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Abstract: Calibration of the unknown direction-dependent (DD) sensor phase and aliasing-free
directions of arrival (DOA) estimation for sparse linear arrays are difficult tasks. In this work, we
deploy an individual standard sensor with a known sensor phase response along the axis of the
uncalibrated sparse linear array, a self-calibration method is proposed, in which the unknown DD
sensor phase and the aliasing-free DOAs are both estimated. The proposed method is realized with
a two-step scheme. In the first step, the sensor phase is eliminated by the Kronecker product of
the covariance matrices in two different frequency bins, and the frequency difference satisfies the
spatial Nyquist sampling theorem. Then, the DOAs can be robustly estimated without the influences
of grating lobes and unknown sensor phase parameters. In the second step, the steering matrix is
estimated with the known phase parameters of the deployed standard sensor. Then, the DD sensor
phase is extracted from the steering matrix using the DOAs obtained in the first step. Hence, the
disadvantages of iteration-based strategies in conventional calibration algorithms (e.g., local minima
convergence) can be avoided. The performance of the proposed method is evaluated using simulation
data and compared with that of Cramer–Rao bounds.

Keywords: self-calibration; sparse uniform linear array; direction-dependent sensor phase; spa-
tial aliasing

1. Introduction

Array signal processing techniques, such as the high-resolution direction-of-arrival
(DOA) estimation [1,2] and adaptive beamforming [3], are sensitive to the unknown sensor
responses. Calibration of sensor response is an important step to improve not only the
DOA estimation but also the following adaptive beamformers: hydrophones ([4], Chapter
4), the fiber optic strain sensor [5] in an acoustic system, or antennas [6] in an electromag-
netic system. Self-calibration is a type of calibration algorithm that can simultaneously
estimate source DOA and array response vector parameters, such as coupling errors [7,8]
and unknown sensor phase responses [9]. In applications such as speech or underwater
acoustics, the bandwidth of the signals generated by speakers or sources typically exceeds
1 oct [10,11]. Accordingly, the half wavelength of the high frequency components is smaller
than the interelement spacing, and the sensor array can be regarded as a sparse one. The
coupling error between sensors can be ignored because of the large interelement spacing,
whereas the unknown sensor phase occupies the array response mismatches.

Sensor phase responses can be modeled as direction-independent (DI) [11–24] or
direction-dependent (DD) parameters [25–27]. Although numerous self-calibration meth-
ods for an unknown sensor phase have been proposed, most of them handle the DI sensor
phase. The self-calibration methods for the DI model can be divided into two categories:
self-calibration for the uncalibrated arrays and partly calibrated arrays. In the former, an
iteration-based strategy is applied, and the sensor responses and DOAs are alternately
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estimated [12–16]. However, the iteration can easily converge to local minima due to poor
initialization. In the latter category, partial sensor phase information is required before-
hand [19–23], and DOAs and sensor responses are robustly estimated (e.g., ESPRIT-like
algorithm) [19,20].

In contrast, it is difficult to distinguish whether the phase mismatch of the array
response is caused by the DOA estimation errors or the unknown sensor phase under the
DD model. Accordingly, the DOAs must first be obtained on the basis of the imperfect array
response [24] or estimated with the partly calibrated sensors [23]. A DOA and steering
vector estimation algorithm in [24] is a classical calibration algorithm for the DD sensor
phase models. This algorithm alternately estimates the DOAs and the steering vectors with
an iterative strategy. By contrast, the number of precalibrated sensors should be larger
than that of sources to obtain the initial value of the DOAs, and the convergence heavily
depends on the initializations. A weighted alternating least squares algorithm in [25] is
also an iteration-based calibration algorithm for DD sensor parameters. The iteration easily
converges to local minima due to the poor initialization. The instrumental sensor method
in [26] is a noniterative algorithm that can estimate the DD sensor phase with instrumental
sensors (i.e., precalibrated sensors). However, the number of precalibrated sensors should
be also larger than that of the sources to make the unknown DOA and sensor responses
solvable. In our previous work [27], the DD sensor phase parameters are extracted from
the steering matrix without iterations. However, the DOAs should be first estimated with
two precalibrated sensors.

These existing algorithms are not suitable for sparse uniform linear arrays (ULAs)
because of the ambiguities in the spatial spectrum [28,29]. One disambiguation scheme
for addressing this issue is to apply dual-size spatial invariance arrays; the ambiguous
directions are eliminated with half-wavelength-spaced subarrays [30,31]. Another disam-
biguation scheme is the multistage DOA estimation scheme [32], in which the outputs of
sensors are decomposed into multiple subbands and the influence of aliasing components
is minimized due to the different structures of the aliasing components in each subband.
However, the robustness against the unknown sensor response is not considered. To the
authors’ knowledge, only a few studies have been conducted on self-calibration methods
for sparse linear arrays.

This study proposes a self-calibration method for sparse ULAs with an unknown
DD sensor phase. An individual standard sensor is first deployed along the axis of the
sparse ULA. Then, a Kronecker product of covariance matrices in two different frequency
bins is conducted. In this manner, the unknown and frequency invariant DD sensor phase
is eliminated. Additionally, the frequency difference of the two different frequency bins
satisfies the spatial Nyquist sampling theorem and the spatial aliasing is also avoided. The
sensor phase is then calibrated with the constant modulus (CM) algorithm by using the
estimated DOAs and the known phase response of the deployed standard sensor. In the
proposed method, iterations are not required, and the disadvantages of iteration-based
strategies in conventional calibration algorithms (e.g., local minima convergence) can be
avoided. Moreover, the deployment of an additional standard sensor is easy to implement
in real tasks.

2. Model Establishment
2.1. Sensor Phase Models

In this work, a ULA consisting of M sensors with an unknown DD sensor phase
is considered. We assume that the sensor phase response in the array does not have a
uniform increment across the array but is frequency invariant [25] when processing low
frequency signals, especially for hydrophones in sonar arrays ([4], Chapter 4). Thus, the
direction-dependent sensor phase Φ can be modeled as follows:

[Φ]m,k = ϕm,k, (1)

where ϕm,k is the phase response of the mth sensor in the direction of the kth signal.
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A standard acoustic sensor with an accurate phase response is deployed along the
axis of the uncalibrated ULA to calibrate the sensor phase parameters in the ULA. Thus, a
new ULA with M′ = M + 1 sensors is formed, and the deployed sensor becomes the first
sensor in the new ULA, as shown in Figure 1. Without losing generality, we assume that
the phase parameter of the deployed standard sensor is ϕ1,k = 0, k = 1, · · · , K, where K is
the number of signals.
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2.2. Signal Model

K broadband and uncorrelated signals impinge on the ULA from the far field. The half
wavelength of the incident signals is smaller than the interelement spacing, i.e., λ/2 <d,
where d is the interelement spacing. Thus, the sensor array is regarded as the sparse ULA.

The sparse ULA and the deployed standard sensor synchronously acquire observation
data. The observed time interval is partitioned into L sections without overlapping. Then, a
Q-point FFT is applied to each section. The frequency domain observation in the lth section
and the qth frequency bin can be expressed as follows:

xl( fq) =

[
x1,l( fq)
x’

l( fq)

]
=

¯
Aqsl( fq) +

[
n1,l( fq)
n’

l( fq)

]
, (2)

where x1,l( fq) and x’
l( fq) are the observations of the deployed standard sensor and the

original uncalibrated ULA, respectively; sl( fq) = [s1,l( fq), · · · , sK,l( fq)]
T contains the signal

spectra; and n1,l( fq) and n’
l( fq) = [n2,l( fq), · · · , nM′ ,l( fq)]

T are the additive Gaussian noise
of the deployed standard sensor and the original uncalibrated ULA, respectively.

The steering matrix
¯
Aq in (2) is

¯
Aq = P ◦Aq, where P = ejΦ; Aq is the ideal steering

matrix in the qth frequency bin;
[
Aq
]

m,k = exp
{

j2π fq(m− 1)d cos θk/c
}

, m = 1, 2, · · · , M′,
c is the wave speed; θk is the unknown direction of the kth incident signal; and ◦ is the

Hadamard product. Considering that ϕ1,k = 0, k = 1, · · · , K, we have
[

¯
Aq

]
1,k

= 1, k =

1, · · · , K.
On the basis of (2), the data covariance matrix in the qth frequency bin is represented

as follows:
Rq = E

{
xl( fq)xH

l ( fq)
}
= (P ◦Aq)Πq(P ◦Aq)

H + ηqI, (3)

where Πq = diag
{

σq
}

, and σq = [σ1,q, · · · , σK,q]
T denote the powers of the sources in the

qth frequency bin, ηq is the noise power in the qth frequency bin; I is an M′ ×M′ identity
matrix, and (•)H stands for the conjugate transpose.

In practice, the data covariance matrix Rq is calculated from the sample covariance
matrix as follows:

^
Rq =

1
L

L

∑
l=1

xl( fq)xH
l ( fq), (4)
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where
^
Rq represents the sample covariance matrix.

3. Proposed Method

A robust DOA is first estimated without the influence of spatial aliasing or sensor
phase uncertainties. Then, the sensor phase is calibrated using the estimated DOA values.

3.1. Robust DOA Estimation without Spatial Aliasing

Spatial aliasing is generated when the interelement spacing is larger than the half
wavelength of the signal of interest (SOI). To overcome this issue, a frequency difference
operation is conducted and the frequency of the SOI is pulled to a reference frequency fr,
which satisfies the spatial Nyquist sampling theorem (i.e., fr = c/(2d)).

After the Q-point FFT operation, the index of the frequency bin for fr can be calculated
as qr = round{Q fr/ fs}, where round{•} is the rounding operation and fs is the sample
rate.

Considering the properties of the Kronecker product, i.e., (AB)⊗
(

A’B’
)
=
(

A⊗A’
)

(
B⊗ B’

)
, we can obtain the following expression:

(
Rq − ηqI

)
⊗
(

Rq+qr − ηq+qr I
)∗

=

{
¯
AqΠq

¯
A

H

q

}
⊗
{

¯
Aq+qr Πq+qr

¯
A

H

q+qr

}∗

=

{
¯
Aq ⊗

¯
A
∗

q+qr

}{
Πq ⊗Π∗q+qr

}{¯
Aq ⊗

¯
A
∗

q+qr

}H

= Bq,q+qr diag
{

σq ⊗ σq+qr

}
BH

q,q+qr

, (5)

where ⊗ is the Kronecker product, ∗ is the conjugate operation, and Bq,q+qr =
¯
Aq ⊗

¯
A
∗

q+qr .
In (5), the noise power ηq and ηq+qr can be estimated by the average of the smallest

M′ − K eigenvalues of the sample covariance matrices
^
Rq and

^
Rq+qr , respectively, because

the noise subspace estimation from the eigendecomposition of the sample covariance matrix
is not affected by the unknown DD sensor phase.

The ((m1 − 1)M′ + m2)th row and the ((k1 − 1)K + k2)th column of matrix Bq,q+qr

can be expressed as follows:[
Bq,q+qr

]
(m1−1)M′+m2,(k1−1)K+k2

= exp
{

j(ϕm,k1
− ϕm,k2

)
}
· exp

{
j 2π

c

[
fq(m1 − 1)d cos θk1

− fq+qr (m2 − 1)d cos θk2

]} ,

(6)

where 1 ≤ k1 ≤ K and 1 ≤ k2 ≤ K. Given the inconsistency of the order of the DOAs in
¯
Aq

and
¯
Aq+qr , the k1th column of the matrix

¯
Aq corresponds to the direction of the k1th signal

and the k2th column of the matrix
¯
Aq+qr is the steering vector of the k2th signal.

When m1 = m2 = m, we have[
Bq,q+qr

]
(m−1)M′+m,(k1−1)K+k2

= exp
{

j(ϕm,k1
− ϕm,k2

)
}
·

exp
{
−j 2π

c fr(m− 1)d
fq cos θk1

− fq+qr cos θk2
− fr

}
= exp

{
j(ϕm,k1

− ϕm,k2
)
}
· exp

{
−j 2π

c fr(m− 1)d cos θk1,k2

} , (7)

where θk1,k2
= arccos

{(
fq cos θk1

− fq+qr cos θk2

)
/(− fr) + 2k

}
, and k is an integer that

makes the inequality
∣∣∣( fq cos θk1

− fq+qr cos θk2

)
/(− fr) + 2k

∣∣∣ ≤ 1 hold.

CASE I: k1 = k2 = k
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In this case, we have θk1
= θk2

= θk. Thus, θk1,k2
is also equal to θk, which is the

direction of the kth signal. Given that exp
{

j(ϕm,k1
− ϕm,k2

)
}

= 1, the influence of the
sensor phase is canceled. At this time, the steering matrix in (7) can be regarded as the
equivalent steering matrix at the reference frequency in the direction of θk, k = 1, · · · , K.
Considering that the reference frequency fr = c/(2d), the negative effect of the spatial
aliasing is avoided.

CASE II: k1 6= k2
In this case, the direction of θk1,k2

is regarded as the cross term between the incident

signals in θk1
and θk2

. A total of K2 − K cross terms are generated and θk1,k2
, k1 6= k2 varies

with the frequency.
Then, we collect the ((m − 1)M′ + m)th, m = 1, · · · , M′ rows of

(
Rq − ηqI

)
⊗(

Rq+qr − ηq+qr I
)H

to form an equivalent covariance matrix at the reference frequency
as follows:

¯
Rq,q+qr = J

[(
Rq − ηqI

)
⊗
(

Rq+qr − ηq+qr I
)H
]

JH

= (JBq,q+qr )diag
{

σq ⊗ σq+qr

}
(JBq,q+qr )

H
, (8)

where J is an M′ ×M′2 section matrix with [J]m,(m−1)M′+m = 1, and the other entries are
equal to zero. The calculation of the equivalent covariance matrix at fr is shown in Figure 2.
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Given the Kronecker product between σq and σq+qr in (5), the number of signals (i.e.,
the incident signals and the cross terms) in the equivalent covariance matrix is K2. The
condition that M′ > K2 should be satisfied to identify all the signals.

After the eigendecomposition of
¯
Rq,q+qr , we obtain unitary matrices

¯
Uq,q+qr ∈ CM′×K2

and
¯
Vq,q+qr ∈ CM′×(M′−K2), which are composed of signal and noise subspace eigenvectors,

respectively. Similar to the traditional multiple signal classification algorithm (MUSIC), the
spatial spectrum for the frequency pairs of fq and fq+qr is estimated as follows:

Pq(θ) = 1/

(
bH

r
¯
Vq,q+qr

¯
V

H

q,q+qr br

)
, (9)

where [br]m = exp{−j2π fr(m− 1)d cos θ/c}.
In this spatial spectrum, the negative effects of the grating lobes and sensor phase

uncertainties are avoided. However, the cross terms in Case II are the new interferences
that degrade the DOA estimation performance of the incident signals. Given the sensor
phase term (i.e., ej(ϕm,k1

−ϕm,k2
)) in (7), the vector br in (9) does not match Bq,q+qr in Case II.

Consequently, the peaks of the cross terms are weaker than those of the incident signals.
Additionally, the cross term θk1,k2 , k1 6= k2 varies with the frequency. These peaks are
further weakened by the summation of Pq(θ) in the frequency domain:

P(θ) = ∑qH−qr
q=qL

Pq(θ), (10)
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where qL and qH are the lowest and highest frequency bins, respectively. According to
Parseval’s theorem, the spatial spectrum P(θ) is also the power of the broadband signals.

3.2. DD Sensor Phase Calibration

We first apply the CM algorithm [27,28,33] to estimate the steering matrix in each
frequency bin. Then, the DD sensor phase responses are extracted from the estimated
steering matrix and the permutation problems are finally solved.

3.2.1. Steering Matrix Estimation

We assume that Uq ∈ CM′×K is the signal subspace of the covariance matrix Rq

through eigendecomposition. Thus, we have
¯
Aq = P ◦Aq = UqTq, where Tq is an M′ ×M′

nonsingular matrix.

The norm of
[

¯
Aq

]
m,k

can be written as follows:

∣∣∣∣∣
[

¯
Aq

]
m,k

∣∣∣∣∣
2

= tH
q(k)uq(m)u

H
q(m)tq(k) = 1, 1 ≤ m ≤ M′, (11)

where |•| is the modulus of a complex number, uH
q(m) is the mth row of Uq, and tq(k) is the

kth column of Tq.

Considering that the modulus of
[

¯
Aq

]
m,k

is always equal to one for any indices of m

and k, we have ∣∣∣∣∣
[

¯
Aq

]
m,k

∣∣∣∣∣
2

−
∣∣∣∣∣
[

¯
Aq

]
1,k

∣∣∣∣∣
2

= tH
q(k)Kq,mtq(k)

= vecT(Kq,m)
(

tq(k) ⊗ t∗q(k)
)
= 0, m = 2, · · · , M′

, (12)

where Kq,m = uq(m)uH
q(m) − uq(1)uH

q(1), and vec(•) is the matrix vectorization.
The M′ − 1 equations in (12) are written in a matrix form as follows:

Kq

(
tq(k) ⊗ t∗q(k)

)
= 0M−1, (13)

where 0M−1 is (M′ − 1)× 1 vector with all elements equal to zero, and Kq is an (M′ − 1)×
K2 matrix whose (m− 1)th row is vecT(Kq,m), m = 2, · · · , M′.

The vector tq(k) ⊗ t∗q(k) belongs to the null space of Kq (denoted as N
{

Kq
}

). The null

space N
{

Kq
}

can be calculated from the singular value decomposition of matrix Kq. If the
right singular matrix of Kq is Zq = [z1, · · · , zK2 ] and zk is the kth right singular vectors of
Kq, we find that N

{
Kq
}
= [zK2−K+1, · · · , zK2 ].

In accordance with [27,33], tq(k) ⊗ t∗q(k), k = 1, . . . , K is also a group of linearly inde-

pendent vectors of N
{

Kq
}

. Thus, any vector wq ∈ N
{

Kq
}

can be expressed as follows:

wq =
K
∑

t=1
α

q
t zK2−K+t =

K
∑

t=1
β

q
t

(
tq(t) ⊗ t∗q(t)

)
⇒Wq = vec−1{wq} =

(
TT

q

)−1
ΣqTT

q

, (14)

where α
q
t and β

q
t are the coefficients under the different basis of null space N

{
Kq
}

, vec−1 is

the inverse operation of matrix vectorization, and Σq = diag
{

β
q
1, · · · , β

q
K

}
.
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If Σq is a nonsingular matrix, then we obtain

W−1
q W’

q =
{

TT
q

}−1(
Σ−1

q Σ’
q

)
TT

q , (15)

where Σ’
q = diag

{
β′

q
1, · · · , β′

q
K

}
, β′

q
t , t = 1, · · · , K is another coefficient and β′

q
t 6= β

q
t .

The version in (15) is similar to the eigendecomposition of the matrix W−1
q W’

q. Addi-

tionally, we can calculate the steering matrix
¯
Aq as follows by considering that

¯
Aq = UqTq

and
[

¯
Aq

]
1,k

= 1, k = 1, · · · , K [27]:

^
¯
Aq =

~
Aqdiag−1

{
eT

1
~
Aq

}
J’

q, (16)

where
~
Aq = Uq

{
ET

q

}−1
, Eq is the unitary matrix composed of the eigenvectors of W−1

q W’
q,

J’
q = [en′1 , en′2 , · · · , en′K ] is a K× K selection matrix, n′1 6= n′2 6= · · · 6= n′K, n′1, · · · , n′K ∈
{1, 2, · · · , K}, and en′k is a vector with the n′kth element equal to one and with the other
equal to zero. The arrangement of the columns of the steering matrix at different frequency
bins is adjusted by the selection matrix J’

q, which is calculated later.

3.2.2. Sensor Phase Estimation

In the qth frequency bin, we define

¯
ψq= angle

{
¯
Aq

}
, ψq= angle

{
Aq
}

, (17)

where angle{•} is the phase of the bracketed variable.
The relationship of the phase of the steering matrix can be expressed as follows:{

Φ + ψqJ”
q

}
mod(2π) =

¯
ψq, q = qL, · · · , qH , (18)

where amodb is the remainder of a divided by b and a selection matrix J”
q = [en′′ 1 , en′′ 2 , · · · , en′′ K ];

n′′ 1 6= n′′ 2 6= · · · 6= n′′ K, n′′ 1, · · · , n′′ K ∈ {1, 2, · · · , K} is introduced in (18) to align the

sequence of the sensor phase responses between
¯
ψq and ψq. Then, we have

Φ =

{
¯
ψq −ψqJ”

q

}
mod(2π), q = qL, · · · , qH , (19)

The sensor phase is frequency invariant and can be estimated by averaging (19) along
the frequency domain:

ϕ̂m,k =
1

qH − qL + 1

qH

∑
q=qL

{[
¯
ψq −ψqJ”

q

]
m,k

}
mod(2π), (20)

3.2.3. Permutation Problem Solving

Two permutation problems, namely, J’
q in (16) and J”

q in (19), need to be addressed.
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To align the columns of the estimated steering matrix in (16) at different frequency
bins, we calculate the selection matrix J’

q by minimizing the difference of the steering
matrix at neighboring frequency bins as [27]

^
J

’

q = min
J’

q

‖
~
Aqdiag−1

{
eT

1

~
Aq

}
J’

q −
^
¯
Aq−1‖

F
, q = qL + 1, · · · , qH

s.t.

^
¯
AqL =

~
AqL diag−1

{
eT

1

~
AqL

} , (21)

which means that

^
¯
Aq, q = qL + 1, · · · , qH aligns with

^
¯
AqL .

In (19), the selection matrix J”
q is used to align the sequence of the sensor phase

responses between
¯
ψq and ψq. Given that the sensor phase response is frequency invariant,

the variance of
{

¯
ψq −ψqJ”

q

}
mod(2π) along the frequency domain approaches zero for

an appropriate J”
q. Hence, J”

q can be calculated as follows:

^
J

”

q = min
J”

q

var{υ}

υ = 1
MK

[
K
∑

k=1

M
∑

m=1

{[
¯
ψqL
−ψqL J”

qL

]
m,k

}
mod(2π), · · · ,

K
∑

k=1

M
∑

m=1

{[
¯
ψqH
−ψqH J”

qH

]
m,k

}
mod(2π)

]T , (22)

where var{•} is the variance of the bracketed vector.

3.3. Algorithmic Steps

In the proposed method, the DOAs are first estimated without the influences of the
unknown sensor phase and spatial aliasing. Then, the DD sensor phase is calibrated with
the estimated DOAs. The algorithmic steps for the sparse ULA are described in Table 1.

Table 1. Algorithmic steps in the proposed method.

Algorithm: Self-calibration for sparse ULAs with unknown DD sensor phase

Input: Phase parameters of the standard sensor, observations of the sparse ULA and the
individual standard sensor
Output: Estimated DOAs and the DD sensor phase responses of the sparse ULA

1: xl( fq) is obtained by the Q-point FFTs on the L sections of the array observations.

2: The sample covariance matrix
^
Rq is calculated in (4).

3:
Noise power ηq is calculated by averaging the small M′ − K eigenvalues of the

sample covariance matrix
^
Rq.

4: // Step 1 Estimate the DOAs

5: Calculate the equivalent covariance matrix
¯
Rq1,q1+qr in (8).

6: The DOA for the frequency pairs of fq1 and fq1+qr is estimated in (9).
7: The broadband spatial spectrum is calculated in (10).
8: // Step 2 Estimate the DD sensor phase

9: The steering matrix
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{ }

1,

1,

1 T
1

ˆ diag diag

    diag

j
q q q q

jnorm
q q

e

e

•

•

′−

′

′ ′=

′=

φ

φ

A A e A J

A J

 


, (23) 

where { }1 T
1diagnorm

q q q
−=A A e A   . 

If 1,•′φ  can be estimated, then the deployed sensor phase parameter is not necessary. 
In other words, specifically, no deployed sensor is required. However, if 1,•′φ  cannot be 
identified, at least one deployed sensor is needed. 

The covariance matrix reconstructed by the steering matrix ˆ
q′A  is represented as 

{ } ( ) { }( )
{ } { } { }( )

( ) ( ){ }( )

1, 1,

1, 1,

1, 1,

H

HH H

HH

H H

ˆ ˆ

diag diag

diag diag diag

diag

q q q q q

j jnorm norm
q q q q q q

j jnorm norm
q q q q q

j jnorm norm
q q q q q

e e

e e

e e

η

η

η

η

• •

• •

• •

′ ′

′ ′

′ ′

′ ′ ′= +

′ ′= +

′= +

′= +

φ φ

φ φ

φ φ

R A Π A I

A J Π J A I

A J σ A I

A J σ A I

 

 

  

, (24) 

In consideration of the commutativity of the Hadamard product, Equation (24) can 
be reformed as 

is estimated in (16) and the selection matrix J’
q is calculated

in (21).
10: The sensor phase is estimated in (20) and the selection matrix J”

q is calculated in (22).

3.4. Discussions
3.4.1. Discussion on the Deployed Standard Sensors

Although an individual standard sensor is deployed in the previous derivation, we
still need to discuss why the individual standard sensor is required in the proposed method.
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Lemma 1. At least one individual standard sensor is required to calibrate the DD sensor phase.

Proof. After deploying an individual standard sensor along the axis of the original uncal-
ibrated sparse ULAs, a new ULA is formed and the deployed standard sensor becomes
the first sensor of the new ULA. In accordance with (16), the estimated steering matrix is

normalized by the first row of the matrix
~
Aq. If the phase responses of the first sensor (i.e.,

the deployed standard sensor) are symbolized as ϕ’
1,• = [ϕ′1,1, ϕ′1,2, · · · , ϕ′1,K]

T, then the
estimated steering matrix can be expressed as follows:

^
¯
A

’

q =
~
Aqdiag−1

{
eT

1

~
Aq

}
diag

{
ejϕ’

1,•
}

J’
q

=
~
A

norm

q diag
{

ejϕ’
1,•
}

J’
q

, (23)

where
~
A

norm

q =
~
Aqdiag−1

{
eT

1

~
Aq

}
.

If ϕ’
1,• can be estimated, then the deployed sensor phase parameter is not necessary.

In other words, specifically, no deployed sensor is required. However, if ϕ’
1,• cannot be

identified, at least one deployed sensor is needed.

The covariance matrix reconstructed by the steering matrix

^
¯
A

’

q is represented as

R’
q =

^
¯
A

’

qΠq

^
¯
A

’H

q + ηqI

=
~
A

norm

q diag
{

ejϕ’
1,•
}

J’
qΠq

(
J’

q

)H
diagH

{
ejϕ’

1,•
}( ~

A
norm

q

)H
+ ηqI

=
~
A

norm

q diag
{

ejϕ’
1,•
}

diag
{

J’
qσq

}
diagH

{
ejϕ’

1,•
}( ~

A
norm

q

)H
+ ηqI

=
~
A

norm

q diag
{

ejϕ’
1,• ◦

(
J’

qσq

)
◦
(

ejϕ’
1,•
)H
}(

~
A

norm

q

)H
+ ηqI

, (24)

In consideration of the commutativity of the Hadamard product, Equation (24) can be
reformed as

R’
q =

~
A

norm

q diag
{

ejϕ’
1,• ◦

(
ejϕ’

1,•
)H
◦
(

J’
qσq

)}( ~
A

norm

q

)H
+ ηqI

=
~
A

norm

q diag
{

J’
qσq

}( ~
A

norm

q

)H
+ ηqI

=
~
A

norm

q J’
qdiag

{
σq
}( ~

A
norm

q J’
q

)H
+ ηqI

=

^
¯
AqΠq

^
¯
A

H

q + ηqI

, (25)

where

^
¯
Aq is the steering matrix defined in (16). �

According to (25), the deployed sensor phase response ϕ’
1,• is canceled, indicating

that the variable ϕ’
1,• cannot be identified from the covariance matrix. Hence, at least one

deployed standard sensor with known phase response is required to estimate the unknown
sensor phase responses of the original uncalibrated ULA.
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3.4.2. Comparison with the Current Self-Calibration Algorithms

In the current self-calibration algorithms, an iteration-based strategy is commonly used,
in which the DOAs and sensor phase are alternatively estimated during the iterations [12–16].
However, the local minima are easily converged due to the poor initialization. The initial-
izations of the DOAs are difficult to choose, especially for the sparse linear arrays, because
of the spatial aliasing.

To avoid the disadvantages of the iteration strategy, the self-calibration method in [27]
and the proposed method both work without iterations. In [27], the DOAs are first obtained
from the estimated steering matrix with two precalibrated sensors and the DD sensor
phase is then calculated. The DOA estimation accuracy is significantly influenced by
the number of the precalibrated sensors. The estimation of the DD sensor phase is also
limited. Moreover, the assumption of the multiple precalibrated sensors that belong to the
uncalibrated array is unrealistic in practice.

By contrast, the DOA estimation accuracy of the proposed method is improved owing
to the use of the whole aperture of the sensor array and elimination of the unknown sensor
phase. Additionally, spatial aliasing is no longer a problem when the proposed method
is applied to the sparse ULAs since it is based on the frequency difference methodology.
Notably, only an additional standard sensor is exploited for the extraction of the sensor
phase, which is easier to implement in real tasks since the sensor is not a part of the original
uncalibrated array.

4. Simulation Results

A sparse ULA composed of 11 acoustic sensors is considered in the simulation. The
wave speed in the water medium is 1500 m/s. The interelement spacing is equal to 3.75 m
(i.e., the half wavelength of 200 Hz). Two uncorrelated broadband signals impinge on the
array from the directions of 50◦ and 80◦, respectively, and they cover the frequency band
from 200 to 600 Hz. The test array is sparse relative to the frequency band of the incident
signals.

A standard sensor is deployed along the axis of the sparse ULA and a new ULA with
M′ = 12 sensors is formed. The deployed sensor now becomes the first sensor of the
new ULA. The accurate sensor phase of the deployed sensor and the unknown sensor
phase responses, which are frequency invariant and randomly generated from uniform
distributions in the range −π ∼ π, are listed in Table 2. The sample frequency is set to
5 kHz.

Table 2. Sensor phase responses.

DOAs m 1 2 3 4 5 6

50◦ ϕ (rad) 0.0000 −1.2865 0.8886 0.8369 −1.5832 1.5472
80◦ ϕ (rad) 0.0000 −0.8488 2.0270 −1.1582 0.0490 −0.2114

m 7 8 9 10 11 12

50◦ ϕ (rad) 2.2316 0.9938 1.2671 0.4506 1.8271 0.4833
80◦ ϕ (rad) 1.9140 0.5766 −1.4600 0.0922 1.8587 −2.1943

4.1. Example for DOAs and DD Sensor Phase Estimation

The observed data are partitioned into L = 200 sections, with each section containing
500 samples. A Q-point FFT is applied to each section, and Q = 500. A total of 41 frequency
bins are located in the frequency band. We set the reference frequency fr = 200 Hz to avoid
spatial aliasing. SNR is set to 5 dB. In the proposed method, the first sensor is assumed to
be precalibrated.

The spatial spectra of the proposed method with fq = 200, 250, 300, 350, and 400 Hz
(i.e., Equation (9)) and the broadband (i.e., Equation (10)) are plotted in Figure 3a. The
spectral values of the cross terms are much lower than the peaks of the incident signals
due to the mismatch between br in (9) and Bq1,q1+qr in (7). Hence, two sharp peaks can be
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observed in all the spatial spectra in Figure 3a. After summing the spatial spectra along the
frequency domain, we observe that the broadband spectrum has relatively flat sidelobe
sectors. Additionally, spatial aliasing is effectively avoided.
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The unknown DD sensor phase parameters are then obtained by applying the esti-
mated DOAs. The true and the estimated sensor phase values are displayed in Figure 3b.
We can observe that the proposed method shows a high estimation accuracy of the DD
sensor phase.

4.2. Statistical Performance of the Proposed Algorithm

The statistical performance of the proposed algorithm is shown in the following
simulation. Considering that studies on the self-calibration of the unknown DD sensor
phase are limited, Weiss’ method in [25], Yang’s method in [27], and the Cramer–Rao
bounds (CRBs) [25,27] are applied for comparison. In Weiss’ method, the number of
precalibrated sensors is set to three. Yang’s method requires two precalibrated sensors.
In addition, the Weiss’ method is a narrowband processing algorithm that is applied in
each frequency bin and the sensor phase parameters and the DOAs are averaged over the
frequency band. The estimates of DOAs and sensor phase responses are measured by the
root mean square error (RMSE). A total of 200 Monte Carlo experiments are conducted.

The statistical performance of the estimates of the DOAs and sensor phase responses
versus the SNR are shown in Figure 4a,b, respectively. In Weiss’ method, the low estimation
accuracy of the DOAs and sensor phase parameters is caused by the poor initialization of
the DOAs resulting from the spatial aliasing and the short aperture of the precalibrated
subarray. Yang’s method can calibrate the sensor phase responses whose performance is
also affected by the directions of the sources. In Yang’s method, the DOAs are estimated
with the first two precalibrated sensors at an equivalent frequency of ( fH − fL)/2 [27]. At
this equivalent frequency, the spatial ambiguity can be avoided, whereas the estimation
accuracy of the DOAs is still limited by the aperture of the first two precalibrated sensors.
The proposed method has the best DOA estimation performance among the methods
mainly because of the applications of the whole aperture of the sensor array and the anti-
aliasing processing. The calibration performance of the sensor phase responses is also
improved owing to the unambiguous and accurate DOAs. The CRBs of the DOA and
sensor phase estimation in Figure 4a,b are also well approached by the proposed method.
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We repeat the simulation by fixing SNR = 5 dB and varying the number of sections
L from 20 to 300. Each section also contains 500 samples. The estimation performance of
DOAs and sensor phase responses versus the number of sections are shown in Figure 5a,b,
respectively. Similar to the results in Figure 4, the proposed method has the lowest RMSE
values among the compared methods, and the CRB is approached.
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In the next simulation, the effect of the signal bandwidth on the performance of the
mentioned self-calibration algorithms is discussed. We fix the lower limit frequency of the
incident signals fL as 200 Hz, whose wavelength is equal to twice the interelement spacing.
Additionally, the higher limit frequency fH ranges from 400 to 2400 Hz at a step of 200 Hz,
indicating that the bandwidth of the incident signals increases from 1 oct to approximately
3.5 oct. The larger the fH, the sparser of the sensor array. Additionally, SNR is set to 5 dB,
and the number of sections L = 200.

The RMSEs of the DOAs and sensor phase responses versus the signal bandwidth
are plotted in Figure 6a,b, respectively. Weiss’ method fails to estimate the unknown
parameters. In Yang’s method, the equivalent frequency of ( fH − fL)/2 does not satisfy
the spatial Nyquist sampling theorem when the higher limit frequency fH is larger than
600 Hz. Accordingly, the estimation performance is dramatically degraded due to the
spatial ambiguity for fH> 600 Hz. However, the directions of the sources are estimated
at the reference frequency, and the spatial Nyquist sampling theorem is always satisfied
in the proposed method. Moreover, the DOA estimation performance can be improved
with more frequency bins applied due to the increased signal bandwidth. The RMSE of the
proposed method is also approached by the CRB.
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5. Conclusions

A self-calibration method is proposed by deploying an individual standard sensor
with a known sensor phase response along the axis of the uncalibrated sparse linear array,
in which the unknown DD sensor phase and the aliasing-free DOAs are estimated. The
DOA is first accurately estimated owing to the use of the whole aperture of the sensor array
and the elimination of unknown sensor phase. Additionally, spatial aliasing is also solved
based on the frequency difference methodology. Then, the steering matrix is estimated by
the CM algorithm with the known phase parameters of the deployed standard sensor. The
DD sensor phase is finally extracted from the steering matrix by using the estimated DOAs.

The advantages of the proposed method are summarized as follows: (1) The DOAs
can be accurately estimated even if the sensor phase is unknown. (2) The spatial aliasing of
the DOA estimation is avoided. (3) Only an additional standard sensor is exploited for the
extraction of the DD sensor phase, which is easier to implement in real tasks. (4) The CRBs
of the DOA and DD sensor phase estimation are well approached.
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