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Abstract: The use of wireless communications systems on the factory shop floor is becoming an
appealing solution with many advantages compared to cable-based solutions, including low cost,
easy deployment, and flexibility. This, combined with the continuous growth of low-cost mobile
devices, creates opportunities to develop innovative and powerful applications that, in many cases,
rely on computing and memory-intensive algorithms and low-latency requirements. However, as the
density of connected wireless devices increases, the spectral noise density rises, and, consequently,
the radio interference between radio devices increase. In this paper, we discuss how the density of
AR/VR mobile applications with high throughput and low latency affect industrial environments
where other wireless devices use the same frequency channel. We also discuss how the growing
number of these applications may have an impact on the radio interference of wireless networks. We
present an agnostic methodology to assess the radio interferences between wireless communication
systems on the factory floor by using appropriate radio and system models. Several interference
scenarios are simulated between commonly used radio systems: Bluetooth, Wi-Fi, and WirelessHART,
using SEAMCAT. For a 1% probability of interference and considering a criterion of C/I = 14 dB,
the simulations on an 80 m × 80 m factory shop floor show that low-bandwidth systems, such as
Bluetooth and WirelessHART, can coexist with high-bandwidth and low-latency AR/VR applications
running on Wi-Fi mobile terminals if the number of 11 Wi-Fi access points and 80 mobile AR/VR
devices transmitting simultaneously is not exceeded.

Keywords: AR/VR mobile applications; edge computing; industrial wireless systems; Industry 4.0;
mobile augmented reality; radio interference

1. Introduction

Mobile augmented reality (AR) and mobile virtual reality (VR) are gaining consid-
erable attention mainly because of the wide adoption of mobile and wearable devices.
The continuous growth of low-cost mobile devices with greater mobility and augmented
by edge computing has created new opportunities, and these devices have considerable
potential for promoting a wide range of industrial applications. However, these appli-
cations often rely on computing and memory-intensive algorithms with high data rates
and low-latency requirements. They are going to create significant growth in network
traffic, and they have demanding requirements in terms of storage, rendering capability,
and internet connectivity, and it is common to offload data processing to a distant but more
powerful device, i.e., offloading computation. In contrast, the characteristics of this type of
application, and the fact that they are more oriented to use a certain type of wireless com-
munication, may also influence the interference in other radio systems in use in the same
environment. This process introduces new constraints, particularly in terms of interference,
latency, and bandwidth.
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This is particularly aggravated in scenarios with a high density of devices connected
by wireless networks, such as industrial shop floors. Even if during the last three decades,
industry has implemented automation in all production processes on the factory shop
floor by using wired systems, some important processes are not easily connected through
wired systems. The integration of logistics, material handling, mobile industrial robots
(AGV), and AR/VR devices can only be effective with the use of wireless systems. With
the advent of Industry 4.0, industrial production suffered a total transformation through
the combination of embedded systems, communication devices, and the Internet of things
(IoT) technologies with the legacy industry systems, causing all processes on the factory
shop floor, fixed or mobile, to be interconnected with digital networks. Therefore, nowa-
days, wireless technologies are commonly found on the industrial shop floor [1], and we
may witness a swarm of wireless devices being used for different scenarios in industrial
production and maintenance. In this context, mobile AR/VR applications have aroused
considerable attention and have been a persistently trending topic among academia and
industry. As a result, numerous innovative applications have emerged with significant
impacts on the organization and efficiency of companies. Some examples include guided
maintenance and operations (e.g., [2,3]), remote collaboration (e.g., [4,5]), and training
(e.g., [6,7]). However, these applications require high-capacity and reliable memory, com-
putational and storage resources, and significant bandwidth and latency requirements.
Considering this, and because wireless systems are increasingly predominant, becoming
increasingly present in mission-critical or massive machine-type communication applica-
tions, spectrum compatibility studies are essential to assess the coexistence between them.
Wi-Fi is still currently the most widespread wireless technology in industrial production [8],
with a global share higher than 74% of the inquiries, seconded by Bluetooth (39%) and
followed by other wireless communication systems such as WirelessHART (13%). All of
these wireless technologies share the same industrial, scientific, and medical (ISM) bands.
Using license-exempt frequency bands has many advantages. Wireless communications
systems can be easily deployed without the burden of a license cost for spectrum use [9]
which eliminates the physical barriers of conventional wired communication architectures
at a reduced cost and low maintenance. However, wireless systems using ISM bands have
several drawbacks. There is a legal limit to the power level of the emitted radiation. Fur-
thermore, radio interference management in ISM bands is not only challenging because of
the noise power level and dense usage but also because of the different standards operating
concurrently [10]. A recent study using simulated scenarios found that systems using
Wi-Fi, Bluetooth, or WirelessHART technologies are more prone to suffer interference from
other systems working in co-channel arrangements [11]. However, the study focuses only
on the downlink (access points) and does not discriminate the importance of the density
of new mobile devices (e.g., Wi-Fi and Bluetooth), transmitting at a lower height on the
shop floor on the uplink. As such, with an ever-increasing number of wireless devices
operating on the shop floor, using the same frequency band but working with different
technologies, there is a need for further studies on the limits of the density of wireless
devices that can share radio resources within the limits of the Quality of Service (QoS) for
the system to operate correctly. We used the spectrum engineering advanced Monte Carlo
analysis tool (SEAMCAT) software [12], from the European Communication Office of the
European Conference of Postal and Telecommunications Administrations (CEPT), to assess
the spectral interference between different types of wireless systems. SEAMCAT uses a
Monte Carlo analysis in contrast to conventional analytical methods which are typically
applied to ordinary or partial differential equations that describe some underlying physical
or mathematical systems. A Monte Carlo simulation requires that the physical or mathe-
matical system be described by probability density functions (pdfs) and then proceeds by
a random sampling of them. These pdfs can represent the location of the interferers with
respect to the victim, transmitted power, attenuation variations over time of the victim,
and interferer propagation channels, among many others. Many simulation trials are per-
formed and the desired result is taken as an average over the number of observations [13].
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When a sufficient number of simulation trials are considered, the probability of a certain
event occurring can then be evaluated. Thus, this approach is technologically agnostic and
can combine, in a single scenario, different wireless systems technologies such as Wi-Fi,
WirelessHART, and Bluetooth.

1.1. Contributions of the Study

Because of the lack of previously published studies on the limits of the density of
wireless devices that can share radio resources on the shop floor, combined with the new
demands in this environment (where AR/VR applications are more frequently used in
Industry 4.0 scenarios), we present a study to overcome this research gap. This paper
contributes to a study that analyzes the interference between wireless networks in those
environments and the impact that the use of AR/VR applications that intensively use Wi-Fi
may have on other radio systems using the same frequency bands.

The objective of this paper is twofold:

• First, to investigate how the density of wireless devices, which can be deployed in a
confined industrial environment, can interfere with the interaction experience of users
in mobile applications, particularly those with computational and memory-intensive
requirements which are more demanding in terms of bandwidth and latency.

• Second, to discuss how the growing number of mobile AR/VR applications may affect
the radio interference of different types of wireless networks that coexist in the same
industrial environment.

To this end, this work analyzes the interference scenario simulations from [11], by
discriminating the downlink from the uplink systems at the configuration stage by using
adequate propagation models for Wi-Fi, WirelessHART, and Bluetooth, and assesses the
density of wireless devices that can be deployed in a confined environment, such as a
factory shop floor, within the allowable interference limit.

1.2. Paper Structure

The remainder of this article is organized as follows. Section 2 provides the challenges,
background, and an analysis of the previous related works. Section 3 provides an outline
of the methodology used for interference simulations. Section 4 presents the properties of
the wireless system, including transmitter and receiver specifications. Section 5 describes
the radio interference scenarios. Section 6 discusses and highlights the findings of the
simulation results. Finally, Section 7 presents the conclusions and future work.

2. Challenges and Related Work

This section briefly presents some of the main challenges that must be faced to achieve
clear interaction and long battery life in mobile devices for computing and memory-
intensive applications, such as AR/VR. It also presents a brief analysis of some related
works that studied the influence that wireless network technologies may have on the
interactivity of these types of mobile applications.

2.1. Challenges

Mobile app users want clear interaction and long battery life. Achieving these at-
tributes on small, lightweight mobile devices for computing and memory-intensive ap-
plications such as AR/VR, image recognition, or artificial intelligence applications, poses
major challenges. Some of these challenges have already been identified and studied by
several authors, namely:

• Computing efficiency—Mobile AR/VR applications are computation and data-intensive
applications. Thus, the computational and rendering abilities of mobile devices play
an important role in the improvement of the performance of mobile AR applications.
However, current mobile devices present an inefficient runtime environment because
of their limited computational and storage abilities, and this may lead to very low
frames per second (FPS) [14–16].
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• Network communication efficiency. Because of the limited computing efficiency and
limited battery capacity of mobile devices, offloading the tasks to a remote server is
a common practice. This requires sufficient bandwidth and incurs additional delays
during the interactions and may influence the user experience, as the latency caused
by the communication with the remote servers must have very low values to be
imperceptible to the user [14–17]. In addition, sending more data on the uplink (from
the mobile device to a remote server) than receiving it on the downlink may cause some
performance issues for other connections sharing the same asymmetric bottleneck [18].

• Energy consumption/efficiency—Mobile AR/VR applications are highly power-
consuming tasks with a significant impact on the battery in mobile devices [14,17].

• Compatibility and standardization—It is important to build technology-independent
mobile AR/VR services (hardware-independent, browser-independent, producer-
independent) using standardized technologies [14,15]. However, achieving this poses
several challenges [15]: mobile hardware has different levels of support for AR; there
is no standardization of techniques to define the common protocols and application
programming interfaces (APIs) to simplify the deployment; and modern web browsers
and built-in browsers have very different capabilities to support AR applications and
lack a standard for web 3D objects.

• Privacy and Security—AR/VR mobile applications may collect more personal in-
formation (such as personal identification or location information) than traditional
systems, and this can impact user privacy. Therefore, mechanisms for data generation
and mechanisms of data access, as well as a secure network environment for data
transmission, are required [14]. However, a trade-off needs to be found between the
user’s privacy and the amount of personal data required for the appropriate behavior
of the application [18].

• Application Deployment—The demand for mobile AR/VR applications is high, but
there are still many limitations. As more open-source software and more development
platforms and educational programs for AR are made publicly available, more AR
applications will emerge [14].

Among the challenges listed, the last two (privacy and security, and application
deployment) are not related to the focus of this work, so this article will only address some
aspects relating to the first four challenges (computing efficiency, network communication
efficiency, energy consumption/efficiency, and compatibility and standardization).

2.2. Related Work

This subsection covers two broad areas related to the work described in this article:

• Research that analyzes the influence of wireless network efficiency on mobile AR
applications and possible solutions to face the challenges encountered;

• Research on radio interference analysis of wireless networks in industrial environ-
ments.

Several works have studied the influence that wireless network technologies have
on the interactivity of mobile applications. A study described in [17], attempts to answer
the question of whether it is feasible to enable cloud-based mobile AR with an acceptable
quality of experience (QoE). They investigated the cloud offloading features of some
commercial software development kits (SDKs), and they measured the time consumed
by each component in the pipeline on both mobile devices and servers. Devices were
connected using Wi-Fi. They analyzed the end-to-end latency, data usage, and energy
consumption on mobile devices. They found that cloud-based recognition is still not
mature and not optimized for latency, data usage, and energy consumption. In ref. [19], the
authors explore how computational offloading services at the edge of the Internet for mobile
devices improve latency and energy consumption. They present experimental results from
Wi-Fi and 4G Long Term Evolution (LTE) networks that confirm substantial wins from
edge computing for highly interactive mobile applications. They also found that, in deeply
immersive applications, such as mobile augmented reality and cognitive assistance, the
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industrial efforts toward building edge computing infrastructure could be key enablers
of this new genre of applications. These studies indicate that cloud-based mobile AR
applications affect latency, data usage, and energy consumption and that they have an
impact on the user interaction experience with these applications. They also suggest that
there are substantial gains from using edge computing for mobile AR applications.

Spectrum sharing of the 2.4 GHz ISM band and the resulting interference between dif-
ferent communication systems has been a topic of study in the past. In ref. [20], SEAMCAT
was used for the interference simulation between WLAN and Bluetooth in urban scenarios,
with the Wi-Fi system as a victim link and Bluetooth as an interfering link. In [21,22],
another compatibility study was conducted between WirelessHART systems as victim links
and Wi-Fi as the interfering system, and in [23], an experimental study between Bluetooth
and Wi-Fi is reported. However, the conclusion that all systems can coexist with each other
over a certain QoS is drawn when Bluetooth and WirelessHART systems can avoid the
occupied Wi-Fi channels. However, as far as the authors are aware, no study has been
conducted considering the full occupation of the spectrum in an industrial shop floor by
using a high density of radio transmitters. Another study [24] presents some experimental
results (using the ORBIT radio grid testbed) to quantify the effects of inter- and intra-radio
interference in a small office and home scenarios. They emulate different topologies, traffic
loads, and numbers of interfering devices to show the impact of multi-radio interference
and to characterize each type of interference. They present some common scenarios such as
slow link–fast link interference in 802.11, co-located Bluetooth and 802.11 radios, and dense
deployment of both Bluetooth and ZigBee radios, and benchmark the loss of the usable
throughput in each case. The experimental results outline the impact of the inter-radio inter-
ference and show that in typical topologies, the effect of one radio class on the others causes
significant reductions in throughput. Although the study considers a different environment
and different wireless network technologies, it allows some conclusions about the effect of
radio interference. Other studies have proposed adaptive frequency-hopping techniques
or scanning, evaluating, and avoiding noisy channels for Bluetooth and WirelessHART
systems to mitigate these performance degradation issues of coexisting networks with
Wi-Fi, but in densely used radio environments, this solution may not satisfy the minimum
requirements for reliable communication [25]. Authors in [26] argue that there is a gap in
terms of future work for making wireless networks reliable by considering the effects of
interference in several environments.

With the consideration of an industrial environment, the communication requirement
is focused on multiple factors such as reliability, latency, the longevity of communicating
devices, and throughput, a traditional focus of human-centric wireless communication
systems [27]. The authors in [28] experimentally verified the inverse relationship between
latency and signal-to-interference-plus-noise ratio (SINR) and the direct relationship be-
tween latency and the number of radio transmitters. As such, noisy and crowded radio
environments, where many different devices communicating using different wireless tech-
nologies often coexist, may pose a real challenge for high-performance mobile AR/VR
applications. As such, there is a lack of studies that analyze the interference between the
various wireless networks in an industrial environment and that simultaneously address
the impact of the use of AR/VR applications that make intensive use of Wi-Fi communi-
cation in these same environments. Next, the methodology to analyze the interference
between the various wireless networks in an industrial environment is presented.

3. Methodology

SEAMCAT is an open-source software tool for a statistical simulation model that uses
a technique of analysis called Monte Carlo to evaluate the possible intrusion between
different radio communication networks [12]. The typical simulation flow is depicted in
Figure 1.
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The main interference mechanisms that can be analyzed in SEAMCAT are the un-
wanted emissions of interfering transmitters, the selectivity and overloading of the victim
system receiver, and the effect of the intermodulation products. Figure 3 depicts the two
main interference mechanisms typically analyzed (i.e., unwanted emissions and receiver
selectivity).
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A commonly accepted criterion for interference studies is based on the I/N ratio.
The interference-to-noise ratio, I/N, should be less than the minimum allowable value
of −6 dB [29]. According to Recommendation ITU-R F.1094 [30], this is the relevant
interference protection criteria for the long-term interference objective (20% of the time) in
the frequency band from 30 MHz to 3 GHz. For the complementary analysis, an additional
protection criterion, C/I = 14 dB, was considered, which corresponds to an adequate value
for the wireless service in the 2.4 GHz frequency band to operate with the minimum QoS
requirements [31]. This criterion was derived from [29].

To compute the I/N (C/I) of the radio receiver from the victim link where interference
occurs, we first need to determine the wanted signal from the corresponding radio trans-
mitter, called C, the background noise (including thermal noise), called N, and the signal
produced by the interfering transmitter(s), called I. This is done by defining the technical
specifications for each radio receiver and transmitter of the interfering and victim links, the
radio propagation model, and other parameters related to the quality of service required.
The position of each transmitter and receiver is set (fixed or mobile), and a link budget is
calculated. With the knowledge of both the interfering signal and the victim signal, the
I/N (C/I) ratio at the receiver of the victim link is computed using a Monte Carlo method.

After all of the radio systems are configured, the software runs a series of trials or
events. For each trial, the received signal C is compared to the sensitivity S of the victim
link receiver. If C is lower than S, the event is discarded. Then, if I/Ntrial (C/Itrial) is higher
than I/Ntarget (C/Itarget), no interference is recorded; otherwise, interference arises, and
this trial accumulates to the other events with the same result (Kint). Finally, after all of the
events are computed (Kall), the probability of interference is computed as described in [32],

Pinterference = Kint/Kall (1)

From Equation (1), we can compute the probability of interference between a victim
link receiver and an interferer system using many independent simulation events, even
if the victim and the interfering link are modeled with different radio technologies and
standards.

4. Radio System Specifications

This section describes the radio transmitter and receiver systems used in the inter-
ference study in Section 4. From the SEAMCAT propagation model library, we selected
the propagation model 802.11 rev3 Mod. C from the Institute of Electrical and Electronics
Engineers (IEEE) for Wi-Fi systems; WirelessHART uses a log-normal shadowing radio
propagation model [33]. The extended Hata Short Range Device (SRD) model is proposed
for the Bluetooth system, considering the direct line of sight (LOS) between devices.

In the proposed radio links, the receiver captures some unwanted signals outside its
own channel bandwidth because its filter is not ideal. The values of the receiver-blocking
mask are expressed directly as a blocking response (filter selectivity) in the relative positive
values (dB). In contrast, the transmitter emission masks consider the channel bandwidth
plus the out-of-band emissions (from the modulation process and the non-linearity in
the transmitter) and spurious emissions. The relative emission mask is described by a
frequency offset (MHz), a relative emission level (dBc), and a reference bandwidth (1 MHz
for all the simulations). Receiver-blocking masks and transmitter emission masks are
illustrated in Figures 4–6 for Wi-Fi, Bluetooth, and WirelessHART, respectively [34]. The
values are extracted from several technical documents with radio specifications for the
Wi-Fi [35], Bluetooth [36], and WirelessHART [37] technologies, respectively.
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The remaining technical specifications for all of the systems are presented in Table 1.
The noise floor was −114 dBm for all systems. WirelessHART devices, because of their
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application, are commonly found outdoors, installed in pipeline pressure gauges, or at-
tached to sensors for environmental metrology. As such, 50% of the devices are considered
outdoor. Moreover, Wi-Fi users can use the service when working outdoors (30% of the
cases).

Table 1. Technical specifications of wireless systems (Wi-Fi, WirelessHART, and Bluetooth).

Wireless Technology Wi-Fi WirelessHART Bluetooth

Frequency 2400–2483.5 MHz

Bandwidth 22 MHz 1 MHz 1 MHz

Chan. spacing 25 MHz 5 MHz 1 MHz

Nº of channels 3 16 79

In-Block EIRP BS: 20 dBm
UE: 0 dBm

0–10 dBm
(2 dBm steps) 0 dBm

Antenna height BS: 2.5 m
UE: 1.5 m BS/UE: 0.5 m BS/UE: 1.5 m

Antenna type Omnidirectional

Antenna gain Tx: 6 dBi Rx: 0 dBi Tx: 2 dBi Rx: 0 dBi Tx, Rx: −1.5 dBi

Receiver sensitivity −95 dBm −98 dBm −95 dBm

Environment
BS: 100% indoor
UE: 70% indoor,

30% outdoor
50% indoor/outdoor 100% indoor

Prop. channel IEEE 802.11 rev3 Mod.
C

Log-normal
shadowing model Extended Hata SRD

Prob. of transmission 70% 10% 5%

5. Simulation Planning

The simulation environment was a factory with a shop floor area of 40 m × 80 m and
a total area of 80 m × 80 m (including external open spaces with vehicles, human activity,
and wireless sensors), as depicted in Figure 7. This was an area of a typical medium-sized
industrial environment. Each external wall had 5-dB attenuation [38].
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Wi-Fi systems were divided into two subsystems relating to downlink (DL) and uplink
(UL) because of the significant differences in the radio properties between the access point
(AP) and the user equipment (UE). Each wireless system was sequentially considered the
victim link and the interfering link for the other wireless systems, resulting in a total of
10 interference scenarios:

• Victim: WirelessHART–interferer: Bluetooth;
• Victim: WirelessHART–interferer: Wi-Fi DL;
• Victim: WirelessHART–interferer: Wi-Fi UL;
• Victim: Bluetooth–interferer: Wi-Fi DL;
• Victim: Bluetooth–interferer: Wi-Fi UL;
• Victim: Bluetooth–interferer: WirelessHART;
• Victim: Wi-Fi DL–interferer: Bluetooth;
• Victim: Wi-Fi DL– interferer: WirelessHART;
• Victim: Wi-Fi UL– interferer: WirelessHART;
• Victim: Wi-Fi UL–interferer: Bluetooth.

We considered that the self-system interference was duly managed by the radio
resource management from the system control plane of each wireless system modeled and
was not considered in this study, i.e., frequency-hopping techniques for Bluetooth and
WirelessHART, and automatic channel assignment for Wi-Fi [39].

As shown in Figure 8a, representing the cumulative snapshot from one simulation
scenario, the relative position between the wireless victim and interferer systems was
uniformly distributed inside the factory shop floor and the surrounding area, simulating
the mobility of the wireless devices. In this example, the victim link receiver, represented
as a blue circle square, changed its position in each snapshot of the simulation and suffered
interference from the interfering link transmitter (which also changed its position), repre-
sented as a red square. Thus, for each snapshot, the distance between the interfering source
and the victim system receiver changed. This dynamic approach created a simulation
scenario, where the relative position between wireless systems changed over time, and
the interference results were closer to a typical scenario. Figure 8b,c show a snapshot
of the unwanted and blocking emission levels, respectively, from an interfering system
transmitter to a victim system receiver, as simulated with SEAMCAT.

Moreover, the probability of transmission was discriminated between all of the wireless
systems to follow the conditions of a real scenario:

• Wi-Fi: 70% [40];
• WirelessHART: 10% [41];
• Bluetooth: 5% [42].

All of the systems used the same ISM frequency band (2400–2483.5 MHz) for trans-
mission and a frequency-hopping technique between all of the available channels. Wi-Fi
uses channels 1, 6, and 11 (22 MHz bandwidth non-overlapping channels); Bluetooth uses
79 channels (1 MHz bandwidth each); and WirelessHART uses 16 channels (1 MHz band-
width each). Thus, the study considered co-channel and adjacent channel interference
cases.

For each identified scenario, the maximum likelihood of interference was set to 1%.
As industrial applications use an ever-increasing number of AR/VR wireless devices to
communicate, interference requirements had to be kept to a minimum to avoid commu-
nication failure or poor QoS, although other values could be used in conformity with the
requirements of the wireless system application.



Electronics 2023, 12, 67 11 of 19Electronics 2023, 11, x FOR PEER REVIEW 11 of 20 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 8. Example of simulation for interference modeling with SEAMCAT: (a) a shop floor area 
with victim link and interfering link positions (VLT: Victim Link Transmitter; ILT: interfering link 
transmitter; VLR: victim link receiver; ILR: interfering link receiver); event samples of the sum of 
interfering transmissions of (b) unwanted emissions and (c) receiver blocking. 

Figure 8. Example of simulation for interference modeling with SEAMCAT: (a) a shop floor area
with victim link and interfering link positions (VLT: Victim Link Transmitter; ILT: interfering link
transmitter; VLR: victim link receiver; ILR: interfering link receiver); event samples of the sum of
interfering transmissions of (b) unwanted emissions and (c) receiver blocking.
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6. Simulation Results and Discussion

For each scenario, SEAMCAT ran twenty thousand (20,000) simulated events, or
trials, following a Monte Carlo methodology whose main principle was to take sam-
ples of random variables from their probability density functions defined by the user
and then use these samples to compute the probability of interference. For each event,
the relative position of the interfering links and victim links were changed according to
a uniform spatial distribution inside the factory shop floor and the surrounding areas.
The I/N cumulative distribution function (CDF) values are shown in Figure 9 for all of
the considered scenarios. Each point on the graph represented the probability that I/N
was lower than the corresponding value on the horizontal axis. Values higher than the
−6 dB threshold corresponded to excessive interference with the victim system. As can be
seen from Figure 9a, the I/N criterion was mostly met when only 100 interferers/hectare
(ha) were present, except for two scenarios: when Wi-Fi UL interfered over Bluetooth
and when Wi-Fi DL interfered over WirelessHART systems, where the I/N criterion was
exceeded by 26 dB. In the case of a density of 1000 interfering transmitters/ha, as shown in
Figure 9b, the I/N criterion was exceeded for every deployment scenario and every type
of interfering system. The results undoubtedly indicated that the use of the co-located
license-exempt systems, even with frequency-hopping techniques to mitigate interference,
might be challenging if the compatibility was assessed using the I/N criterion.

Figure 10 shows the C/I curve obtained for all of the 10 scenarios considered in
this study. Each point on the graph represents the probability that C/I is higher than
the corresponding value on the horizontal axis. Values lower than the 14-dB threshold
corresponded to excessive interference to the victim system. From Figure 10a, we inferred
that the C/I criterion was met in most trials. The results indicated that deploying legacy
wireless systems in co-location scenarios when the density of interfering transmitters was
at most 100/ha, allowed for compatibility in shared locations. However, when the density
was increased to 1000 interfering transmitters/ha, the C/I criterion was exceeded for every
scenario, from 3 dB to 45 dB, as shown in Figure 10b.

According to the previous discussion, the results showed that the density of the
interfering transmitters was an important parameter. Figure 11 shows the probability
of interference as a function of the density of the interferers, from 1 to 1000 interfering
transmitters/ha. The horizontal line represents the 1% probability of interference. As
expected from the previous analysis, the results from C/I (Figure 11b) were more relaxed
than those found with I/N (Figure 11a). Nevertheless, as the density of the interfering
transmitters increased, so did the probability of interference. With I/N, the limit was reached
for all of the scenarios when the density was higher than 500 interfering transmitters/ha,
whereas, for C/I, the same limit was reached for almost all of the systems when the density
was higher than 800 interfering transmitters/ha. An exception was made for WirelessHART
and Bluetooth which did not reach the stipulated limit at this density.

Taking into consideration the limits imposed for each scenario by the density of
interfering transmitters, Table 2 shows the maximum density of interfering transmitter
devices that could be deployed on the factory shop floor and in the surrounding area within
an interference below the stipulated limit of 1%.

As an example, consider the I/N criterion; in this case, the density of Bluetooth systems
deployed could be as much as 400 transmitters/ha in the vicinity of WirelessHART systems,
causing interference below the stipulated limit of 1%. This value could go higher than
1000 transmitters/ha if the C/I criterion was used. In contrast, Wi-Fi DL systems density
should be restricted to less than 7 AP transmitters/ha (I/N criterion) or 11 AP transmit-
ters/ha (C/I criterion), and for the Wi-Fi UL, up to 40 mobile devices/ha (I/N criterion)
or 80 mobile devices/ha (C/I criterion), considering that both UL and DL were present in
the same scenario to avoid exceeding the stipulated limit of 1% with the WirelessHART
primary system.
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Table 2. The maximum number of interferers on the factory shop floor for a 1% probability of
interference.

Interferer

Victim
Wi-Fi UL Wi-Fi DL WirelessHART Bluetooth Criterion

Wi-Fi UL - - 40 40

I/
N

=
−

6
dB

Wi-Fi DL - - 7 7

WirelessHART 100 150 - 400

Bluetooth 500 400 >1000 -

Wi-Fi UL - - 150 80

C
/I

=
14

dB

Wi-Fi DL - - 11 25

WirelessHART 90 350 - >1000

Bluetooth 450 600 >1000 -

The simulated results indicated that the compatibility between wireless systems op-
erating in the ISM band depended on the selected protection criteria and interference
limit. Traditionally, the I/N ratio has been used in many studies and may be considered a
conservative approach. At the same time, the I/N criterion is rigorous and does not always
emulate a real-case scenario. Given that some of the simulated systems have fixed locations
(Wi-Fi access points or specific WirelessHART wireless sensors), it is possible to compute
the desired signal with good accuracy. Hence, the use of the C/I criterion could allow a
more realistic case. The C/I criterion largely depends on the properties of the signal. In
this study, the C/I criterion was used for the highest-order modulation supported by Wi-Fi,
Bluetooth, or WirelessHART systems, in the 2400–2483.5 MHz frequency band. For lower
modulation orders, the C/I criterion would be lower than 14 dB, and consequently, the
systems could be deployed with an even larger C/I margin.

Additionally, the results showed that AR/VR devices could coexist with other wireless
devices using the same ISM band. However, the lack of coordination within the licensed-
exempt wireless systems could be a serious problem with very high-density deployment.
The aggregate interference levels could be reduced by using standard power-save protocols
and by putting the radio transmitter in sleep or standby mode. These techniques are
already available for wireless systems such as Wi-Fi and Bluetooth [43]. However, spending
time moving in and out of sleep mode, or sending power-save polls increases latency
and reduces throughput. Thus, the use of power-saving techniques in a wireless system
supporting AR/VR wireless applications is not recommended.

Thus, the use of wireless devices in ISM bands for industrial applications might
not satisfy the more demanding quality requirements, e.g., latency and reliability [44].
Therefore, the full potential of wireless technologies in industry has not yet been fully
implemented with the unlicensed spectrum technology currently available.

The advent of 5G, the mobile network of the 5th generation, promises to overcome
the shortcomings of legacy wireless systems using ISM bands [45]. Furthermore, 5G uses
licensed frequency bands, so the noise level is lower and interference management is done
centrally, i.e., the devices are mandated regarding which frequency they should use; this
makes cellular networks very resilient [46].

7. Conclusions

In this study, SEAMCAT was used to evaluate radio interferences between Wi-Fi,
Bluetooth, and WirelessHART communication systems for industrial use on the shop floor.
Considering that wireless systems may soon become a standard for critical communications
on the shop floor, spectrum compatibility studies are essential to evaluate their coexistence.
These studies, expressed in terms of interference probability as a function of the I/N or
C/I ratio are needed to evaluate, define, and validate conditions and rules under which
new or evolved technologies, such as wireless systems, can access the spectrum. The
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results of the simulation revealed that from an electromagnetic point of view, interference
levels differently affected the wireless radio receivers, and to some extent, might affect
the system performance. This had an impact on network latency and, consequently, on
the user experience (applications/devices), particularly that of devices that were more
computing and memory intensive and with more demanding latency requirements, as
might be the case with mobile AR/VR applications. The results also suggested that because
they were often supported over Wi-Fi communications, a significant increase in mobile
AR/VR applications in industrial environments might have an impact on other radio
systems using the same frequency bands. Additionally, noise levels from machinery could
cause even more interferences and might negatively impact AR/VR applications on mobile
devices using the ISM frequency band. This will be a topic to be considered in further
studies and simulations with SEAMCAT. Another open issue for future research is to
evaluate the radio interferences considering the dynamic power control of the interfering
devices and the effects on latency.

Nevertheless, the emerging 5G communication technologies [47] or the disruptive
Wi-Fi 7 standard [48] will act as critical enablers for future mobile AR applications to
achieve ultra-low-latency and extremely high data rates. This, along with substantial
computer and storage resources placed at the edge of the Internet, near mobile devices, or
sensors, has the potential to improve scalability, latency, and bandwidth over a cloud-based
model.
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