant

Figure 2. Network transmission protocol of PTP protocol.

Figure 3 is the implementation architecture of the PTP protocol. In the agreement,
points A, B, and C are the positions where timestamps may be generated [11,12]. The syn-
chronization accuracy is greatly affected by the position where the timestamp is generated.
Point A is at the application layer mark timestamp, this is the simplest way because it can
be realized by software, but the jitter of the protocol stack delay is uncertain, and the delay
jitter will cause a difference between about a few milliseconds ms and tens of microseconds
µs due to errors, this implementation method is not used by ordinary people. Point B is
to mark the timestamp between the network layer (IP layer) and the media access control
layer (MAC layer). This method avoids the uncertainty of protocol stack delay jitter, and
can also be implemented by software, and the time accuracy can reach the microsecond
level. Point C is to mark the timestamp at the GMII (gigabit media-independent interface)
close to the physical layer (PHY). GMII defines the logical and electrical characteristics of
the reconciliation sublayer (RS) and gigabit media-independent interface (GMII) between

Electronics 2023, 12, 2166 5 of 19

CSMA/CD media access controllers and various PHYs. This method is based on the combi-
nation of software and hardware and requires the assistance of hardware auxiliary circuits.
In the path that does not pass through the original packet to the application layer of PTP,
due to the delay jitter of the physical layer is about the constant delay, which can provide
sub-microsecond time precision. This section will introduce software time stamping and
hardware time stamping, respectively.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 18

delay, which can provide sub-microsecond time precision. This section will introduce soft-

ware time stamping and hardware time stamping, respectively.

Figure 3. PTP protocol implementation architecture diagram.

In the lab environment, two PCs are set up. The specifications are shown in Tables 1

and 2. They are respectively used as the primary clock of the system and the secondary

clock of the system. The network uses Ethernet to distribute fixed IP for connection and

then uses the open source package software Linux PTP to realize. The software is imple-

mented according to the IEEE 1588 protocol of Linux, provides a reliable implementation

of the standard, and uses the application programming interface (API) provided by the

Linux Kernel.

Table 1. Computer specifications (primary).

 Device Specifications and System Software Used

CPU RAM Network Card OS Software

Intel core i5-9500 8 GB
Intel Corporation 82,579 LM

Gigabit Network Connection
Ubuntu 16.04 C language

Table 2. Computer specifications (secondary).

 Device Specifications and System Software Used

CPU RAM Network Card OS Software

Intel core E5-1620 8 GB

Intel Corporation

Ethernet Connection (7)

I219-LM

Ubuntu 16.04 C language

The actual execution flow of the system software is shown in Figures 4 and 5.

Figure 3. PTP protocol implementation architecture diagram.

In the lab environment, two PCs are set up. The specifications are shown in Tables 1 and 2.
They are respectively used as the primary clock of the system and the secondary clock
of the system. The network uses Ethernet to distribute fixed IP for connection and then
uses the open source package software Linux PTP to realize. The software is implemented
according to the IEEE 1588 protocol of Linux, provides a reliable implementation of the
standard, and uses the application programming interface (API) provided by the Linux
Kernel.

Table 1. Computer specifications (primary).

Device Specifications and System Software Used

CPU RAM Network Card OS Software

Intel core i5-9500 8 GB Intel Corporation 82,579 LM
Gigabit Network Connection Ubuntu 16.04 C language

Table 2. Computer specifications (secondary).

Device Specifications and System Software Used

CPU RAM Network Card OS Software

Intel core E5-1620 8 GB Intel Corporation Ethernet
Connection (7) I219-LM Ubuntu 16.04 C language

The actual execution flow of the system software is shown in Figures 4 and 5.

Electronics 2023, 12, 2166 6 of 19Electronics 2023, 12, x FOR PEER REVIEW 6 of 18

Figure 4. Secondary workflow chart.

Figure 5. Primary workflow chart.

Figure 4. Secondary workflow chart.

Electronics 2023, 12, x FOR PEER REVIEW 6 of 18

Figure 4. Secondary workflow chart.

Figure 5. Primary workflow chart. Figure 5. Primary workflow chart.

Electronics 2023, 12, 2166 7 of 19

The experimental environment of our software timestamp is that the Primary transmits
a synchronization packet to the Secondary every second. Figure 6 shows the measurement
results. After testing 3600 pieces of data for one hour, it can be seen that most of the
measured values are concentrated in ±60 between microseconds.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 18

The experimental environment of our software timestamp is that the Primary trans-

mits a synchronization packet to the Secondary every second. Figure 6 shows the meas-

urement results. After testing 3600 pieces of data for one hour, it can be seen that most of

the measured values are concentrated in ±60 between microseconds.

Figure 6. Software timestamp test results.

In order to improve the accuracy of clock synchronization, it is necessary to make the

timestamp closer to the physical interface, that is, the MAC or PHY layer, to reduce the

impact of stack protocol delay [13–15], also known as a hardware timestamp. The imple-

mentation of our hardware timestamp is shown in Figure 7. First, set up two ZedBoard

development boards. Table 3 shows the equipment specifications and the system software

used. They are respectively used as the Primary and the Secondary of the system. The

Ethernet is assigned a fixed IP for connection, and then the software package Linux PTP

is also used for time synchronization.

Table 3. Development board specifications.

Device Specifications and System Software Used

CPU OS Software

Cortex-A9 Petalinux 2017.4 & Petalinux 2020.2 C language

Figure 7. System hardware implementation architecture diagram.

-100,000

-50,000

0

50,000

100,000

150,000

0 250 500 750 1,0001,2501,5001,7502,0002,2502,5002,7503,0003,2503,500

T
im

e
O

ff
se

t
(n

s)

Number of samples

Software Timestamp

Figure 6. Software timestamp test results.

In order to improve the accuracy of clock synchronization, it is necessary to make
the timestamp closer to the physical interface, that is, the MAC or PHY layer, to reduce
the impact of stack protocol delay [13–15], also known as a hardware timestamp. The
implementation of our hardware timestamp is shown in Figure 7. First, set up two ZedBoard
development boards. Table 3 shows the equipment specifications and the system software
used. They are respectively used as the Primary and the Secondary of the system. The
Ethernet is assigned a fixed IP for connection, and then the software package Linux PTP is
also used for time synchronization.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 18

The experimental environment of our software timestamp is that the Primary trans-

mits a synchronization packet to the Secondary every second. Figure 6 shows the meas-

urement results. After testing 3600 pieces of data for one hour, it can be seen that most of

the measured values are concentrated in ±60 between microseconds.

Figure 6. Software timestamp test results.

In order to improve the accuracy of clock synchronization, it is necessary to make the

timestamp closer to the physical interface, that is, the MAC or PHY layer, to reduce the

impact of stack protocol delay [13–15], also known as a hardware timestamp. The imple-

mentation of our hardware timestamp is shown in Figure 7. First, set up two ZedBoard

development boards. Table 3 shows the equipment specifications and the system software

used. They are respectively used as the Primary and the Secondary of the system. The

Ethernet is assigned a fixed IP for connection, and then the software package Linux PTP

is also used for time synchronization.

Table 3. Development board specifications.

Device Specifications and System Software Used

CPU OS Software

Cortex-A9 Petalinux 2017.4 & Petalinux 2020.2 C language

Figure 7. System hardware implementation architecture diagram.

-100,000

-50,000

0

50,000

100,000

150,000

0 250 500 750 1,0001,2501,5001,7502,0002,2502,5002,7503,0003,2503,500
T

im
e

O
ff

se
t

(n
s)

Number of samples

Software Timestamp

Figure 7. System hardware implementation architecture diagram.

Electronics 2023, 12, 2166 8 of 19

Table 3. Development board specifications.

Device Specifications and System Software Used

CPU OS Software

Cortex-A9 Petalinux 2017.4 & Petalinux 2020.2 C language

Figure 8 is a simple Zynq-embedded development board workflow chart. We want
to build a development environment for an embedded platform of a Linux system with
a package software Linux PTP, and the Petalinux platform is a tool developed by Xilinx
for the Zynq-embedded Linux system, can run in the computer’s Linux (such as ubuntu)
system environment and tailor-made execution files, and can be used together with Xilinx
ISE hardware design tools [16] to simplify the development process of Linux systems such
as Zynq®-7000 SOC and improve design efficiency. We use Petalinux 2017.4 and Petalinux
2020.2 for implementation.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 18

Figure 8 is a simple Zynq-embedded development board workflow chart. We want

to build a development environment for an embedded platform of a Linux system with a

package software Linux PTP, and the Petalinux platform is a tool developed by Xilinx for

the Zynq-embedded Linux system, can run in the computer’s Linux (such as ubuntu) sys-

tem environment and tailor-made execution files, and can be used together with Xilinx

ISE hardware design tools [16] to simplify the development process of Linux systems such

as Zynq®-7000 SOC and improve design efficiency. We use Petalinux 2017.4 and Petalinux

2020.2 for implementation.

Figure 8. Workflow chart of Zynq-embedded development board.

Connect the two ZedBoard development boards with a network cable, make sure that

the MAC and network IP of the two development boards are different, and run the PTP

application, as shown in Figure 9.

Figure 9. Diagram of connecting two Zedboard development boards.

Figure 8. Workflow chart of Zynq-embedded development board.

Connect the two ZedBoard development boards with a network cable, make sure that
the MAC and network IP of the two development boards are different, and run the PTP
application, as shown in Figure 9.

Electronics 2023, 12, 2166 9 of 19

Electronics 2023, 12, x FOR PEER REVIEW 8 of 18

Figure 8 is a simple Zynq-embedded development board workflow chart. We want

to build a development environment for an embedded platform of a Linux system with a

package software Linux PTP, and the Petalinux platform is a tool developed by Xilinx for

the Zynq-embedded Linux system, can run in the computer’s Linux (such as ubuntu) sys-

tem environment and tailor-made execution files, and can be used together with Xilinx

ISE hardware design tools [16] to simplify the development process of Linux systems such

as Zynq®-7000 SOC and improve design efficiency. We use Petalinux 2017.4 and Petalinux

2020.2 for implementation.

Figure 8. Workflow chart of Zynq-embedded development board.

Connect the two ZedBoard development boards with a network cable, make sure that

the MAC and network IP of the two development boards are different, and run the PTP

application, as shown in Figure 9.

Figure 9. Diagram of connecting two Zedboard development boards. Figure 9. Diagram of connecting two Zedboard development boards.

The experimental environment for our hardware timestamp is that the Primary sends
a synchronization packet to the Secondary every second. Figure 10 shows the measurement
results. After testing 3600 records for one hour, it can be seen that most of the measured
values are concentrated in between ±20 nanoseconds.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 18

The experimental environment for our hardware timestamp is that the Primary sends

a synchronization packet to the Secondary every second. Figure 10 shows the measure-

ment results. After testing 3600 records for one hour, it can be seen that most of the meas-

ured values are concentrated in between ±20 nanoseconds.

Figure 10. Hardware timestamp test results.

Based on the FPGA-based IEEE 1588 standard synchronization architecture [17], we

implemented a timestamp that can be captured between the PHY layer and the MAC

layer, eliminating delay ji�er caused by network protocol stacking, and thereby improv-

ing synchronization accuracy. When the Primary and Secondary are connected through a

network cable, the deviation of IEEE 1588 clock synchronization can be limited to ±20 ns.

Compared with the related research in Table 4, the realization results of this article have

high clock synchronization accuracy.

Table 4. Comparison chart.

Item According to [6] According to [18] According to [19] This Article

Development board Xilinx Zynq-7000 Xilinx ZynqMP UltraScale - Xilinx Zynq-7000

Driver/bus Axi Macb - Emacps

Time offsets (ns) ±40 ±100 ±40 ±20

From the above practice and related research, it is found that in order to improve the

accuracy, the congenital frequency error between the oscillators must be considered. An

IEEE 1588 auxiliary timestamp with dynamic frequency compensation is also proposed;

it is designed as a chip to reduce the delay of protocol stacking and to improve the accu-

racy of time so that it can be applied to more needs.

4. IC Design and Implementation of PTP Hardware-Assisted Timestamp

Figure 11 is our system architecture diagram, taking Primary sending packets to Sec-

ondary as an example. The CPU software (SW) acts as the processing core, manages the

synchronization process in the hardware, calculates the time offset, and adjusts the hard-

ware's real-time clock. The hardware is located in the gigabit media-independent interface

(GMII) between the MAC layer and the PHY layer. GMII can be used to detect the infor-

mation of each packet on the interface and communicate with control signals.

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500

T
im

e
O

ff
se

t
(n

s)

Number of samples

Hardware Timestamp

Figure 10. Hardware timestamp test results.

Based on the FPGA-based IEEE 1588 standard synchronization architecture [17], we
implemented a timestamp that can be captured between the PHY layer and the MAC
layer, eliminating delay jitter caused by network protocol stacking, and thereby improving
synchronization accuracy. When the Primary and Secondary are connected through a
network cable, the deviation of IEEE 1588 clock synchronization can be limited to ±20 ns.
Compared with the related research in Table 4, the realization results of this article have
high clock synchronization accuracy.

Table 4. Comparison chart.

Item According to [6] According to [18] According to [19] This Article

Development board Xilinx Zynq-7000 Xilinx ZynqMP UltraScale - Xilinx Zynq-7000

Driver/bus Axi Macb - Emacps

Time offsets (ns) ±40 ±100 ±40 ±20

Electronics 2023, 12, 2166 10 of 19

From the above practice and related research, it is found that in order to improve the
accuracy, the congenital frequency error between the oscillators must be considered. An
IEEE 1588 auxiliary timestamp with dynamic frequency compensation is also proposed; it
is designed as a chip to reduce the delay of protocol stacking and to improve the accuracy
of time so that it can be applied to more needs.

4. IC Design and Implementation of PTP Hardware-Assisted Timestamp

Figure 11 is our system architecture diagram, taking Primary sending packets to
Secondary as an example. The CPU software (SW) acts as the processing core, manages
the synchronization process in the hardware, calculates the time offset, and adjusts the
hardware’s real-time clock. The hardware is located in the gigabit media-independent
interface (GMII) between the MAC layer and the PHY layer. GMII can be used to detect the
information of each packet on the interface and communicate with control signals.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 18

Figure 11. System architecture diagram.

Figure 12 is our Block Diagram. The hardware part completes the frequency-adjust-

able real-time clock (Real-Time Clock), the parser (Parser) of the PTP packets at the receiv-

ing end (Receive) and sending end (Send), and the generation of timestamp (Generate

timestamps) at the receiving end (Receive) and sending end (Send), and write the

timestamp with the control signal into FIFO (First In, First Out). If the control signal is

recorded, write the recorded timestamp to the output, and update the corresponding con-

trol signal; otherwise, the timestamp will be discarded. The I/O pin assignment is shown

in Table 5.

Figure 12. Block diagram.

Table 5. I/O pin assignment.

Input/Output Pin Name bit Description

Input clk 1 System clock, positive edge trigger

Input rst 1 Reset, negative edge trigger

Input rd_in 1
Control signal, indicating when to read data to

data_out

Input wr_in 1 Control signal indicating when to write data_in

Input addr_in 6
Contains the address of the node that must be syn-

chronized

Figure 11. System architecture diagram.

Figure 12 is our Block Diagram. The hardware part completes the frequency-adjustable
real-time clock (Real-Time Clock), the parser (Parser) of the PTP packets at the receiving end
(Receive) and sending end (Send), and the generation of timestamp (Generate timestamps)
at the receiving end (Receive) and sending end (Send), and write the timestamp with the
control signal into FIFO (First In, First Out). If the control signal is recorded, write the
recorded timestamp to the output, and update the corresponding control signal; otherwise,
the timestamp will be discarded. The I/O pin assignment is shown in Table 5.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 18

Figure 11. System architecture diagram.

Figure 12 is our Block Diagram. The hardware part completes the frequency-adjust-

able real-time clock (Real-Time Clock), the parser (Parser) of the PTP packets at the receiv-

ing end (Receive) and sending end (Send), and the generation of timestamp (Generate

timestamps) at the receiving end (Receive) and sending end (Send), and write the

timestamp with the control signal into FIFO (First In, First Out). If the control signal is

recorded, write the recorded timestamp to the output, and update the corresponding con-

trol signal; otherwise, the timestamp will be discarded. The I/O pin assignment is shown

in Table 5.

Figure 12. Block diagram.

Table 5. I/O pin assignment.

Input/Output Pin Name bit Description

Input clk 1 System clock, positive edge trigger

Input rst 1 Reset, negative edge trigger

Input rd_in 1
Control signal, indicating when to read data to

data_out

Input wr_in 1 Control signal indicating when to write data_in

Input addr_in 6
Contains the address of the node that must be syn-

chronized

Figure 12. Block diagram.

Electronics 2023, 12, 2166 11 of 19

Table 5. I/O pin assignment.

Input/Output Pin Name bit Description

Input clk 1 System clock, positive edge trigger

Input rst 1 Reset, negative edge trigger

Input rd_in 1 Control signal, indicating when to read data to
data_out

Input wr_in 1 Control signal indicating when to write data_in

Input addr_in 6 Contains the address of the node that must be
synchronized

Input data_in 32 Contains the data of the nodes that must be
synchronized, serialized in

Input rtc_clk 1 From the RTC module

Input rx_clk 1 All signals on the write and read domains are
synchronized to this clock

Input rx_ctrl 1 Control signal indicating when to read data
from rx_data

Input rx_data 8 Packet data, serial input

Input tx_clk 1 All signals on the write and read domains are
synchronized to this clock

Input tx_ctrl 1 Control signal indicating when to read data
from tx_data

Input tx_data 8 Packet data, serial input

Output data_out 32 Combined into timestamp, serial output

The hardware-assisted timestamp is mainly divided into two blocks: the receiver
(Receive) and the sender (Send), and use the PTP parser (Parser) with the real-time clock
to generate the time stamp, respectively, and store the timestamp in the FIFO register. In
the process, the PTP configuration register (Configuration Module) is updated through the
control signal, so that the software end can obtain the timestamp. Next, we will describe
the design of the hardware, as shown in Figure 13.

Electronics 2023, 12, x FOR PEER REVIEW 11 of 18

Input data_in 32
Contains the data of the nodes that must be syn-

chronized, serialized in

Input rtc_clk 1 From the RTC module

Input rx_clk 1
All signals on the write and read domains are syn-

chronized to this clock

Input rx_ctrl 1
Control signal indicating when to read data from

rx_data

Input rx_data 8 Packet data, serial input

Input tx_clk 1
All signals on the write and read domains are syn-

chronized to this clock

Input tx_ctrl 1
Control signal indicating when to read data from

tx_data

Input tx_data 8 Packet data, serial input

Output data_out 32 Combined into timestamp, serial output

The hardware-assisted timestamp is mainly divided into two blocks: the receiver (Re-

ceive) and the sender (Send), and use the PTP parser (Parser) with the real-time clock to

generate the time stamp, respectively, and store the timestamp in the FIFO register. In the

process, the PTP configuration register (Configuration Module) is updated through the

control signal, so that the software end can obtain the timestamp. Next, we will describe

the design of the hardware, as shown in Figure 13.

Figure 13. Block module.

The Configuration Module is a register that stores the timestamp of the PTP message

and other Module-related parameters. The main structure is a multiplexer. Input the 32-

bit data_in and 8-bit addr_in as the relevant parameter address of the synchronization

node, and input them in series. Input 40-bit period_comp and 40-bit adj comp as dynamic

frequency compensation parameters, which are mainly obtained from PTP parser Module

and Generate timestamps Module, and tx_data_in and rx_data_in are two packets of in-

formation obtained between the MAC layer and the PHY layer because the total length of

the packet is long and not fixed, so 8-bit serial input is used to reduce the number of IO

Pads. The output is data_out that is combined with other Module-related parameters and

timestamps. Since the original output data_out pins are as many as 256, it will cause a

Figure 13. Block module.

Electronics 2023, 12, 2166 12 of 19

The Configuration Module is a register that stores the timestamp of the PTP message
and other Module-related parameters. The main structure is a multiplexer. Input the
32-bit data_in and 8-bit addr_in as the relevant parameter address of the synchronization
node, and input them in series. Input 40-bit period_comp and 40-bit adj comp as dynamic
frequency compensation parameters, which are mainly obtained from PTP parser Module
and Generate timestamps Module, and tx_data_in and rx_data_in are two packets of
information obtained between the MAC layer and the PHY layer because the total length
of the packet is long and not fixed, so 8-bit serial input is used to reduce the number of
IO Pads. The output is data_out that is combined with other Module-related parameters
and timestamps. Since the original output data_out pins are as many as 256, it will cause a
serious pad limit. Therefore, 32-bit serial output is used to reduce the number of IO Pads,
as shown in Figure 14.

A PTP parser is a module used to parse whether the received packet is a PTP packet
message. Its main structure is a comparator, as shown in Figure 15. The input Data_in is
the packet information obtained between the MAC layer and the PHY layer and is serially
input, and the multiplexer and the cnt counter are used to obtain the information used
to judge the message header. In the information segment, whether it is a PTP packet is
determined by identifying the message header layer by layer, and the output ptp_infor is a
32-bit PTP packet identification. ptp_found records whether it is a PTP packet, which will
be sent to the FIFO Module for use. ptp_comp analyzes whether the packet is a Sync and
Follow_up packet, and sends this signal to the Configuration Module for use.

The function of Real-Time Clock is to generate a real-time clock with adjustable fre-
quency. The architecture of the real-time clock is shown in Figure 16. The input and output
time accumulators adopt the PTP protocol standard: 48-bit second field, 32-bit nanosecond
field, and add an 8-bit sub-nanosecond (sub-ns) field to improve clock accuracy. The input
period_in is composed of 40-bit temporary registers, of which 8 bits record nanoseconds,
and the last 32 bits record sub-nanometers. The main function is to accumulate each os-
cillation of the oscillator in the free-running mode of the system; for an example such as
a reference clock for a frequency of 125 MHz, add 8 nanoseconds to each oscillation. The
clock is usually implemented using a counter register, driven by a quartz crystal oscillator.
The disadvantages of these oscillators are low accuracy, susceptibility to environmental
influences, low long-term stability, and non-adjustable frequency. The frequency of the
crystal changes over time and as the ambient temperature changes. With the help of fre-
quency compensation technology, the crystal frequency can be dynamically compensated
to keep the frequency at a stable value. Crystals with relatively poor performance can also
be successfully used in high-precision clock synchronization systems. The frequency is
compensated by initiating the time adjustment step by writing the period adjustment and
period count to the period_adj and adj_cnt registers, respectively. The period adjustment is
in nanoseconds ns, with 8 integer bits and 32 decimal bits. Since the input time accumulator
is 8-bit sub-nanoseconds, the resolution is 2−8 nanoseconds and the register of the oscillator
is 32-bit sub-nanoseconds, which means the resolution is 2−32 nanoseconds, so when the
accumulated value of the oscillator is not an integer of 2−8, use a temporary register to save
its decimal place and count it in a loop. This method can improve the precision of the clock.

Figure 17 shows the dynamic frequency compensation Frequency compensation [20–22]
used in this article. The PTP Primary will periodically send a synchronization packet to the
PTP Secondary, record the sending time t1, t1

′ and the receiving time t2, t2
′ in the temporary

register, and use a 32-bit count temporary register to calculate the compensated frequency,
and calculate the compensated value FreqCompValue to compensate the Secondary clock.

Electronics 2023, 12, 2166 13 of 19

Electronics 2023, 12, x FOR PEER REVIEW 12 of 18

serious pad limit. Therefore, 32-bit serial output is used to reduce the number of IO Pads,

as shown in Figure 14.

Figure 14. Configuration module. Figure 14. Configuration module.

Electronics 2023, 12, 2166 14 of 19

Electronics 2023, 12, x FOR PEER REVIEW 13 of 18

A PTP parser is a module used to parse whether the received packet is a PTP packet

message. Its main structure is a comparator, as shown in Figure 15. The input Data_in is

the packet information obtained between the MAC layer and the PHY layer and is serially

input, and the multiplexer and the cnt counter are used to obtain the information used to

judge the message header. In the information segment, whether it is a PTP packet is de-

termined by identifying the message header layer by layer, and the output ptp_infor is a

32-bit PTP packet identification. ptp_found records whether it is a PTP packet, which will

be sent to the FIFO Module for use. ptp_comp analyzes whether the packet is a Sync and

Follow_up packet, and sends this signal to the Configuration Module for use.

Figure 15. PTP parser module.

The function of Real-Time Clock is to generate a real-time clock with adjustable fre-

quency. The architecture of the real-time clock is shown in Figure 16. The input and output

time accumulators adopt the PTP protocol standard: 48-bit second field, 32-bit nanosec-

ond field, and add an 8-bit sub-nanosecond (sub-ns) field to improve clock accuracy. The

input period_in is composed of 40-bit temporary registers, of which 8 bits record nano-

seconds, and the last 32 bits record sub-nanometers. The main function is to accumulate

each oscillation of the oscillator in the free-running mode of the system; for an example

such as a reference clock for a frequency of 125 MHz, add 8 nanoseconds to each oscilla-

tion. The clock is usually implemented using a counter register, driven by a quar� crystal

oscillator. The disadvantages of these oscillators are low accuracy, susceptibility to envi-

ronmental influences, low long-term stability, and non-adjustable frequency. The fre-

quency of the crystal changes over time and as the ambient temperature changes. With

the help of frequency compensation technology, the crystal frequency can be dynamically

compensated to keep the frequency at a stable value. Crystals with relatively poor perfor-

mance can also be successfully used in high-precision clock synchronization systems. The

frequency is compensated by initiating the time adjustment step by writing the period

adjustment and period count to the period_adj and adj_cnt registers, respectively. The

period adjustment is in nanoseconds ns, with 8 integer bits and 32 decimal bits. Since the

input time accumulator is 8-bit sub-nanoseconds, the resolution is 2−8 nanoseconds and

the register of the oscillator is 32-bit sub-nanoseconds, which means the resolution is 2−32

nanoseconds, so when the accumulated value of the oscillator is not an integer of 2−8, use

a temporary register to save its decimal place and count it in a loop. This method can

improve the precision of the clock.

Figure 15. PTP parser module.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 18

Figure 16. Real-rime clock module.

Figure 17 shows the dynamic frequency compensation Frequency compensation [20–

22] used in this article. The PTP Primary will periodically send a synchronization packet

to the PTP Secondary, record the sending time t1, t1′ and the receiving time t2, t2′ in the

temporary register, and use a 32-bit count temporary register to calculate the compensated

frequency, and calculate the compensated value FreqCompValue to compensate the Sec-

ondary clock.

Figure 17. Frequency compensation.

The Generate Timestamps Module is shown in Figure 18. It combines the information

in the above-mentioned module register to form a timestamp. The timestamp [23] is com-

posed of 110 bits, which includes 80-bit time information and 30-bit PTP Packet identifi-

cation, and store this data in FIFO, using the control signal generated from the parser to

indicate whether to generate a timestamp. In order to avoid the problem of metastable

state when sending relevant parameters to the corresponding registers, two DFF registers

and a hand-shaking protocol are added to trigger the action, so that the output can obtain

the correct control signal or Packet information.

Figure 16. Real-time clock module.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 18

Figure 16. Real-rime clock module.

Figure 17 shows the dynamic frequency compensation Frequency compensation [20–

22] used in this article. The PTP Primary will periodically send a synchronization packet

to the PTP Secondary, record the sending time t1, t1′ and the receiving time t2, t2′ in the

temporary register, and use a 32-bit count temporary register to calculate the compensated

frequency, and calculate the compensated value FreqCompValue to compensate the Sec-

ondary clock.

Figure 17. Frequency compensation.

The Generate Timestamps Module is shown in Figure 18. It combines the information

in the above-mentioned module register to form a timestamp. The timestamp [23] is com-

posed of 110 bits, which includes 80-bit time information and 30-bit PTP Packet identifi-

cation, and store this data in FIFO, using the control signal generated from the parser to

indicate whether to generate a timestamp. In order to avoid the problem of metastable

state when sending relevant parameters to the corresponding registers, two DFF registers

and a hand-shaking protocol are added to trigger the action, so that the output can obtain

the correct control signal or Packet information.

Figure 17. Frequency compensation.

The Generate Timestamps Module is shown in Figure 18. It combines the informa-
tion in the above-mentioned module register to form a timestamp. The timestamp [23]
is composed of 110 bits, which includes 80-bit time information and 30-bit PTP Packet
identification, and store this data in FIFO, using the control signal generated from the parser
to indicate whether to generate a timestamp. In order to avoid the problem of metastable

Electronics 2023, 12, 2166 15 of 19

state when sending relevant parameters to the corresponding registers, two DFF registers
and a hand-shaking protocol are added to trigger the action, so that the output can obtain
the correct control signal or Packet information.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 18

Figure 18. Generate timestamps module.

We use the IP provided by Synopsys, as shown in Figure 19; the reading and writing

work under their respective clocks, and the writing clock will match the control signal to

write the data into the FIFO. FIFO contains dual-port RAM (random access memory),

which can read and write at the same time. When writing, wr_addr starts from 0; every

time a piece of data is wri�en wr_addr increases by one and points to the next storage

unit. When the FIFO push_full is full, the data will no longer be wri�en; otherwise, the

previous data will be overwri�en and the data will be lost. The read clock will be matched

with the control signal to read the data from the FIFO. When reading, rd_addr starts from

0; every time a piece of data is read, rd_addr increases by one, and points to the next

storage unit. When the FIFO pop_empty is empty, the data can no longer be read; other-

wise, the read data will be wrong data.

Figure 19. FIFO module [24].

5. Experimental Results and Analysis

We use Faraday’s 0.18 µm and TSMC’s 45 nm ARM standard component libraries to

design and implement, and Gate_count is based on 2-input NAND to calculate the ap-

proximate number of logic gates used. The results of the synthesis experiments are com-

pared in Table 6.

Figure 18. Generate timestamps module.

We use the IP provided by Synopsys, as shown in Figure 19; the reading and writing
work under their respective clocks, and the writing clock will match the control signal
to write the data into the FIFO. FIFO contains dual-port RAM (random access memory),
which can read and write at the same time. When writing, wr_addr starts from 0; every
time a piece of data is written wr_addr increases by one and points to the next storage unit.
When the FIFO push_full is full, the data will no longer be written; otherwise, the previous
data will be overwritten and the data will be lost. The read clock will be matched with the
control signal to read the data from the FIFO. When reading, rd_addr starts from 0; every
time a piece of data is read, rd_addr increases by one, and points to the next storage unit.
When the FIFO pop_empty is empty, the data can no longer be read; otherwise, the read
data will be wrong data.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 18

Figure 18. Generate timestamps module.

We use the IP provided by Synopsys, as shown in Figure 19; the reading and writing

work under their respective clocks, and the writing clock will match the control signal to

write the data into the FIFO. FIFO contains dual-port RAM (random access memory),

which can read and write at the same time. When writing, wr_addr starts from 0; every

time a piece of data is wri�en wr_addr increases by one and points to the next storage

unit. When the FIFO push_full is full, the data will no longer be wri�en; otherwise, the

previous data will be overwri�en and the data will be lost. The read clock will be matched

with the control signal to read the data from the FIFO. When reading, rd_addr starts from

0; every time a piece of data is read, rd_addr increases by one, and points to the next

storage unit. When the FIFO pop_empty is empty, the data can no longer be read; other-

wise, the read data will be wrong data.

Figure 19. FIFO module [24].

5. Experimental Results and Analysis

We use Faraday’s 0.18 µm and TSMC’s 45 nm ARM standard component libraries to

design and implement, and Gate_count is based on 2-input NAND to calculate the ap-

proximate number of logic gates used. The results of the synthesis experiments are com-

pared in Table 6.

Figure 19. FIFO module [24].

Electronics 2023, 12, 2166 16 of 19

5. Experimental Results and Analysis

We use Faraday’s 0.18 µm and TSMC’s 45 nm ARM standard component libraries
to design and implement, and Gate_count is based on 2-input NAND to calculate the
approximate number of logic gates used. The results of the synthesis experiments are
compared in Table 6.

Table 6. Experimental results.

Technology Faraday_U18 TSMC/ARM_T40G

Frequency 270 500

Area (µm2) 640,396.52 45,717.89

Power (mW) 66.61 9.68

Gate Count 68,564.93 67,232.91

Our test pattern is implemented through the hardware timestamp mentioned above.
Two Zedboard development boards and a PC are connected to a general router through
a network cable, as shown in Figure 20, and the packet is captured through the software
Wireshark. Then, you can extract PTP-related packets, and use the contents of the packets
as a test pattern for hardware circuit simulation.

Electronics 2023, 12, x FOR PEER REVIEW 16 of 18

Table 6. Experimental results.

Technology Faraday_U18 TSMC/ARM_T40G

Frequency 270 500

Area (μm�) 640,396.52 45,717.89

Power (mW) 66.61 9.68

Gate Count 68,564.93 67,232.91

Our test pa�ern is implemented through the hardware timestamp mentioned above.

Two Zedboard development boards and a PC are connected to a general router through a

network cable, as shown in Figure 20, and the packet is captured through the software

Wireshark. Then, you can extract PTP-related packets, and use the contents of the packets

as a test pa�ern for hardware circuit simulation.

Figure 20. Capture packet structure diagram.

Our IC layout is shown in Figure 21, and the chip specifications are shown in Table

7.

Figure 21. PTP hardware-assisted timestamp operation chip.

Figure 20. Capture packet structure diagram.

Our IC layout is shown in Figure 21, and the chip specifications are shown in Table 7.

Table 7. Chip specification table.

Technology TN40G

Frequency 370 MHz

Core Area 247,894 µm2

Gate Count 67.23 K

Electronics 2023, 12, 2166 17 of 19

Electronics 2023, 12, x FOR PEER REVIEW 16 of 18

Table 6. Experimental results.

Technology Faraday_U18 TSMC/ARM_T40G

Frequency 270 500

Area (μm�) 640,396.52 45,717.89

Power (mW) 66.61 9.68

Gate Count 68,564.93 67,232.91

Our test pa�ern is implemented through the hardware timestamp mentioned above.

Two Zedboard development boards and a PC are connected to a general router through a

network cable, as shown in Figure 20, and the packet is captured through the software

Wireshark. Then, you can extract PTP-related packets, and use the contents of the packets

as a test pa�ern for hardware circuit simulation.

Figure 20. Capture packet structure diagram.

Our IC layout is shown in Figure 21, and the chip specifications are shown in Table

7.

Figure 21. PTP hardware-assisted timestamp operation chip. Figure 21. PTP hardware-assisted timestamp operation chip.

We have implemented three kinds of timestamps, and their comparison is shown in
Table 8. It can be seen that the offset of the software timestamp is the largest, which also
means that its error is the largest.

Table 8. Time comparison table.

Type Software Timestamp Hardware
Timestamp IC Design

Time offsets (ns) ±60,000 ±20 ±10.8

6. Conclusions

In this paper, based on the detailed analysis of the PTP protocol, we first use the
Ethernet network and fixed IP address for connection, and then use the open source
software package Linux PTP for measurement. Its software timestamp is 60 microseconds.
Then, we build a clock synchronization system using FPGA to match the PTP protocol.
On the Xilinx Zynq-7000 SOC platform of Petalinux, a hardware solution based on the
IEEE1588 protocol in the Linux PTP application is implemented. The experimental results
show that the implementation results have high clock synchronization accuracy, and the
hardware timestamp is 20 nanoseconds. Compared with related implementations, this
design improves the time synchronization accuracy, simplifies the hardware circuit design,
greatly reduces the development cost and difficulty, and has excellent portability and
scalability, which provides a certain reference value for future research.

After matching the implementation of the FPGA and the PTP protocol in this paper, it
is found that in order to improve the accuracy, the congenital frequency error between the
oscillators must be considered. An IEEE 1588 auxiliary time stamp with dynamic frequency
compensation is also proposed; it is designed as a chip and can operate at 370 MHz under
45 nm (TN40G), uses four-cycle serial output, and the Latency is 10.8 (2.7 × 4) ns resolution,
which reduces the delay of the protocol stack and improves the accuracy of the time, so
that it can be applied on more demand.

This thesis designs PTP auxiliary time stamps and completes the realization of de-
tecting PTP packet messages and recording time stamps. However, in order to verify the

Electronics 2023, 12, 2166 18 of 19

complete PTP system clock synchronization function, it is necessary to use a software
processor as the processing core and use the ARM platform of the Linux system. The
synchronization process in the FPGA is managed, offsets are calculated, hardware clocks
are adjusted, etc. If the system can be integrated to complete the SOC single chip with
the complete functions of the PTP protocol, the implementation cost and volume can be
reduced, making it beneficial to be applied to more industrial Internet of things devices.

Author Contributions: Methodology, T.-C.H. and Y.-S.C. (Yuan-Sun Chu); Software, Y.-K.L.; Data
curation, Y.-K.L.; Writing—review & editing, Y.-S.C. (Yee-Shao Chen) and B.-L.W.; Supervision,
T.-C.H. and Y.-S.C. (Yuan-Sun Chu). All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, L.-H.; Chen, Y.; Chu, Y.-S.; Hou, T.-C. Optimization and realization of Network Time Protocol on IIoT. In Proceedings of the

IEEE International Conference on Consumer Electronics-Taiwan, Penghu, Taiwan, 15–17 September 2021.
2. Hou, T.-C.; Liu, L.-H.; Lan, Y.-K.; Chen, Y.-T.; Chu, Y.-S. An Improved Network Time Protocol for Industrial Internet of Things.

Sensors 2022, 22, 5021. [CrossRef] [PubMed]
3. IEEE Standard 1588–2008; IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control

Systems. IEEE: Piscataway, NJ, USA, 2008.
4. IEEE Std 1588–2019; IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control

Systems. IEEE: Piscataway, NJ, USA, 2019.
5. Zhao, B.; Wang, N. The implementation of IEEE 1588 clock synchronization system based on FPGA. In Proceedings of the Fifth

International Conference on Intelligent Control and Information Processing, Dalian, China, 18–20 August 2014; pp. 216–220.
6. Moreira, N.; Lázaro, J.; Bidarte, U.; Jimenez, J.; Astarloa, A. On the Utilization of System-on-Chip Platforms to Achieve

Nanosecond Synchronization Accuracies in Substation Automation Systems. IEEE Trans. Smart Grid 2017, 8, 1932–1942. [CrossRef]
7. Lee, S.S.W.; Lee, T.; Li, K. NetFPGA based IEEE 1588 module for timesynchronized software-defined networking. In Proceedings

of the 6th International Conference on Information Communication and Management (ICICM), Hertfordshire, UK, 29–31 October
2016; pp. 253–259.

8. Idrees, Z.; Granados, J.; Sun, Y.; Latif, S.; Gong, L.; Zou, Z.; Zheng, L. IEEE 1588 for Clock Synchronization in Industrial IoT and
Related Applications: A Review on Contributing Technologies, Protocols and Enhancement Methodologies. IEEE Access 2020, 8,
155660–155678. [CrossRef]

9. An, L.; Yang, G.-H. Distributed Optimal Coordination for Heterogeneous Linear Multiagent Systems. IEEE Trans. Autom. Control
2022, 67, 12. [CrossRef]

10. Mills, D.L. Internet time synchronization: The network time protocol. IEEE Trans. Commun. 1991, 39, 1482–1493. [CrossRef]
11. Scheiterer, R.L.; Na, C.; Obradovic, D.; Steindl, G.; Goetz, F.-J. Synchronization performance of the precision time protocol in

industrial automation networks. IEEE Trans. Instrum. Meas. 2009, 58, 1849–1857. [CrossRef]
12. Giorgi, G.; Narduzzi, C. Performance Analysis of Kalman-Filter-Based Clock Synchronization in IEEE 1588 Networks. IEEE Trans.

Instrum. Meas. 2011, 60, 2902–2909. [CrossRef]
13. Ouellette, M.; Ji, K.; Liu, S.; Li, H. Using IEEE 1588 and boundary clocks for clock synchronization in telecom networks. IEEE

Commun. Mag. 2011, 49, 164–171. [CrossRef]
14. Garg, A.; Yadav, A.; Sikora, A.; Sairam, A.S. Wireless Precision Time Protocol. IEEE Commun. Lett. 2018, 22, 812–815. [CrossRef]
15. Ferrant, J.-I.; Gilson, M.; Jobert, S.; Mayer, M.; Montini, L.; Ouellette, M.; Rodrigues, S.; Ruffini, S. Development of the First IEEE

1588 Telecom Profile to Address Mobile Backhaul Needs. IEEE Commun. Mag. 2010, 48, 118–126. [CrossRef]
16. Holler, R.; Sauter, T.; Kero, N. Embedded SynUTC and IEEE 1588 clock synchronization for industrial Ethernet. In Proceedings of

the 2003 IEEE Conference on Emerging Technologies and Factory Automation, Lisbon, Portugal, 16–19 September 2003; Volume 1,
pp. 422–426.

17. Moreira, N.; Astarloa, A.; Lazaro, J.; Garcia, A.; Ormaetxea, E. IEEE 1588 transparent clock architecture for FPGA-based network
devices. In Proceedings of the 2013 IEEE International Symposium on Industrial Electronics (ISIE), Taipei, Taiwan, 28–31 May
2013; pp. 1–6.

18. Pandey, P.; Pratap, B.; Pandey, R.S. Implementation of FreeRTOS based Precision Time Protocol (PTP) application as per
IEEE1588v2 standards for Xilinx Zynq UltraScale Plus MPSoC devices. In Proceedings of the 2019 International Conference on
Communication and Electronics Systems (ICCES), Coimbatore, India, 17–19 July 2019; pp. 1968–1973.

https://doi.org/10.3390/s22135021
https://www.ncbi.nlm.nih.gov/pubmed/35808516
https://doi.org/10.1109/TSG.2015.2512440
https://doi.org/10.1109/ACCESS.2020.3013669
https://doi.org/10.1109/TAC.2021.3133269
https://doi.org/10.1109/26.103043
https://doi.org/10.1109/TIM.2009.2013655
https://doi.org/10.1109/TIM.2011.2113120
https://doi.org/10.1109/MCOM.2011.5706325
https://doi.org/10.1109/LCOMM.2017.2781706
https://doi.org/10.1109/MCOM.2010.5594686

Electronics 2023, 12, 2166 19 of 19

19. Yin, H.; Fu, P.; Qiao, J.; Li, Y. The implementation of IEEE 1588 clock synchronization protocol based on FPGA. In Proceedings of
the 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Houston, TX, USA, 14–17 May
2018; pp. 1–6.

20. Ingram, D.M.; Schaub, P.; Campbell, D.A.; Taylor, R.R. Performance Analysis of PTP Components for IEC 61850 Process Bus
Application. IEEE Trans. Instrum. Meas. 2013, 62, 710–719. [CrossRef]

21. Decusatis, C.; Lynch, R.M.; Kluge, W.; Houston, J.; Wojciak, P.A.; Guendert, S. Impact of Cyberattacks on Precision Time Protocol.
IEEE Trans. Instrum. Meas. 2020, 69, 2172–2181. [CrossRef]

22. Itkin, E.; Wool, A. A Security Analysis and Revised Security Extension for Precision Time Protocol. IEEE Trans. Dependable Secur.
Comput. 2020, 17, 22–34. [CrossRef]

23. Dong, M.; Qiu, Z.; Pan, W.; Chen, C.; Zhang, J.; Zhang, D. The Design and Implementation of IEEE 1588v2 Clock Synchronization
System by Generating Hardware Timestamps in MAC Layer. In Proceedings of the 2018 International Conference on Computer,
Information and Telecommunication Systems (CITS), Colmar, France, 11–13 July 2018; pp. 1–5.

24. Synopsys. DW_fifo_s2_sf. Available online: https://www.synopsys.com/dw/ipdir.php?c=DW_fifo_s2_sf (accessed on 5
December 2021).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TIM.2013.2245188
https://doi.org/10.1109/TIM.2019.2918597
https://doi.org/10.1109/TDSC.2017.2748583
https://www.synopsys.com/dw/ipdir.php?c=DW_fifo_s2_sf

	Introduction
	Precision Time Protocol Introduction
	Implementation of System Timestamps (Including Software and Hardware Timestamps)
	IC Design and Implementation of PTP Hardware-Assisted Timestamp
	Experimental Results and Analysis
	Conclusions
	References

