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Abstract: This work proposes a new circularly polarized (CP) 4 × 4 magneto-electric (ME) dipole an-
tenna array using metallic walls for 28 GHz band applications. The ME dipole element is surrounded
by eight metallic walls and is excited fed by microstrip line. By introducing metallic walls, the 3-dB
axial ratio (AR) bandwidth of the element is increased from 23% to 36.5%. The 4 × 4 array is fed
by a simple 1-to-16 microstrip power divider. In contrast to the conventional substrate integrated
waveguide (SIW) power divider using two layers, the proposed microstrip divider only needs one
substrate layer. The experimental 3-dB AR bandwidth of the array achieves 30.1%, ranging from
22.5 to 30.5 GHz, which falls inside the −10 dB impendence bandwidth. The measured maximum
gain is 19.2 dBic.

Keywords: millimeter wave; circular polarization; magneto-electric dipole; wideband array; microstrip
feeding network

1. Introduction

Millimeter-wave (mm-wave) band attracts increasing interests in 5G and satellite
communications due to its merit of wide bandwidth [1,2]. To compensate for path-loss,
a high-gain antenna array is essential [3]. On the other hand, circular polarization is pre-
ferred because it has the merits of multipath interference suppression and no polarization
alignment loss [4]. It is rewarding to design a mm-wave CP antenna array that has features
such as a wide bandwidth, excellent gain, and simple structure.

Over the previous decades, many wideband CP elements have been presented for
array designs [5–21]. Stacked patch [5–7], ME dipole [8,9], curl antenna [10–12], spiral
antenna [13,14], cavity antenna [15–17], slot antenna [18], and dielectric resonator an-
tenna [19–21] are the popular elements. For example, in [6], a wideband circularly polarized
radiation is generated owing to the combination of a pair of shorted pins with four identical
square patches, and the 3-dB AR bandwidth of the stacked patch array achieves 25.4%.
In [9], by truncating several corners and adding L-shaped branches into the ME dipole
element, 3-dB AR bandwidths of the element and the 4 × 4 array are 17.3% and 16%, re-
spectively. In [18], a differentially fed slot antenna contains 20.4% AR bandwidth, whereas
the 4 × 4 array possesses a bandwidth of 33.6%. However, among the above-mentioned
designs, some arrays have a relatively narrow bandwidth, while others require more sub-
strate layers or a high profile. Another way to increase the AR bandwidth is utilizing the
sequentially rotated (SR) feeding technique [22–29]. For instance, a 2 × 2 subarray with 17%
AR bandwidth is proposed in [22], with each element fed by equal amplitude and phase
signals. Through an H-shaped SIW SR feeding network, the four subarrays’ excitation
signals have a 90◦ phase difference from one another, thus expanding the bandwidth of the
4 × 4 antenna array to 27.8%. In [25], the element’s AR bandwidth is 23.8%, and that of the
2 × 2 array is 30% because of the utilization of a microstrip SR feeding structure. However,
the SR feeding structure increases the complexity of the antenna.
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Recently, Pan et al. proposed the method of using vertical metallic walls to improve
the AR bandwidth of antennas [30–32]. The metallic walls are sequentially placed at each
edge of the ground planes, working as parasitic radiators. For example, a cross dipole
antenna working at 2 GHz is put forward in [30]. The AR bandwidth is extended from 30%
to 130% by utilizing four vertical metallic plates. Similarly, a dielectric resonator antenna
with vertical metallic plates is studied in [31]. Because the orthogonal current is coupled to
the metal plates, an AR bandwidth of 49.5% is obtained. However, these antennas have
3D structures and are designed in low frequency regime. Furthermore, all the designs
in [30–32] only focus on a single antenna prototype. The array prototype with metallic
walls is yet to be developed.

On the other hand, to minimize the profile of CP array or the number of substrate
layers, it is an effective method to choose microstrip lines as excitation structures [6,9,26].
A SIW structure can also be used as an antenna excitation. In spite of the fact that the array
based on SIW feed technology in [11] only uses two dielectric substrate layers, it suffers
from a narrow operating bandwidth. Some CP array designs use multiple substrate layers
to enhance the bandwidth of the array [8,22,33–35]. In [33], a SIW feeding network consists
of two layers of substrate, and the 4 × 4 patch antenna array achieves 23.8% bandwidth.
However, the assembly process becomes more complicated and more expensive, which
limits the application of the arrays for commercial purposes.

In this study, a compact wideband CP ME dipole antenna array with vertical metallic
walls is proposed at 28 GHz band. Firstly, the ME dipole element in [36] is modified. The
SIW feeding network is replaced by microstrip line to reduce the number of substrate layers.
Then, eight vertical metallic walls are placed around the ME dipole to improve the AR
bandwidth, which can be fabricated through the PCB technique. Finally, the dimensions
of the walls are optimized in a 4 × 4 array. The practical test results indicate that the
overlapping impedance and AR bandwidth achieves 30.1%, and the array has only two
substrate layers. To the best of our knowledge, this is the first time that vertical metallic
walls are explored to increase the bandwidth of a CP array in the mm-wave band.

2. Antenna Design
2.1. Configuration of the CP Element

Figure 1 displays the configuration of the CP element. Figure 1a observes that two
pieces of substrate are tightly stacked. The thickness of substrate1 is 1.27 mm, and the
material is TMM3 (εr = 3.45, tan δ = 0.002). The thickness of substrate2 is 0.203 mm, and
the material is RO4003C (εr = 3.55, tan δ = 0.003). Figure 1b depicts the top metallic layer of
the element. It is composed of a ME dipole and eight vertical metallic plates. The plates
are fabricated by using vias and metallic strips. As shown in Figure 1c, the bottom of
substrate2 has a microstrip line printed on it. Electromagnetic energy is coupled from the
microstrip line to the ME dipole through the slot carved on the ground plane of the center
metallic layer.

The choice of dimensions is discussed. Firstly, the dimensions of the crossed ME dipole
are determined. As we know, each arm of the ME dipole is about a quarter wavelength
in substrate. It means that L1 and L2 should be around 2 mm. Then, the dimensions of
the coupling slot on the ground are selected. The slot is used to couple energy to the ME
dipole, because by itself, it does not radiate energy. Therefore, the length of the slot should
be less than half-wavelength in substrate, which is chosen as 3 mm. Then, the dimensions
of the vertical metal plates are determined. The metal plates work as parasitic directors.
Therefore, the length for the metal walls also needs to be shorter than half-wavelength in
substrate, which is chosen as 2.9 mm. Based on these initial values, the detailed dimensions
are carefully optimized by full-wave simulation software Ansoft HFSS ver. 2018. Table 1
displays the optimal dimensions for the element.
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Figure 1. Geometry of the CP element: (a) 3D explosive view; (b) top layer; (c) bottom layer.

Table 1. Specified dimensions for the proposed CP element (unit: mm).

Parameter Value Parameter Value Parameter Value

L1 2.06 G3 0.11 S2 1.9

L2 2 D1 1.8 P 0.93

L3 2.9 D2 1.9 Wf 0.22

L4 1.3 D3 0.7 Df 0.49

G1 0.32 D4 4.1 Ws 0.36

G2 0.32 S1 2.35 Ls 3

2.2. Working Mechanism of the CP Element

Compared to other kinds of antennas, an ME dipole has low profile, excellent antenna
performance, such as a good impedance bandwidth, stable gain, and desirable radiation
front-to-back ratio, making it ideal for mm-wave application. Therefore, many CP arrays
based on an ME dipole have been proposed in the mm-wave band [8,9,22,36]. In [22], an
ME dipole antenna fed by a SIW to coaxial transition structure has −10 dB impedance
bandwidth of 24.2% and a 3-dB AR bandwidth of 16.5%. In addition, an aperture-coupled
ME dipole achieves a bandwidth of 25.9% [36]. In this design, the method of vertical
metal walls is applied to the element in [36] to further expand its bandwidth. The design
process of the proposed element is illustrated in Figure 2. As seen in Figure 2, Type is a
traditional ME dipole fed by SIW. The performance of Type I is described in detail in [36];
the impedance bandwidth is 28.8%, and the AR bandwidth is 25.9%. To minimize the
number of substrate layers of the antenna array, the SIW Excitation structure is replaced by
a microstrip line in Type II. Next, in Type III, eight vertical metal walls are added around
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Type II for enhancing the bandwidth of the element. To fabricate the antenna through
PCB technology, the metallic walls are replaced by vias and metallic strips in Type IV. For
comparison, the EM dipole is the same size in all models, as shown in Table 1 in Section 2.1.
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Figure 2. Evolution process of the proposed CP element.

Figure 3a,b depict the elements’ simulated reflection coefficient and AR performance.
It is shown that the impedance and AR bandwidth of Type II is 34.9% (24.8 GHz to
35.3 GHz) and 23% (23.8 GHz to 30 GHz), respectively, which is close to the performance
of Type I. This indicates that the microstrip line can replace the SIW structure for feeding
without affecting the performance of the element. When the vertical metallic walls are
introduced, both the impedance bandwidth and AR bandwidth are significantly improved.
Additional resonance is observed in the upper frequency band, which is expected to be
attributed to the vertical metallic walls. Compared with Type II, the impedance bandwidth
of Type III is increased from 34.9% to 44.5% (22.7 to 35.7 GHz) and the AR bandwidth is
increased from 23% to 36.5% (23.3 to 33.7 GHz). The performances of Type IV are similar
with those of Type III. It means that using vias and metallic strips to replace the metallic
walls has little influence on the performances.
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To further study the working mechanism of the ME dipole surrounded by vertical
metallic walls, the currents distributed on the antenna are exhibited at two frequency points,
as depicted in Figure 4. At 26 GHz, strong currents are observed on the ME dipole, whereas
weak currents are on the vertical metallic walls. It means that the ME dipole is the main
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radiator at 26 GHz. The directions of currents at t = 0◦ and t = 90◦ are orthogonal in space,
and the amplitudes are close. Therefore, CP fields at 26 GHz are generated by the ME
dipole and the vertical metallic walls have negligible effect. At 32 GHz, the currents are
strong at both the ME dipole and metallic walls. It indicates that the parasitic walls are also
effective radiators at 32 GHz, which provide additional degrees of freedom for good AR
performance. Observed from the currents at T = 0◦ and T = 90◦, it is known that the CP
wave is generated at 32 GHz.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 14 
 

 

To further study the working mechanism of the ME dipole surrounded by vertical 
metallic walls, the currents distributed on the antenna are exhibited at two frequency 
points, as depicted in Figure 4. At 26 GHz, strong currents are observed on the ME di-
pole, whereas weak currents are on the vertical metallic walls. It means that the ME di-
pole is the main radiator at 26 GHz. The directions of currents at t = 0° and t = 90° are 
orthogonal in space, and the amplitudes are close. Therefore, CP fields at 26 GHz are 
generated by the ME dipole and the vertical metallic walls have negligible effect. At 32 
GHz, the currents are strong at both the ME dipole and metallic walls. It indicates that 
the parasitic walls are also effective radiators at 32 GHz, which provide additional de-
grees of freedom for good AR performance. Observed from the currents at T = 0° and T = 
90°, it is known that the CP wave is generated at 32 GHz. 

 
Figure 4. Currents on the ME dipole and vertical metallic walls: (a) 26 GHz, t = 0°; (b) 26 GHz, t = 90°; 
(c) 32 GHz, t = 0°; (d) 32 GHz, t = 90°. 

2.3. Parameter Analysis of the CP Element 
To guide the design of the proposed element, some key parameters are studied. In 

the analysis, only one parameter is swept, while others are the same as those in Table 1. 
According to the working principle discussed in Section 2.2, the ME dipole forms a good 
CP wave in a lower frequency band, while in a higher frequency band, the ME dipole 
and vertical metal walls work together to form a CP wave. Therefore, some parameters 
of the ME dipole affect the AR of the element in the whole operating frequency range. 
First, let’s analyze the parameters of electromagnetic dipole, such as the width of the 
metalized strip used to connect the diagonally located patches P, the interval between 
adjacent patches G (G = G1 = G2), and the interval between the metalized strip and patch 
G3. These parameters have a vital impact on AR performance. Figure 5 displays in detail 
the simulated ARs of the element with various P, G, and G3 values. As observed in Fig-

Figure 4. Currents on the ME dipole and vertical metallic walls: (a) 26 GHz, t = 0◦; (b) 26 GHz,
t = 90◦; (c) 32 GHz, t = 0◦; (d) 32 GHz, t = 90◦.

2.3. Parameter Analysis of the CP Element

To guide the design of the proposed element, some key parameters are studied. In
the analysis, only one parameter is swept, while others are the same as those in Table 1.
According to the working principle discussed in Section 2.2, the ME dipole forms a good
CP wave in a lower frequency band, while in a higher frequency band, the ME dipole and
vertical metal walls work together to form a CP wave. Therefore, some parameters of the
ME dipole affect the AR of the element in the whole operating frequency range. First, let’s
analyze the parameters of electromagnetic dipole, such as the width of the metalized strip
used to connect the diagonally located patches P, the interval between adjacent patches G
(G = G1 = G2), and the interval between the metalized strip and patch G3. These parameters
have a vital impact on AR performance. Figure 5 displays in detail the simulated ARs
of the element with various P, G, and G3 values. As observed in Figure 5a, the value
of P affects the AR of the whole working frequency band. The AR around 24 GHz and
34 GHz increases with the increase of P, while the AR around 30 GHz decreases with the
increase of P. Furthermore, as P decreases, the AR bandwidth becomes wider, but AR
fluctuation in the working frequency band increases. Therefore, the value of P is set at
0.93 mm in order to achieve wide bandwidth and maintain the AR’s stability simultaneously.
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Figure 5b shows the effect of the interval between adjacent patches G. It also affects the AR
of the whole frequency range, but it has a more obvious influence on the AR in the lower
frequency range. When G is raised from 0.27 mm to 0.37 mm, the AR bandwidth increases,
while the AR value within 24.5 GHz to 29.5 GHz also increases. In order to achieve better
AR performance, the value of G is set at 0.32 mm. Moreover, G3 has a similar influence
on the antenna.
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to connect the diagonally located patches P; (b) interval between adjacent patches G; (c) interval
between the metalized strip and patch G3.

In addition, the parameters of the vertical metal walls affect the AR performance of
the presented element at the upper frequency band. There are six parameters: the spacing
between the metal walls and the patches along the x-axis direction D1, the spacing between
the metal walls and the patches along the y-axis direction D2, the spacing between the
metal walls along the x-axis direction D3, the spacing between the metal walls along the
y-axis direction D4, the length of the metal walls along the x-axis direction L3, and the
length of the metal walls along the y-axis direction L4. The influence of all the parameters
mentioned above on the AR is displayed in Figure 6. As displayed in Figure 6a, the AR
in the upper band is significantly altered and mildly shifted to a lower band when D1 is
raised from 1.6 mm to 2 mm (other parameters are the same as those in Table 1). Figure 6b
illustrates how D2 has an impact on the AR. When D2 increases, the AR in the upper band
also shifts to the lower frequency range. Other parameters also have an obvious influence
on the AR in the upper band range, which can be explained by the working principle of
antenna. It is worth noting that the parameters (D2, D4, L4) of the vertical metal walls
placed along the y-axis direction have less influence on the AR than the parameters (D1,
D3, L3) of the vertical metal walls placed along the x-axis direction because the induced
current intensity of the vertical metal walls along the x-axis direction is greater than that
of the vertical metal walls along the y-axis direction at upper frequency band. Therefore,
by properly selecting the parameters of the vertical walls, the AR bandwidth in the higher
frequency range can be effectively expanded.
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To sum up, during the design stage of the proposed element, we can first optimize
the parameters of the ME dipole to minimize the AR value in the lower frequency band.
According to the design guideline in [36], the basic parameters of an ME dipole can be
obtained. Next, we can optimize the parameters of the vertical metal plates to further
expand the AR in the higher frequency range. Finally, the ME dipole parameters can be
optimized in a small range to ensure that the AR fluctuation across the entire frequency
band is minimal.

2.4. Performance of the CP Element

The proposed element’s reflection coefficient and AR have been displayed in
Section 2.2. The simulated gain of the element is illustrated in Figure 7; it is stable across
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the frequencies. In the frequency range of 23 to 33.5 GHz, the gain fluctuates between
5.7 and 8.3 dBic, and the element’s 3-dB gain bandwidth exceeds 37.1%. Figure 8 depicts
the simulated normalized radiation patterns of the element at three separate frequency
points. It can be observed that the cross-polarization level of the antenna is under −11 dB,
and its front-to-back ratio exceeds 17 dB. In addition, with the increase in frequency, the
cross-polarization performance decreases slightly, which is caused by the introduction of
the vertical metal walls.
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2.5. Design of Antenna Array

Based on the proposed wideband element, a 4 × 4 uniformly placed array is designed
to provide high gain. Figure 9 displays the geometry and dimensions of the ME dipole
array. The array dimension is 52.7 mm (4.92 λ0) × 59.6 mm (5.57 λ0) × 1.47 mm (0.14 λ0).
The element spacing is 8.75 mm (0.82 λ0) along the x-axis and is 8.7 mm (0.81 λ0) along the
y-axis. At the bottom of the array, a microstrip 1-to-16 power divider is printed to provide
each element with an input impedance of 75-Ω with equal amplitude and equal phase.
The microstrip divider does not need an extra substrate layer, thus it is much simpler than
the SIW divider [36]. A thin substrate layer is adopted to avoid energy leakage from the
microstrip feed line. A T-junction is a crucial part of the power divider, as displayed in
Figure 10a. Ports 1, 2, and 3 all have impedances of 75-Ω, and a 53-Ω λ0/4 transformer
section is used to match the impedances of these three ports. The λ0 refers to the wavelength
in free space at 28 GHz. Figure 10b illustrates the simulated S-parameters results of the
T-junction, and the reflection coefficient of the Port1 is under −18 dB in the range of
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22 to 36 GHz. To match the 75-Ω input port of the T-junction with the external 50-Ω
excitation port, a microstrip line with a gradually changing width is adopted.
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3. Results and Discussion

To validate the proposed antenna design, the 4 × 4 CP array with a power divider
is fabricated based on PCB technology and experimentally tested. Figure 11 displays
the photograph of the fabricated antenna array, substrate1 and substrate2 are tightly
stacked by a few nylon screws. A 2.92-mm end launch connector is used to feed signals
to the microstrip power divider. To ensure the accuracy of the simulation results, the
simulation model includes screws and an end launch connector. Meanwhile, the assembling
error is also considered in the design process and analyzed by the simulation software
Ansoft HFSS.

Figure 12a,b show the S11 and AR of the antenna array. The practical test results
have slight differences from the simulated ones, which is mainly attributed to the errors
in fabrication and measurement. Particularly, there is some air gap between the two
substrate pieces when using screws. The gap can be removed by using a bonding layer.
The simulated bandwidth with S11 < −10-dB is 40%, between 22 and 33 GHz, and the
measured one is more than 35.7% ranging from 23 to 33 GHz. Additionally, the simulated
and measured bandwidth with AR < 3-dB is 28% (24 to 31.8 GHz) and 30.1% (22.5 to
30.5 GHz), respectively. Figure 12c depicts the broadside gains. It is seen that the ex-
perimental maximum gain is 19.2 dBic at 30 GHz, and the 3-dB gain variation spans
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22 to 31 GHz, excepting the drop around 24 GHz, which may be caused by the errors
in measurement.
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The radiation patterns of the array at three representative frequency points are mea-
sured, as shown in Figure 13a–c. Due to the measurement limitation in our laboratory, only
the results within ±40◦ angles are measured. The simulated and experimental data show
reasonable agreement. There are some ripples in the main beam, which may be attributed
to low signal-to-noise ratio in our in-house built platform [37]. The cross-polarization level
is always under −10 dB at different frequencies. A high front-to-back ratio is also observed
at all the frequency points.
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Finally, the performances of the proposed array are compared with other Ka-band
CP antenna arrays. As listed in Table 2, the overlapping impedance and AR bandwidth of
the proposed design exceeds most of the referenced arrays. Although [10,18] have wider
bandwidth, they need four substrate layers. Although the SIW design in [15] and the
microstrip line in [26] also need two substrate layers, the bandwidth of the two arrays is
much narrower. Therefore, our proposed antenna array has the advantages of broadband
and fewer substrate layers.
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Table 2. Comparison between planar MM-wave CP arrays with different feeding structures.

Ref.
Center

Frequency
(GHz)

No. of
Substrate

Layers

No. of
Elements

Feeding
Network

Impedance
BW (%)

AR
BW (%)

Peak Gain
(dBic)

Size
(λ0 × λ0 × λ0)

[5] 29 2 4 × 4 CPW + SIW 29.6 25.4 20.32 10.2 × 8.7 × 0.098

[6] 28.35 4 4 × 4 Microstrip line 28.6 14 18.2 6.72 × 4.48 × 0.2

[10] 37.5 4 8 × 8 SIW 35.4 33.8 23.5 6 × 6 × 0.339

[11] 30 3 8 × 8 SIW 27.6 32.7 25.2 6.1 × 6.1 × 0.47

[15] 33.5 2 4 × 4 SIW 14.9 11 13.2 1.76 × 1.76 × 0.32

[18] 27.4 4 4 × 4 Microstrip line +
dual feed 39.4 33.6 18.5 4.58 × 4.31 × 0.16

[22] 27 3 4 × 4 CPW 27.7 27.8 20.2 7 × 5 × 0.42

[26] 29.25 2 4 × 4 Microstrip line 58.46 13.68 14.69 5.2 × 5.2 × 0.08

This Work 28 2 4 × 4 Microstrip line 35.7 30.1 19.2 4.92 × 5.57 × 0.14

4. Conclusions

This study presents a 4 × 4 CP ME dipole antenna array with wide bandwidth
designed in the mm-wave band. To improve the bandwidth of the element, eight metallic
walls are sequentially placed around the ME dipole, which work as parasitic radiators.
To reduce the number of substrate layers, a compact microstrip 1-to-16 power divider
is applied to excite the ME dipole array. The measured impedance bandwidth and AR
bandwidth are 35.7% and 30.1%, respectively. The overlapping impedance bandwidth and
AR bandwidth achieves 30.1% with a maximum gain of 19.2 dBic at 30 GHz. Due to the
advantages of the planar structure, low cost, wide bandwidth, and high gain, the proposed
array is very convenient to deploy on servo for beam scanning, thus it has great potential
in 5G mm-wave and satellite communications.
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