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Abstract: Big data has revolutionized science and technology leading to the transformation of our
societies. High-performance computing (HPC) provides the necessary computational power for
big data analysis using artificial intelligence and methods. Traditionally, HPC and big data had
focused on different problem domains and had grown into two different ecosystems. Efforts have
been underway for the last few years on bringing the best of both paradigms into HPC and big
converged architectures. Designing HPC and big data converged systems is a hard task requiring
careful placement of data, analytics, and other computational tasks such that the desired performance
is achieved with the least amount of resources. Energy efficiency has become the biggest hurdle in
the realization of HPC, big data, and converged systems capable of delivering exascale and beyond
performance. Data locality is a key parameter of HPDA system design as moving even a byte costs
heavily both in time and energy with an increase in the size of the system. Performance in terms
of time and energy are the most important factors for users, particularly energy, due to it being the
major hurdle in high-performance system design and the increasing focus on green energy systems
due to environmental sustainability. Data locality is a broad term that encapsulates different aspects
including bringing computations to data, minimizing data movement by efficient exploitation of
cache hierarchies, reducing intra- and inter-node communications, locality-aware process and thread
mapping, and in situ and transit data analysis. This paper provides an extensive review of cutting-
edge research on data locality in HPC, big data, and converged systems. We review the literature on
data locality in HPC, big data, and converged environments and discuss challenges, opportunities,
and future directions. Subsequently, using the knowledge gained from this extensive review, we
propose a system architecture for future HPC and big data converged systems. To the best of our
knowledge, there is no such review on data locality in converged HPC and big data systems.

Keywords: High-performance computing (HPC); big data; High-Performance Data Analytics (HPDS);
convergence; data locality; Spark; Hadoop; design patterns; process mapping; in situ data analysis

1. Introduction

Data has grown exponentially during the last decade giving rise to the big data phe-
nomenon [1,2]. Big data has revolutionized science and technology, leading to innovations
in many sectors including urbanization [3], transport [4], energy [5], healthcare [6], edu-
cation [7], economics [8], smart societies [9], computing infrastructure [10], and more; see,
for example, [1,11], for details on big data technologies and applications. The paramount
contribution of big data is the development of contemporary data-driven machine and
deep learning and artificial intelligence (AI) technologies that have transformed our so-
cieties and infrastructure [12,13]. This has also given rise to the need for developing
green AI approaches, a broad term that incorporates properties including energy efficiency,
responsibility, fairness, etc. [14–17].
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High-performance computing (HPC) provides the necessary computational power
for big data analysis using machine learning and other artificial intelligence methods [18].
HPC has traditionally focused on compute-intensive simulations of natural phenomena,
engineering design of static and dynamic objects (bridges, vehicles, etc.), and other scientific
and engineering problems on high-end tightly coupled supercomputing systems. Big data
technologies have grown to use relatively loosely coupled and inexpensive computer
systems. HPC is good at compute-intensive tasks while big data systems have better
performance for data-driven tasks. The last five or so years have seen developments of
systems that integrate the advantages of both big data and HPC systems by converging the
two approaches to system design [19–26].

Designing HPC and big data converged systems, also referred to as High-Performance
Data Analytics (HPDA), is a hard task requiring careful placement of data, analytics, and
other computational tasks such that the desired performance is achieved with the least
amount of resources. Energy efficiency has become the biggest hurdle in the realization
of HPC and HPDA systems capable of delivering exascale and beyond performance. In
large-scale systems comprising millions of cores and thousands of nodes aiming to provide
exascale performance is an arduous exercise. The classical Dennard scaling has stopped
for more than a decade now as the scaling of a single processing core has ceased and
performance scaling is achieved by mounting more cores on chips and exploiting explicit
parallelism. The complexity of managing parallelism increases with increasing memory
hierarchies from system and node levels to the processing unit level [27]. It becomes even
more challenging in loosely coupled systems where nodes are typically geographically
distributed with many uncertainties including network quality [10,28,29].

Locality, or how to improve data access and transfer, within the application, is one
of the most significant challenges that will need to be addressed in the upcoming years.
Addressing data locality issues in simple terms means narrowing the distance between
data and processing for better performance. One problem relating to locality comes from
the memory and the network: the affinity and location of processes within an application
affect how quickly data is transferred between them. The cost of data movement has been
under the scanner of researchers for years but now has gained momentum, as performance
and energy consumption are heavily dependent on data locality. Researchers have realized
that scalability cannot be addressed only by powerful infrastructure but is constrained by
resource utilization and energy efficiency [27].

Locality refers to a phenomenon in which computations do not have a uniform or
independent access to data but rather have clustered, dependent, co-related access [30]. The
Principle of Locality or Locality of References can be categorized as temporal locality and
spatial locality. Temporal locality aims to reuse data as much as possible once it has been
brought in and spatial locality aims to use every data element that has been brought in [31].
Data Locality can be defined as bringing computations to the place (processor, cache, etc.)
or nodes where the data to be processed actually resides. Data Movement is defined as
the movement of data across cache hierarchies, inter- and intra-node data movement and,
in the case of in situ data analysis, data movement mostly refers to data movement back
and forth to persistent storage and retrieving data for post-data-analysis. In the rest of the
paper, we refer to data locality as a means of bringing computation to data, minimizing
data movement by efficient exploitation of cache hierarchies, reducing intra- and inter-node
communications, locality-aware process and thread mapping, and in situ and in transit
data analysis.

Data locality is a key parameter of HPDA system design as moving even a byte costs
heavily both in time and energy with an increase in the size of the system. Performance in
terms of time and energy are the most important factors for users, particularly energy, due
to it being the major hurdle in high-performance system design and the increasing focus on
green energy systems due to environmental sustainability.
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This paper provides an extensive review of cutting-edge research on data locality in
HPC, big data, and converged systems. To the best of our knowledge, there is no such
review on data locality in converged HPC and big data systems.

In Section 2, we review earlier works on data locality surveys in HPC, big data, and
converged systems and establish the case for this work. Section 3 reviews literature on
data locality in HPC environments with topics covering applications perspective; program-
ming languages, compiler, and libraries; cache optimization techniques; locality-aware
scheduling and load-balancing; bulk synchronous processing (BSP); out-of-core computing;
parallelism mapping; and in situ data analysis. Section 4 reviews works on data locality
in HPC environments from perspectives including parallel programming models, data
placement, scheduling, load balancing, and in-memory computations. Section 5 reviews
literature on data locality in converged HPC and big data environments with topics cover-
ing MPI with map-reduce frameworks, map-reduce frameworks with high-performance
interconnects, and map-reduce-like frameworks for in situ analysis. Section 6 discusses
challenges, opportunities, and future directions covering programming paradigms, pro-
gramming models and language support, programming abstractions, innovations in data
layout strategies, locality-aware scheduling, software hardware co-design, and innovations
in memory and storage technologies. In Section 7, we use the knowledge gained from this
extensive review to propose a system architecture for future converged systems. Section 8
concludes the paper.

2. Related Works: Case for This Paper

This section reviews earlier works on data locality surveys in HPC (Section 2.1), big
data (Section 2.2), and converged systems (Section 2.3) and establish the case for this work.

2.1. Big Data

Lores et al. [32] presented a survey of different techniques proposed to deal with
data locality for high-performance and high throughput systems by categorizing different
techniques into four major categories, i.e., application development, in-memory computing,
task scheduling, and storage formats. A survey by Zhang et al. [33] focused on data
processing and management strategies for in-memory computations. Dolev et al. [34]
investigated different requirements and challenges in designing geographically distributed
big data analysis frameworks and protocols by classifying and focusing on map-reduce-
based systems, stream processing, SQL-style processing, geo-distributed frameworks, etc.
Senthilkumar et al. [35] base their work on task scheduling in big data computations
primarily focusing on scheduler classification, and algorithmic comparison with pros and
cons, and also include various tools and frameworks for managing and enhancing the
performance of map-reduce.

Idris et al. [36] presented a survey on context-aware scheduling in map-reduce frame-
works. They classified scheduling techniques and algorithms and comparative analysis
of these techniques. Mozakka et al. [37] presented a survey on adaptive job schedulers
in map-reduce and discussed the benefits and drawbacks of different adaptive schedul-
ing techniques. Nagina et al. [38] reviewed scheduling algorithms in big data. Sreedhar
et al. [39] surveyed big data management and job scheduling. Akilandeswari et al. [40]
presented a survey on task scheduling in cloud environments.

2.2. HPC

Hoefler et al. [41] presented an overview of topology mapping focusing on algorithmic
strategies and mapping enforcement techniques, i.e., resource binding, rank reordering,
etc. Unat et al. [27] presented a comprehensive survey of different trends in data local-
ity abstractions available in the form of data structures, runtime systems, libraries, and
languages and identified opportunities to combine different techniques to address data
locality issues for future HPC systems. Singh et al. [42] presented a comprehensive survey
on mapping methodologies by categorizing them as design time, runtime, on-the-fly, and
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hybrid techniques and also provided upcoming trends, issues, and open challenges for
many- and multicore systems.

2.3. HPC and Big Data Convergence

While the motivations and benefits for the convergence of HPC and big data have
been noted in the literature, there are very few papers that have reviewed the literature on
the convergence of big data and HPC. The most notable and earliest one (published in 2015)
is by Reed and Dongara [18]. This is more of an agenda-setting article. Asaadi et al. [43]
presented a data-supported comparative survey of HPC (MPI, PGAS, OpenMP) and big
data (Spark, Hadoop, etc.) programming interfaces. They also conducted experiments on a
series of benchmarks for comparison and discussed the potential benefits, issues, and chal-
lenges of convergence of HPC and big data. Jha et al. [44] presented a comparative analysis
of HPC and big data paradigms by discussing their relevant features, functionalities, and
common implementation characteristics. They also identified differences between HPC
and big data software ecosystems and outlined some architectural similarities along with
potential opportunities for the inevitable convergence of HPC and big data. [43,44] are both
conference papers.

The authors of the technical report [45] reviewed convergence challenges and issues
raised by the split between conventional HPDA and the explosive growth of data in recent
years. They addressed and analyzed the application workflow level convergence challenges
for widely distributed data resources, challenges imposed by converged infrastructure in
edge environments (data flow between data centers and network edge and vice-versa),
and opportunities for integrated centralized infrastructure. A survey of big data and HPC
tracing from parallel programming models to clusters is provided in [46]. Golasowski
et al. [47] discussed the convergence by reviewing four EU Horizon 2020 projects. Other
discussion works on the convergence include [48–50], and a discussion article in the
HPCwire magazine [2].

The works discussed above provide general discussions on HPC and big data con-
vergence. To the best of our knowledge, there are no review papers on data locality in
converged HPC and big data systems.

3. Data Locality in HPC Environments

HPC has been fundamental in developing many transformative applications [51–55].
These HPC applications require careful design of fundamental algorithms, e.g., the seven
dwarfs [56–61]. Data locality has been coined as a key aspect among others and is regarded
as one of the main challenges for exascale computing endorsed by many technical reports
published in recent years [62–65]. The organization of memory into banks and NUMA
regions, read-only memory, and multiple cache hierarchies make efficient data structure and
optimization, a complex task. As we are heading towards exascale systems where the cost
of data movement will be a dominant factor in terms of performance and energy efficiency.
The complexities of managing data with different levels of memory hierarchies are further
complicated by inter- and intra-node-level communication. Parallelism and communication
are further constrained by heterogeneous core architecture. With the increase in platform
heterogeneity, portability is a core issue that demands standardization of widely used
approaches to automate performance tuning across different architectures [27].

The concurrency and input data size are on a rise and there is a need for efficient
exploitation of heterogeneous architectures with an increasing number of cores to bridge
a performance gap between application and target architecture. There is a need for op-
timization of data layout, data movement between processes/threads and data access
patterns. Locality issues exist at different levels, from how application data is laid out
to the increasing number of processing cores, complex memory hierarchies, inter-node
communication, interconnects, and storage units [66]. The following section discusses the
research related to data locality in the High-performance computing domain.
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3.1. Application Perspectives

Data locality from an application’s point of view demands the examining of a range
of modeling methodologies, which needs exploration of a huge application space. The
adaption of current HPC application code into exascale systems demands efficient utiliza-
tion of heterogeneous resources, requiring innovations in application layout strategies,
communication optimization, synchronization, resource availability, and data movement
and access strategies.

3.2. Programming Languages, Compiler, and Libraries

The increasing level of hardware parallelism and deep hierarchies (core dies, chips,
to node level) have posed a challenging task for efficient parallelism and data locality
exploitation at all levels of hierarchy, which demands data locality support at different
levels of the software ecosystem, i.e., programming language, compiler, libraries, etc. Majo
et al. [67] proposed a parallel programming library for compose-able and portable data
locality optimizations for NUMA systems. This library is based on Intel Threading Building
Blocks (TBB) and allows the capturing of a programmer’s insights for mapping tasks to
available resources. Lezos et al. [68] presented a compiler-directed data locality optimiza-
tion in MATLAB by developing a software tool, MemAssist, for efficient exploitation of
targeted architecture and memory hierarchy. Regan-Kelley et al. [69] proposed a language
and compiler support for optimizing parallelism, locality, and re-computation in image
processing pipelines.

Current HPC models lack efficient exploitation of data locality due to the lack of
language support for data locality policies e.g., array layouts, parallel scheduling, etc., an
overexposure of target architecture, and a lack of support for user-defined policy abstrac-
tions. Chapel is a prominent parallel programming language developed by the joint efforts
of Cray Inc., academia, and industry with a prime focus on the separation of parallelism
and locality, and multi-resolution design with enhanced productivity features [70]. X10 [71]
is based on a PGAS model and designed specifically for parallel computing that supports
structured and unstructured parallelism, user-defined primitive struct types, and globally
distributed arrays with co-location of execution and data. Huang et al. [72] addresses the
data locality issues with explicit programming control of locality in the context of OpenMP
and how it can be accomplished.

3.3. Cache Optimization Techniques

Locality optimizations by making efficient use of the cache, have been an active area of
research for years. Locality can be categorized as temporal locality (reuse data once it has
been brought into the memory) and spatial locality (use of every data element brought into
the memory). The efficient exploitation of registers involves compiler, assembly-language,
and programming-level optimizations. Cache line length, cache size, and cache replace-
ment policy are some of the factors considered for the effective and efficient optimization
of caches [33]. Gupta et al. [73] proposed a spatial locality-aware cache partitioning scheme
by measuring spatial and temporal locality dynamically for optimal workload block size
and capacity for effective cache sharing. Gonzalez et al. [74] proposed a dual data-cache or-
ganization for managing spatial and temporal locality by implementing a lazy cache policy
that uses a locality prediction table to make necessary predictions based on recently used
instructions. [75,76] related to on-chip caching for efficient cache utilization, while [77,78]
based their approach on data-access frequency.

The following section explains the basic data access optimization techniques engi-
neered to improve cache efficiency.

3.3.1. Data Access Optimization

Data access optimizations are generally code transformations whose prime motivation
is to increase temporal locality by reordering iterations in a nested loop. These optimization
techniques are also used to expose parallelism and help in vectorizing loop iterations.
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Compilers used heuristics to decide the effectiveness of applying these transformations. If
nested loops are not perfectly nested then loop skewing, unrolling, and peeling are used.
Detailed information about these techniques can be found in [79,80].

Loop Skewing: When the carried dependencies prevent parallelizing, one can skew
the loop-nest by modifying the aligning of iteration space coordinates and relabeling the
statement instances in new coordinates [81].

Loop Peeling: Unfolding a few iterations of the loop to eliminate loop-carried depen-
dencies is known as loop peeling.

Loop Interchange: When the order of a loop is not important then a loop-interchange
transformation reverses the order of two adjacent loops in the loop-nest making sure
all dependencies are preserved. Loop interchange is used to improve locality, enhance
parallelism, register reuse, and vectorization [82].

Loop Fusion/Jamming: This technique involves the fusion of two adjacent loops having
the same iteration space traversal into a single loop resulting in increased instruction level
parallelism and data locality. The opposite of loop jamming is loop distribution, which
divides a single loop into multiple loops with no carried dependencies. [82].

Loop Tiling: This loop transformation technique improves data locality by increasing
the reuse of data in the cache by increasing the depth of the loop nest [83]. Selection of
the best loop tile shape and size is a fundamental problem. Most of the current multicore
processors have a shared last-level cache (LLC) and its space allocation depends on the
co-execution of applications, which may cause interference in the shared cache [84]. Bao
et al. [84] proposed a static compiler-based defensive tiling to choose the best tiling size
for optimal performance. Some of the works related to loop tiling include [85,86] for
the reduction of capacity misses, [87–89] for reducing communication, and [90–92] for
auto/dynamic tuning of loop tiling.

3.3.2. Data Layout Optimizations

Data access optimization techniques may not be an optimal choice for data locality for
computations with conflict misses, while data layout optimizations improve spatial locality
by arranging data structure and variables in memory. Some of the most commonly used
techniques for data locality optimization are inter- and intra-array padding, array merging,
array transpose, etc. [82]. Parallelism and efficient exploitation of data locality have been
considered separate objectives in the literature. Kennedy et al. [93] explored this trade-off
between data locality and parallelization by proposing a memory model to determine the
reuse of cache lines. The model uses loop optimization algorithms for efficient exploitation
of data locality and in-memory optimizations.

3.3.3. Cache Bypassing

The depth of cache hierarchies and cache size have been increasing to meet the high
processing demands, along with mounting more cores on the chip. The performance of
an application with little data reuse is severely affected by cache use. Researchers over
the years engineered different techniques to effectively bypass the cache to improve the
performance of an application. The potential benefits of cache bypassing are obvious but
bring many challenges including implementation overhead, memory and performance
overhead, etc. The different cache techniques, their potential benefits, challenges, and
taxonomy is explained in detail by Sparsh Mittal [94].

3.4. Locality-Aware Scheduling and Load-Balancing

Applications need to exploit parallelism at multiple scales at the fine granularity and
across a variety of irregular program and data structures and program inputs. Parallel
algorithms demand extra space to enable the temporal decoupling necessary for achieving
parallelism, as compared to sequential algorithms, which attempt to minimize space usage.
As applications are becoming more and more data-intensive and task execution involves
the processing of a huge volume of data, optimal load balancing, and locality-aware
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scheduling are critical issues to be resolved at the highest priority for exascale systems.
Locality optimization (horizontal—between processing elements and vertical—between
levels of hierarchy)) has a direct impact on energy consumption for exascale systems.
Scheduling millions of tasks per second within latency constraints is one of the major
challenges and current centralized scheduling systems (Falkon [95], SLURM [96], SGE [97],
and Condor [98]) are deprived of handling fast scheduling. This issue is addressed by
Ousterhout et al. [99] by presenting a stateless distributed scheduler called sparrow, which
supports data-aware scheduling to help the collocating of task and input data.

Load balancing can be achieved by work stealing but the random migration of tasks
results in poor data locality. Load balancing is a challenging task in a fully distributed envi-
ronment as the scheduler has information about its own state. Load balancing techniques
have been extensively studied over the years and can broadly be classified into static and
dynamic techniques. These techniques achieve optimal load balancing in a centralized
or distributed manner. Although work stealing is a widely used efficient load balancing
technique e.g., OpenMP [100], Cilk [101], X10 [71], random work stealing results in poor
scalability on large-scale systems [102]. Falt et al. [103] proposed a locality-aware task
scheduling for parallel data stream systems.

Muddukrishna et al. [104] proposed a locality-aware task scheduling and runtime
system-assisted data distribution algorithm for OpenMP tasks on NUMA systems and
multicore processors. Ding et al. [105] proposed a cache hierarchy-aware loop–iterations–
to–core mapping strategy by exploiting data reuse and minimizing data dependencies,
which results in improved data locality. Lifflander et al. [106] proposed locality-aware
optimization at different phases of fork/join programs with optimal load balance based on
Cilk and also provides programmatic support for work-stealing schedules which helps in
user guidance on data locality.

Xue et al. [107] proposed a hybrid locality-aware dynamic load balancing and locality-
aware loop distribution strategy to multiprocessors and enhanced performance is reported
compared to other static/dynamic scheduling techniques. Isard et al. [108] proposed a
multipurpose execution engine called Dryad for coarse-grain data-parallel applications for
efficient fault resilience, data transportation, and data-aware task scheduling. Maglalang
et al. [109] proposed a locality-aware dynamic task graph scheduler with optimal locality
and load balance and minimum overhead.

Yoo et al. [110] proposed a locality-aware task scheduling for unstructured parallelism
by developing a locality analysis framework. The offline scheduler takes workload profuse
information as input and makes scheduling decisions that are optimized with underly-
ing cache hierarchies. Paidel et al. [111] focused on the selection of tasks that are most
favorable to migrate across nodes in a distributed environment which is further supported
by application-level data locality. Choi et al. [112] proposed locality-aware resource man-
agement and workflow scheduling by balancing resource utilization and achieving data
locality based on network bandwidth in an HPC cloud environment.

Work scheduling and stealing are the two most commonly used scheduling paradigms
for scheduling multithreaded computations to workers in typical task-based parallel sys-
tems. Guo Yi [113] in his PhD work proposed a locality-aware work-stealing framework for
the efficient exploitation of data locality (affinity) and an adaptive work-stealing schedul-
ing algorithm.

Hindman et al. [114] proposed Mesos, a thin resource-sharing layer with the prime
objective being to engineer a scalable and efficient system for sharing resources between het-
erogeneous frameworks by presenting an abstraction called a resource offer. The resources
offered to the framework are decided by Mesos based on organizational policy, while which
policies to accept, and tasks to run on them are decided by the framework. Mesos uses
delay scheduling and data locality is achieved by taking turns reading data stored on
each node. Isard et al. [115] proposed a fair scheduling of concurrent jobs with fine-grain
resource sharing for distributed computing clusters called Quincy, which achieved better
fairness and improved data locality.
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3.5. Bulk Synchronous Processing (BSP)

The BSP model, which was presented by Valiant [116] and modified by McColl, is a
bridging model to design parallel algorithms and mainly consists of processing components,
equipped with local memory, a network for communication, and synchronization between
components. Communication is facilitated by one-sided put-and-get calls rather than
two-way send-and-receive operations. A barrier ensures that all one-sided communication
is completed. The oversubscription of processing elements and problem decomposition are
exploited by the BSP model for automatically distributed memory management. Logical
processes are randomly assigned to processors for optimal load balancing and commu-
nication [117]. Google used BSP for graph analytics with Pregel [118] and map-reduce,
while some open-source projects (Apache Hama [119] and Giraph [120]) also extended
the use of BSP by employing high-performance parallel programming models on top of
Hadoop. There are different programming languages and interfaces based on the BSP
model including BSPLib [121], BSPonMPI [122], Bulk Synchronous Parallel ML (BSML),
and Multicore-BSP [123,124].

3.6. Out-of-Core Computing

Out-of-core algorithms (e.g., solvers for large systems of linear equations, as in nuclear
physics) are used when the data to be processed are too large to fit in memory and data
need to be fetched from storage devices e.g., hard and tape drives or memory attached
via a network. As these auxiliary storage devices are slow and acceptable performance is
achieved by data reuse in memory and how data are laid out in these storage devices for
I/O on larger blocks [125].

The use of virtual memory, which enables programmers to access much larger than
available memory without a need to know the actual location of data in the memory
hierarchy. Different techniques proposed over the years to efficiently exploit data movement
across different memory hierarchies i.e., caching, swapping and demand paging, etc. There
are applications where virtual memory systems do not meet the programmer’s expectations
and do not provide enough virtual memory space. Out-of-core algorithms are used when
primary and virtual memory is not enough to hold application data [126]. The principle
of locality plays an important role in the performance of an application. Locality in terms
of an out-of-core algorithm means that data must be laid out in a storage device to allow
blocks of data to exchange between the memory of storage devices and also the reuse of
data in memory. In a traditional disk-based approach, the processor remains idle until
the data is loaded into memory and the next read is not initiated until the computation is
finished. The author of [127] addresses this issue by proposing a two-process approach
where disk I/O and computation are performed concurrently. One approach to overcome
the limitations of speed at which data can be accessed from storage devices is the use of
shared and distributed memories across the cluster, which demands the use of high-speed
interconnects (InfiniBand) for the dataset to be loaded before the start of the algorithm
in large aggregated distributed/shared memory. The use of high-speed interconnects
improves performance but at the expense of a tangible cost of initial setup, maintenance,
and energy consumption over time. The trend of the use of non-volatile memory NVM,
e.g., low-power flash-based Solid-State Drives (SSDs) to speed up the I/O has increased
over the years. These SSDs are used along with traditional storage devices on I/O nodes in
a cluster environment, which results in enhanced performance with faster data access/load
from these SSDs to I/O nodes [128].

Jung et al. [128] addresses the issues and potential benefits of co-locating the non-
volatile memory and compute nodes, by presenting a compute local NVM architecture.
They identify the drawbacks of modern file systems and proposed a novel Unified File
System (UFS). In addition, there are numerous efforts in the literature focused on the usage
of SSDs that include the use of SSDs as caches [129], FlashTier [130], and Mercury [131].
Salue et al. [132] presented an out-of-core task-based middleware for data-intensive com-
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puting and [125,133,134] are related to out-of-core algorithms for solving dense and linear
equation systems.

3.7. Parallelism Mapping

The increase in system concurrency introduced a massive challenge for applications
and system software to deal with large-scale parallelism. The widely deployed message
passing model MPI may not be a suitable choice to deal with the demands of extreme scale
parallelism for exascale systems. Finding a single anomalous process among millions of
running processes and threads is not an easy task [135]. The issues related to parallelism
are diverse and are very much program-dependent. Parallelism mapping is very much
platform/hardware-dependent and optimal mapping decisions depend on many factors
like scalability (how much potential parallelism should be exploited), the number of pro-
cessors in use, scheduling policies, the relative cost of communication and computation,
etc. There have been various efforts to address this issue. In multi-cluster environments,
the bandwidth among nodes inside a single cluster is normally much higher than the
bandwidth between two clusters; similarly, within node cores sharing, the cache can com-
municate much faster. Entities exchanging or sharing lots of data could be placed on
hardware processing units physically close to each other. By doing so, the communication
costs are reduced, thus decreasing the application’s overall execution time and, as a conse-
quence, its energy consumption [66]. Along with communication, application performance
is also dependent on load imbalance, communication patterns, and memory usage.

Mapping threads/processes to cores is dependent on many factors like operating
system, implementation (different implementations of MPI e.g., OpenMPI, MPICH, In-
telMPI), and runtime system, i.e., Message Passing Interface (MPI), Partitioned Global
Address Space (PGAS). The work related to the efficient mapping of processes to reduce
the communication cost is based on finding the communication topology (communication
pattern/graph of the application e.g., number and size of messages between processes, etc.)
and network topology graph (e.g., the latency and bandwidth between different processor
cores, inter- and intra-node communication cost, etc.) and then the appropriate selection
of optimal cores where the processes should be mapped. One can achieve the task of the
optimal mapping of processes to cores by running an application with monitoring tools to
understand the communication pattern. Trace libraries can provide communication details,
e.g., MPI Trace [136]. There is a lack of standardization for thread/process mapping at
start-up but this can be implemented at the MPI-execution level. Unfortunately, current
parallel programming paradigms seem unable to address the data locality issue to improve
parallel-application scalability. There is a need for some evolutionary and revolutionary
changes in parallel programing models to address these problems.

There is a considerable amount of work in the literature related to process placement
for MPI applications based on correlating the communication and network topology by
algorithmic means using graph theory and implementation based on a scheduler, compiler,
or exploiting the MPI runtime environment.

3.7.1. Message Passing Interface Support for Process Mapping

The HPC application community has begun experimenting with the manual placement
of individual processes in a parallel job, commonly referred to as “process placement”
or “process affinity”. MPI implementation provides different mapping patterns like by-
node (a.k.a., scatter, cyclic) and by-slot (a.k.a., bunch, pack, block). The different MPI
implementations also provide numerous mpirun command line options and bind with
different runtime configuration parameters to enhance the process mapping and binding.
Assigning more than one process to a single processor is considered oversubscribing
in most HPC environments and is generally discouraged as MPI/HPC applications are
CPU-intensive; sharing multiple processes on a single processor causes starvation and
performance degradation [137].
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Given a parallel application, it is essential to efficiently map the MPI processes to the
processors on the nodes. The communication pattern needs to be understood by running
the application with profiling tools. Trace libraries can provide the communication details,
e.g., MPI Trace, and process mapping can be done manually. Communication-assisted
communication analysis can also be performed to map MPI processes to processors. The
ultimate goal is to reduce communication by mapping processes with frequent communi-
cation on a single node. There could be a number of taxonomies to classify the mapping
methodologies, like target architecture-based, optimization criteria-based, workload-based
(Static or dynamic), etc. Static mapping methodologies are best suited for static workload
scenarios where a predefined set of applications with known computation and commu-
nication behavior and a static platform are considered. As optimization is performed
at design-time, the methodologies can use more thorough system information to make
decisions for both homogeneous and heterogeneous architectures [42].

3.7.2. Algorithmic Approaches for Process Mapping

The speed of communication among cores in a multicore processor chip (intra-chip)
varies with core selection since some cores in a processor chip share certain levels of cache
and others do not. Consequently, intra-chip inter-process communication can be faster if
the processes are running in cores with shared caches. The situation gets even worse when
among cores on distinct processor chips in a cluster. Rodrigues et al. [138] used a graph
mapping technique for the mapping process to cores by considering intra-chip, intra-node,
and inter-node communication costs to improve the performance of applications with a
stable communication pattern. The approach was tested by comparing the execution times
of a real-world weather forecast model using default mapping and the proposed solution
and obtained an improvement of up to 9.16%.

Rashti et al. [139] merged the node physical topology with network architecture and
used graph embedding tools with an MPI library to override the trivial implementation
of the topology functions and effectively reorder the initial process mapping. Hestness
et al. [140] presented a detailed analysis of memory system behavior and effects for appli-
cations mapped to both CPU and GPU cores. Understanding the memory system behavior
is very important as multiple cores are integrated on the same die that shares numerous re-
sources. This paper presents a detailed comparison of memory access behavior for parallel
applications executing on each core type in a tightly controlled heterogeneous CPU–GPU
processor simulation.

The communication topology of an application and its underlying architecture affect
the performance of point-to-point communication and MPI provides different primitives to
gather such information such as MPI Cart create and MPI Graph create. An application
communication graph can be created by calculating the communication cost between
processes using message count and message volume. HU Chen et al. [141] proposed a
profile-guided approach to finding the optimized mapping automatically to minimize the
cost of point-to-point communications for arbitrary message-passing applications called
MPIPP (MPI process placement toolset). This tool acquires the communication profile of
the MPI application and the network topology of the target clusters. They also proposed an
algorithm for optimized mapping and enhanced performance is reported by comparing
their solution with existing graph portioning algorithms.

Zhang et al. [142] proposed an approach for optimized process placement to handle
collective communication by transforming them into a series of point-to-point commu-
nication operations. They decomposed a collective communication into point-to-point
and then generated the communication pattern of the whole application. They used a
graph-partitioning algorithm for optimized process mapping. Pilla et al. [143] proposed
a topology-aware load balancing algorithm for multicore systems by modeling distances
and communication among hardware components in terms of latency and bandwidth
by exploiting the properties of the current parallel systems, i.e., network interconnection,
multi-levels of cache, etc. The introduction of multicore processors introduces numerous
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challenges including competition between the various physical cores for shared resources.
Having more cores in a single node causes multiple requests for the network interface,
resulting in performance degradation [144]. This demands the distribution of parallel
processes in available computing nodes such that requests arriving at each network inter-
face be decreased. The queuing time of messages at interface queues will be decreased as
well, resulting in enhanced performance. Zarrinchain et al. [144] addressed this issue by
proposing a solution for mapping parallel processes to multicore clusters to reduce network
interface contention by determining the length of the messages among processes and an
appropriate value for the threshold (number of processes in each compute node) using the
number of adjacent processes of each process and the number of available free cores in the
computing nodes.

Guillaume et al. [145] proposed an efficient process mapping of an MPI application
to better take advantage of a multicore environment without any modification of MPI
implementation and improved performance is reported solely on the basis of relevant
process placement. They extract an embedding of the application’s graph from the target
machine’s graph and used scotch software to solve NP graph problems. Scotch applies
graph theory, with a divide-and-conquer approach, to scientific computing problems such
as graph and mesh partitioning, static mapping, and process ordering. The information is
then used to create a mapping between MPI process ranks and each node’s core numbers.
Finally, an application-specific command line is generated.

Other work related to mapping includes architecture-specific mapping [146–148]
for Blue Gene systems, [139,149,150] targeting multicore networks, [151] targets hybrid
MPI/OpenMP mapping, [152] proposes a mapping library, and [153,154] advance program-
ming standards that support virtual topology mapping.

3.7.3. Machine Learning-Based Parallelism Mapping

Programming with target architecture in mind and mapping parallelism to proces-
sors/cores to avoid/minimize communication are two alternative ways of optimizing
application performance. Selecting the correct mapping scheme has a significant impact
on performance and these mapping schemes are very much architecture-dependent. So,
there is always a need for an automatic and portable solution for assigning tasks to a target
architecture to achieve scalable parallelism.

Castro et al. [155] proposed a machine learning-based approach to do efficient thread
mapping in transactional memory (TM) applications. Software TM libraries usually im-
plement different mechanisms to detect and solve conflicts. As a consequence, it becomes
much more complex to determine a suitable thread-mapping strategy for an application
since it can behave differently according to conflict detection and resolution mechanisms.
Grewe et al. [156] proposed a portable partitioning scheme for OpenCL programs on het-
erogeneous CPU and GPU architectures by extracting code features statically and using
ML algorithms for predicting the best task partitioning. Tournavitis et al. [157] proposed
profile-driven parallel detection and ML-based mapping to overcome the limitations of
static analysis and traditional parallelizing compilers by using profiling data to extract con-
trol and data dependencies and then used an ML-based trained predictor to select the best
scheduling policy offered by OpenMP i.e., CYCLIC, GUIDED, STATIC, and DYNAMIC.

Wang et al. [158] proposed a compiler-based automatic and portable approach for
selecting the best thread scheduling policy based on an ML model learned offline, to
map parallel programs to multicores. ML-based predictors use profiling information to
characterize the code, data, and runtime features of a given program. The feature extractor
needs several profiling runs for a program to extract these features. They used an Artificial
Neural Network ANN and Support Vector Machine SVM to build two different learning
models to predict program scalability and classify scheduling policies. The models were
trained using a set of training data that consisted of pre-parallelized programs with selected
features and desired mapping decisions. Long et al. [159] used an ML-based approach for
cost-aware parallel workload allocation by using static program features. More specifically
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they used ML to determine the thread number allocated for a parallel java loop on the run
time and don’t tackle portability. Adaptive multi-versioning for OpenMP parallelization
via machine learning integrated in the compiler, to achieve parallelism. Pinel et al. [160]
proposed an ML-based automatic parallelization of a scheduling heuristic, by defining a
generic parallel pattern-matching engine that learns the algorithm to parallelize.

Emani et al. [161] proposed a predictive modeling approach that dynamically consid-
ers a number of thread selection policies and chooses the one it believes will perform best
at every parallel loop and called this approach a mixture of experts. Their approach pre-
dicts the optimal number of threads for a program and the run-time environment. Emani
et al. [162] proposed an efficient parallel mapping based on online change detection by
combining an offline model with online adaption to find the optimal number of threads
for an OpenMP program. Luk et al. [163] proposed a fully automatic mapping technique
to map computations to processing elements on heterogeneous multiprocessors. They
measured the parallelization speedups on matrix multiplication with a heterogeneous
machine and implemented it in an experimental system called Qilin and report a perfor-
mance close to manual mapping with an adaptability feature for different problem sizes
and hardware configurations.

Dominguez et al. [164] extended their previous work by using Servet to map applica-
tions on multicore systems and analyze the performance of different parallel programming
models i.e., message-passing, shared memory, and Portioned Global Address Space (PGAS).
The featured extracted by Servet can be used to optimize the performance by choosing a
more appropriate mapping policy without source code modification.

3.8. In Situ Data Analysis

The increasing data size, limited storage and bandwidth, efficient use of compute
resources, difficulties in examining output data, and storing and retrieving output data for
post data analysis are considered impractical for an exascale environment. The term data
movement for in situ data analysis is mostly used to describe data movement back and forth
to persistent storage and retrieving data for post data analysis. In situ analysis translates to
saving in execution times, power, and storage cost, and avoiding either completely, or to a
very large extent, massive data movement of simulations output to persistent storage.

In situ data analysis is performed on the data in the transition phase before they are
written back into the parallel file system. Tiwari et al. [165] exploit the compute power
in SSDs for in situ data analysis and called this approach Active Flash. This approach
provides energy-efficient data analysis as computation near storage devices reduces the
data movement cost; in addition, SSDs are equipped with low-power, multicore ARM-
based controllers. In situ analysis has become one of the core aspects of data interpretation
in large-scale scientific simulations. However, for data that already reside in backend
storage systems, efficient data analysis is still a core issue.

Zheng et al. [166] proposed an in situ middleware system to facilitate the underlying
scheduling tasks e.g., cycle stealing. They created an agile run-time and called it GoldRush,
fine-grained scheduling to steal idle resources by ensuring minimal interruption to the
simulations and in situ data analysis. The system makes use of the idle wasted resources of
compute nodes to be efficiently used for in situ analysis. The experiment results showed en-
hanced performance, low data-movement cost, efficient resource utilization, and minimum
interference with simulation. Sewell et al. [167] proposed a framework that uses both in situ
and co-scheduling approaches for large-scale output data. They compare the performance
by analyzing different setups to perform data analysis, i.e., in situ, co-scheduling, and a
combination of both.

3.8.1. In Situ Compression

Scientific data are mostly regarded as effectively incompressible due to their inher-
ently random nature and decompression also imposes extra overhead. Sriram et al. [168]
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addresses this problem of compression by exploiting temporal patterns in scientific data to
compress data with minimal overhead on simulation runtime.

Zou et al. [169] worked on data compression for the removal of redundant data
reduction, by using general compression techniques and proposed a use-specific method
that allows users to remove redundant or non-critical data by using simple data queries.
This method allows users to optimize output data and explicitly identify the data that need
to be retained. General-purpose lossy compression techniques do not provide this level
of flexibility.

3.8.2. Use of Indexing for In Situ Data Analysis

As the computation power increases at a brisk speed compared to storing data to
disks and reading data back from these disks, J Kim et al. [170] used indexing and in
situ processing to address these challenges. Indexing is a powerful and effective way
of addressing data access issues, while the implementation of an indexing technology is
embedded in DBMS, which lacks the ability to manage most scientific datasets. They used
in situ data processing to create indexing in parallel, thus reducing the resources utilized,
to store data back and forth from disks. The usage of indexes improved the data access
time and in situ data processing reduced the index creation time.

According to Sriram et al. [171], current state-of-the-art indexes require computation
and memory-intensive processing, thus making indexing impractical for in situ processing.
They propose DIRAQ, a parallel in situ, query-driven visualization, and analysis during
simulation time that transforms the simulation output to a query-accessible form. This tech-
nique has a minimum overhead on simulation runtime and speeds up query-response time.

Yu Su et al. [172] proposed in situ Bitmap generation and performing data analysis
based on these Bitmaps. Bitmap indices can be used as a summary structure for offline
analysis tasks. Their work basically focused on in situ analysis of selected bitmaps, thus
reducing the amount of simulation output data to be stored on the disk and reducing the
memory requirements for in situ analysis. HPC systems with in situ data analysis analyze
temporary datasets as they are generated. Permanent datasets are stored in the backend
persistent storage systems; their efficient analysis is still a challenging task.

3.8.3. In Situ Visualization

As scientific simulations produce a huge volume of raw data, saving a vast amount
of raw data for offline analysis is a complex task and not a suitable method for current
petascale and future exascale systems. Karimabadi et al. [173] addresses this I/O issue
through in situ visualization strategies. The main idea is to extract important features from
raw data parallel with simulation and thus reducing the amount of raw data stored on the
disk. Their work focused on the overhead associated with computation needs for in situ
visualizations in parallel with the simulation run.

Yu et al. [174] investigated in situ visualization for turbulent-combustion simulations
and explored in situ data processing and visualization strategies in an extremely parallel
environment. Their results showed that in situ visualization enhanced performance and can
be used for accelerating high-performance supercomputing and scientific discovery. Zou
et al. [175] proposed an online data query system (FlexQuery) using inline performance
monitoring and minimized data movement with low latency data-query execution. They
demonstrated the dynamic deployment of queries by the proposed query system for
low-latency remote data visualization.

Woodring et al. [176] addresses the issue of reducing memory footprints by sharing
data between visualization libraries and simulations by using a zero-copy data structure.
They optimized the traditional way of coupling different mesh-based codes for in situ data
analysis where data needs to be explicitly copied from one implementation to another
with the necessary translation. This results in redundant data, which ultimately increases
memory footprints. They proposed an alternative way of sharing data between simu-
lations through optimized dynamic on-demand data translation, with reduced memory
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footprints and memory per core. Nouanesengsy et al. [177] proposed a generalized analysis
framework for automatically evaluating the relative importance of data in order to reduce
data products, thus ensuring enough resources to process reduce datasets. The proposed
framework prioritizes large-scale data by using user-defined prioritization measurements.

3.8.4. In Situ Feature Selection

Landge et al. [178] proposed in situ feature extraction techniques that allow state-of-
the-art feature-based analysis to be performed in situ with minimal overhead on simula-
tion runtime.

Zhang et al. [179] proposed a framework for in situ feature-based object tracking on dis-
tributed scientific datasets with decentralized online clustering DOC and a cluster tracking
algorithm. They run in parallel with the simulation process and obtain data from on-chip-
shared memory directly from the simulation. Their results showed that the proposed
framework can be efficiently utilized for in situ data analysis of large-scale simulations.

4. Data Locality in Big Data Environments

Big data has transformed society with many innovative applications [180–189]. Differ-
ent solutions emerged over the years to deal with big data issues and were successfully
implemented. However, these solutions do not satisfy the ever-growing demands of big
data. The issues related to big data are immense and cover a variety of challenges that needs
careful consideration. These challenges include data representation, redundancy reduction,
data compression, data life cycle management, analytical mechanism, data confidentiality,
energy management, expandability and scalability, high dimensionality, computational
complexity, real and distributed computation, non-structured processing, etc. The key
advantage that big data technologies brought over traditional HPC is data locality. Hadoop
brings computation to data and Spark further enhances it through in-memory computation.

Big data analysis is done at various levels, i.e., when server memory is huge, in-
memory analysis can be used by keeping the hot data in memory for the sake of efficiency.
This memory-level technology is ideal for real-time analysis, e.g., MangoDB [1]. Business
intelligence (BI) has different tools and procedures for analyzing data when it exceeds the
memory capacity. Map/reduce is used most widely for massive data analysis, which is
beyond BI capacity and mostly falls into the offline analysis category [190]. Chasing a
correct solution depends on the size of the data, the urgency of results, prediction about the
need for more processing power as the size of data increases, fault tolerance for applications
in case of hardware failure, data rate, scalability, etc. Data locality has been recognized as
one of the major issues to be resolved for exascale systems and considerable efforts have
been done to move computation closer to data. Map-Reduce [191] is the most widely used
data processing model in data-centric computation environments. Google MapReduce,
based on Google File System (GFS) [192], achieves locality by relying on data-aware task
scheduling and block replication. Hadoop [193], based on HDFS (Hadoop Distributed file
System) [194], followed the same approach. Different solutions emerged as the processing
requirements of applications change i.e., HBase [195] for random-access data, Apache
Giraph [120] for graph processing, Spark streaming, and TEZ [196] and Twister [197]
for iterative streaming. Data locality in data-parallel systems by bringing flexibility to
scheduling algorithms has a major edge over traditional HPC systems. In the following
section, we analyze the research efforts and current trends by focusing specifically on
enforcing data locality in big-data environments.

4.1. Parallel Programming Models

We can broadly classify parallel programming models in big-data environments as
batch processing and iterative. The following section gives a brief overview of both.
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4.1.1. Batch Processing

Map-reduce is probably the most widely used data-centric programming model where
a piece of work is divided among several parallel map/reduce tasks. The original im-
plementation by Google relies on the Google File System GFS [192], whereas the open
implementation of map-reduce (Hadoop [193]) relies on the Hadoop Distributed File Sys-
tem HDFS, and data locality is achieved by data-aware scheduling and block replication.
The input files are split up in input format, which selects the file, defines the input splits,
breaks the file into tasks, and provides the place for the record reader objects. The input
format defines the list of tasks that makes up the mapping phase. The task then assigns to
the node of the system based on where the input file chunks are physically resident [198].
The input split describes the unit of work that comprises a single map task in a map-reduce
program. The record reader loads that data and converts them into (key value) KV pairs
that can be read by the mapper. The mapper performs the first phase of the map-reduce
program given the key and the value, and the mappers export key and value pairs and
sends these values to the reducers. The process of moving map outputs to the reducers is
known as shuffling [199].

Due to the lack of support for processing multiple heterogeneous datasets, map-reduce-
merge was proposed by Yang et al. [200] to facilitate the use of map-reduce in relational
operations like join.

4.1.2. Iterative

Traditional map-reduce lacks support for iterative tasks. The mapper needs to read the
data and, after each iteration, results need to be written back to the disk for the subsequent
iteration. Disk I/O is a bottleneck here and for each iteration, a new mapper and reducer
need to be initialized. [201]. Different wrappers or extensions have been developed to
overcome the shortcomings of Hadoop for improved performance, e.g., programming
model extensions.

Map-iterative-reduce [202] is an iterative framework that has emerged from map-
reduce (which lacks support from reduce-intensive workloads) to support reduce-intensive
applications. One of the implementations of iterative-map-reduce is Twister. Ekanayake
et al. [197] presented a programming model and architecture of Twister and compared its
performance with other programming models like Hadoop and DryadLINQ and reported
efficient iterative map-reduce computation performance. Bu et al. [203] also targeted the
lack of support for map-reduce and Dryad for iterative programs by proposing Haloop for
efficient iterative data processing. They further enhanced the performance by presenting
loop-aware scheduling and efficiently exploiting various cache mechanisms.

Spark [204] provides a data flow execution engine that supports cyclic data flows,
with support for various languages, e.g., Scala, Python, and Java. Sparks abstracts data
with Resilient Distributed Datasets (RDD), which is a spark representation of a set of data,
distributed across multiple machines and allows fault-tolerant in-memory computations
on large clusters.

4.1.3. Language Support

The map-reduce programming model is often referred to as a low-level model by
analysts, who are used to SQL-like or declarative languages. It also requires advance
programming skills and an in-depth understanding of system architecture for developing
efficient map-reduce applications. [205]

Hive provides the ability to analyze large amounts of data stored in HDFS. Hive was
designed to appeal to a community comfortable with SQL and uses an SQL-like language
known as HiveQL. It supports map and reduce transform scripts in the language of the
user’s choice, which can be embedded within the SQL, and is widely used in Facebook.
Hive is a framework for performing analytical queries, while its dominant use is to query
flat files. Currently, Hive can be used to query data stored in Hbase. The worker nodes in
Hive keep small tables in a distributed memory setup for quick data access.
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Olston et al. [206] developed a programming language (Pig-Latin) that gives a pro-
gramming abstraction of Java map-reduce (low-level procedural style) to make it somewhat
similar to the high-level declarative style of SQL for RDBMs.

4.1.4. Locality-Aware Partitioning

The map-reduce-based join operation is not optimized when dealing with skewed data
and proposed solutions often result in a huge volume of data in the shuffle phase affecting
the performance of the map-reduce-based join. Lin et al. [207] addresses this problem by
proposing SALA (A Skew-Avoiding and Locality-aware) algorithm and locality-aware
partitioning to ensure data locality, even data distribution to reducers, without any modi-
fication of the map-reduce framework. Similarly, Ibrahim et al. [208] proposed LEEN for
locality-aware and fairness-aware key partitioning by incorporating an asynchronous map
and reduce scheme. Their results show enhanced data locality with minimum intermediate
shuffle data. Rhine et al. [209] proposed a locality-aware scheduling algorithm and input
data split, by partitioning data belonging to a node, in a single split.

4.2. Data Placement
4.2.1. Locality-Aware Data Placement

Hadoop relies on HDFS to store data with high availability to multiple nodes but data
is placed randomly to achieve load balance without taking the characteristics of the data
into consideration. By default, Hadoop lacks the ability to collocate data on the same set
of nodes. Eltabakh et al. [210] addresses this issue by proposing CoHadoop, an extension
of Hadoop, giving control to applications to manage locality-aware storage by modifying
the HDFS data replacement policy. Minimizing off-switch communication increased the
performance of map-reduce in Hadoop. Yu et al. [211] argues that the grouping of blocks
of data in fewer racks enhanced performance by reducing off-chip communication and
proposed a methodology to group data and scheduling mechanisms by exploring the
trade-off between off-chip communication and parallelism.

Schedulers often consider map tasks for locality and ignore reduce tasks while fetching
intermediate data, which results in performance degradation. Tan et al. [212] proposed a
stochastic optimization framework for improving reduce task data locality for sequential
map-reduce jobs. Wang et al. [213] addresses the issues related to the random distribution
of data placement in traditional Hadoop by proposing a data-grouping-aware (DRAW)
data placement scheme. DRAW optimizes group sizes and optimizes parallelization per
group by re-organizing data layouts.

4.2.2. Locality-Aware Data Placement in a Heterogeneous Environment

The Hadoop implementation by default assumes that cluster nodes are homogeneous
and data locality is not taken into consideration to map tasks. Xie et al. [214] addressed
this issue by proposing a data placement strategy in heterogeneous environments (Hadoop
Clusters) for optimal load balance. The data placement algorithm must consider the node
heterogeneity (processing capabilities) to partition input and intermediate data. Arasanal
et al. [215] proposed load-balanced data placement enhancements and an input data
distribution algorithm in Hadoop based on the processing capabilities of the nodes. A
similar approach was proposed by Wei Lee et al. [216], who proposed a dynamic data
placement algorithm to balance workload based on the computing capabilities of each node
in a heterogeneous environment. The proposed strategy dynamically adjusts workload
and reduces data transfer time.

Ubarhande et al. [217] analyzed various scheduling techniques from a data locality
prospective and proposed a data placement methodology based on computation ratio
for Hadoop data nodes and enhanced performance is reported by executing standard
map-reduce applications, i.e., Grep and word count. The input to the task must be present
on a node where the task is supposed to be executed, and otherwise needs the transferring
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of input data, which ultimately increased execution time. Sujitha et al. [218] proposed a
methodology to address the issues of heterogeneity and data locality in Hadoop.

4.3. Scheduling and Load Balancing
4.3.1. Locality-Aware Scheduling and Load Balancing

Locality-aware scheduling is one of the prominent features of MapReduce, which
allows schedulers to bring compute to data rather than vice versa. The cross-rack traffic
must be reduced for optimal performance. Guo et al. [219] proposed an algorithm to
improve data locality by exploiting available resources and considering all tasks together
rather than a task-by-task approach, as in traditional Hadoop. They also proposed another
algorithm by integrating fairness and locality by allowing users to define the trade-off for
desired performance. Chen et al. [220] proposed a partition algorithm CLP (Cluster Locality
Partition) for optimal load balance and performance. Locality partitioning achieved data
locality by assigning data clusters to appropriate nodes.

Network traffic is a major bottleneck in data-intensive applications and can be reduced
by locality-aware scheduling. Chen et al. [221] addresses this issue and proposed the LaSA
locality-aware scheduling algorithm for data-aware resource assignment. Wang et al. [102]
proposed a data-aware work-stealing technique implemented at the node/scheduler level
to achieve an enhanced load balance and efficient exploitation of data locality by proposing
a fully distributed task scheduling system for Many Task Computing (MTC) systems. Park
et al. [222] proposed a runtime reconfiguration scheme (Dynamic Resource Reconfiguration
DRR) that schedules a task to nodes where data resides and also dynamically increases
or decreases the computing capability of each node for optimal data-aware scheduling.
Zaharia et al. [223] addresses the conflict between data locality and fairness in scheduling
by proposing a delay-scheduling algorithm, which increases throughput with optimal data
locality and guaranteed fairness. Hadoop has been optimized to reduce the amount of
network traffic, i.e., delay scheduling achieves nearly optimal data locality for a variety of
workloads, which ultimately results in a low volume of network traffic [223]. Intermediate
data shuffling in Hadoop still generates a huge volume of network traffic.

4.3.2. Locality-Aware Scheduling and Load Balancing in a Heterogeneous Environment

The scheduling of map-reduce tasks is further complicated in heterogeneous environ-
ments and was addressed by Zhang et al. [224] by proposing a locality-aware scheduling
algorithm. Hsu et al. [225] proposed locality and load-aware virtual machine mapping tech-
niques to improve map-reduce performance in heterogeneous environments, by portioning
data before the mapping phase and using virtual machine mapping in the reduce phase.
Xue et al. [226] proposed the dynamic scheduling algorithm BOLAS (Bipartite-Graph Ori-
ented Locality-aware Scheduling) by modeling the scheduling problem as a bipartite-graph
matching problem using the Kuhn–Munkeres algorithm and achieved improved data
locality for both homogeneous and heterogeneous environments. Sadasivam et al. [227]
proposed the Hybrid Particle Swarm Optimization-Genetic Algorithm (HPSO-GA) for
the efficient execution of tasks and utilization of resources achieved by capacity-aware
load distribution in heterogeneous environments. Zhang et al. [228] addressed the issues
related to the performance of map-reduce in heterogeneous environments by proposing a
methodology to separate the map shuffle and reduce stages for optimized task allocation
and controlled dynamic execution.

4.3.3. Adaptive Scheduling

Guo et al. [229] proposed a data-distribution-aware task scheduling methodology by
overcoming the uneven data-distribution strategy of default scheduling techniques. The
network overhead is reduced and high system efficiency is reported by mapping tasks
to nodes with a high probability of data availability and the task’s scheduling priority.
Hammoud et al. [230] proposed a locality-aware reduced task scheduler called LARTS,
which collocates data and reduce tasks. LARTS achieves high data locality and reduce
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scheduling delay/skew and exploits resources efficiently. Ahmad et al. [231] proposed
communication-aware load balancing and the scheduling of map computation, predictive
load balancing for reduce computation to optimize the performance of map-reduce in
heterogeneous environments. Similarly, Kumar et al. [232] proposed a context-aware
scheduling technique (CASH); Zhao et al. [233] proposed a job-scheduling algorithm
on map-reduce; Hammoud et al. [234] presented a locality- and skew-aware scheduling
algorithm (CoGRS); and Ibrahim et al. [235] proposed replica-aware scheduling for map-
reduce. A detailed survey on adaptive scheduling in map-reduce is presented by Mozakka
et al. [37].

4.3.4. Delay Scheduling

Delay scheduling involves scanning jobs more than once before some threshold is
reached, after which the job is scheduled. Delay scheduling may also delay high-priority
jobs. Sethi et al. [236] proposed a mechanism to force the scheduler to launch high-priority
jobs to be executed locally or on some nodes based on the availability of data. Yang
et al. [237] proposed a scheduling algorithm by segregating map and reduce as separate
stages of the scheduling problem and addressing the issues of map-reduce stage deadline,
execution time, and data locality. Bezerra et al. [238] proposed data locality-aware job
scheduling with the prime motive of running tasks that handle the same blocks of data on
the same node where the blocks reside.

4.4. In-Memory Computations

Memory storage capacity and bandwidth are increasing at a brisk speed and the time
is not far off when memory will replace hard drives. This transformation will ultimately set
trends for building in-memory systems where a major portion of the data fits in memory
with an obvious performance gain. The in-memory capacity of machines in map-reduce
clusters is often underutilized and can be effectively utilized by in-memory prefetching
input data to improve data locality. Sun et al. [239] proposed a prefetching service-based
task scheduler HPSO (High-performance Scheduling Optimizer) to predict the optimal
node for future tasks and prefetching needed data.

Both Hadoop and Spark [240] are big-data frameworks that perform the same tasks,
are not mutually exclusive, and are able to work together. Spark is reported to work
100 times faster than Hadoop in some situations and doesn’t have its own distributed
storage system [241]. Apache Spark is the most widely used distributed in-memory com-
puting framework that handles in-memory operations by copying data from distributed file
systems into faster logical RAM [242]. Map-reduce writes all data back to the distributed
storage system after each iteration to ensure full recovery, whereas Spark arranges data
in resilient distributed datasets that are capable of full recovery in case of failure. The
efficiency of Spark is questioned for applications where the dataset is loaded and evicted
at runtime. Shen Li et al. [243] addresses this problem by proposing Stark for optimizing
in-memory processing on dynamic dataset collection by avoiding replication and shuf-
fling. Engle et al. [244] proposed Shark (Hive on Spark) for deep data analysis based on
Resilient Distributed Datasets (RDDs) [204] to achieve scalability, performance, resilience,
and the efficient execution of iterative algorithms with intra-query temporal locality for
in-memory computation on large clusters. Sentos-Neto et al. [245] exploited storage affinity
by data reuse and used a replication strategy for efficient scheduling without any run-
time information. Reynold et al. [246] proposed GraphX by combining data parallel and
graph parallel systems by efficiently distributing graphs, and exploiting resilience and
in-memory computation.

4.4.1. Registers and Cache-Centric Optimizations

The effective and efficient usage of registers is usually targeted at the compiler or
assembly-language level. The use of in-memory databases with traditional iterative-style
queries often results in poor data locality [33]. Efficient utilization of cache hierarchies
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of different levels is of paramount importance for obvious performance gains. The work
related to cache optimization includes compression [247], coloring [248], re-organizing
data layouts by organizing records in columns lay out [249,250], or using decomposition
storage model [251] and cache conscious indexes [252,253]. A detailed survey is provided
by Zhang et al. [33].

4.4.2. Non-Uniform Memory Access (NUMA)

Each processor in the NUMA architecture has faster access to its own local memory and
relatively slow and higher-latency access to remote memory. In the context of NUMA, much
of the work in the literature is related to data partitioning [254–256] and data shuffling [257].
A detailed survey is provided by Zhang et al. [33].

4.4.3. NVRAM

The use of non-volatile memory is an emerging trend in High-performance computing
environments to provide memory with high speed and capacity. The NVRAM technology
provides better performance compared to traditional hard drives/flash drives and com-
parable performance to DRAM, e.g., phase change memory technology [258], memristive
devices [259], and STT-MRAM [260]. A detailed survey is provided by Zhang et al. [33].

4.4.4. In-Memory Data Processing Systems

In-memory data processing is much faster compared to other data-centric compu-
tational models, e.g., Hadoop, and is often used for the analysis of huge volumes of
data within a time constraint. Spark [240], Mammoth [261], and Piccolo [262] are data
analytics systems, whereas S4 [263] and Map-reduce online [264] are real-time data pro-
cessing systems.

4.4.5. In-Memory Data Storage Systems

In-memory data storage systems include relational, NoSQL databases, and cache-
based systems (cache between the application server and database). [265–268] describe
examples of in-memory relational databases, [269–271] describe in-memory NoSQL data
bases, and [272–274] describe in-memory cache-based systems. A detailed survey is pro-
vided by Zhang et al. [33].

5. Data Locality in Converged HPC and Big Data Environments

Now that we have reviewed the literature on data locality in HPC and big data
environments, in this section, we review the literature on converged systems. We first
capture in Table 1 a summary of the efforts in big data and HPC that were reviewed in
Sections 3 and 4. Specifically, the table gives a brief overview of research efforts related to
data locality at different levels of the software ecosystem and also highlights some of the
convergence challenges.

Table 1. Data Locality-aware research efforts in HPC & Big data Environment and Convergence
Challenges.

HPC Big Data Convergence Challenges

Parallel
Programming
Models

Majo et al. [67], Lezos
et al. [68], Regan-Kelley
et al. [69], X10 [71], Huang
et al. [72], BSP [116],
Pregel [118], including
BSPLib [121], BSPonMPI [122],
Bulk Synchronous Parallel ML
(BSML),
Multicore-BSP [123,124].

Google File System GFS [192], Yang
et al. [200],
Map-iterative-reduce [202],
Ekanayake et al. [197], Bu et al. [203],
Spark [204], Olston et al. [206],
SRM [275], iRODS [276],
MapReduce-MPI [277],
Pilot-MapReduce [278], Lustre [279],
GPFS [192], PVS [280]

• Scalability
• Programming Abstraction
• Exploiting dynamic

parallelism
• Data locality through

abstraction layer
• Datacentric abstraction.
• Heterogeneity
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Table 1. Cont.

HPC Big Data Convergence Challenges

Scheduling and Load
Balancing

Ousterhout et al. [99], Falt
et al. [103], Muddukrishna
et al. [104], Ding et al. [105],
Lifflander et al. [106], Xue
et al. [107], Isard et al. [108],
Maglalang et al. [109], Yoo
et al. [110], Paidel et al. [111],
Guo Yi [113], Hindman
et al. [114], Isard et al. [115]

Guo et al. [170], Chen et al. [220],
Chen et al. [221], Wang et al. [102],
Park et al. [222], Zaharia et al. [223],
Zhang et al. [224], Hsu et al. [225],
Xue et al. [226], Sadasivam et al. [227],
Zhang et al. [228], Guo et al. [229],
Hammoud et al. [230], Ahmad
et al. [231], Kumar et al. [232], Zhao
et al. [233], Hammoud et al. [234],
Ibrahim et al. [235], Mozakka
et al. [37], Sethi et al. [236], Yang
et al. [237], Bezerra et al. [238]

• Poor scalability
• Heterogeneity
• Locality-aware scheduling

algorithms
• Portability
• Complexity

Parallelism Mapping

Jeannot et al. [281], Rashti
et al. [139], Hestness
et al. [140], HU Chen
et al. [141], Zhang et al. [142],
Zarrinchain et al. [144],
Guillaume et al. [145], Blue
Gene systems [146–148],
multicore
networks [139,149,150],
hybrid MPI/OpenMP
mapping [151], mapping
library [152], Grewe
et al. [156], Tournavitis
et al. [157], Wang et al. [158]

Map-Reduce [191], Hadoop [193],
Map-iterative-reduce [202],
Spark [204], Engle et al. [244], Olston
et al. [206].

• Manual Mapping is
time-consuming and
error-prone

• Portability
• High Complexity

(Compiler based
techniques)

• Expensive compilation
Overhead

• Lack of Intelligence

In situ Data Analysis

Tiwari et al. [165], Zheng
et al. [166], Sewell et al. [167],
Sriram et al. [168], Zou
et al. [169], Kim et al. [170],
Sriram et al. [171], Yu Su
et al. [172], Karimabadi
et al. [173], Yu et al. [174], Zou
et al. [175], Woodring
et al. [176], Nouanesengsy
et al. [177], Landge et al. [178],
Zhang et al. [179]

Wang et al. [282],
Xu et al. [283],
[165],
Wang et al. [282],
Xu et al. [283],
Spark on demand [284].

• Data Size
• Energy Efficiency
• Resource utilization
• Limited storage and

bandwidth
• Data Movement cost
• Efficient Data Analysis
•

Compression/decompression
overhead

• Indexing (compute and
memory intensive)

• I/O issues
• In situ visualization

Locality-aware
Partitioning

Zhang et al. [33], NUMA data
shuffling [257], data
partitioning [254–256],
NVRAM Memristive
devices [259]
STT-MRAM [260],

Lin et al. [207], Ibrahim et al. [208],
Rhine et al. [209]

• Lack of Intelligence
• Complexity
• Load balancing
• Data Dependencies

Data Placement

Eltabakh et al. [161], Yu et al. [162],
Tan et al. [163], Wang et al. [164], Xie
et al. [214], Arasanal et al. [215], Wei
Lee [216], Ubarhande et al. [217],
Sujitha et al. [218]

• Locality-aware storage
• Communication
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Table 1. Cont.

HPC Big Data Convergence Challenges

In-Memory
Computation

Sun et al. [239], Shen Li et al. [243], Engle et al. [244], Sentos-Neto
et al. [245], Reynold et al. [246],
In Memory Data Processing Systems
Spark [240], Mammoth [261], Piccolo [262], S4 [263], Map-reduce
online [264].

• Emerging new
non-volatile memory
technologies

• Network/storage
aggregation

• Efficient utilization of
cache

• Optimized utilization of
storage management

Cache-centric
Optimization

Compression [247], coloring [248], decomposition storage model [251],
re-organizing data layouts [252,253], Gupta et al. [73], Gonzalez
et al. [74], on-chip caching [75,76], data access frequency [77,78],
Kennedy et al. [93], Sparsh Mittal [94].

• Efficient exploitation of
cache

• Cache-aware partitioning
• Smart, dynamic, and

predictive optimizations.

In typical HPC environments, both compute and storage servers are separated and
the cost of moving these large datasets is very high. High-end computation machines
and storage clusters running parallel file systems are connected via a high-speed network.
Data-intensive applications in this setup demand high data movement across the network,
which is a major bottleneck. In contrast to the big-data paradigm, data management in
HPC environments lacks higher-level abstraction [44]. Solutions have emerged over the
years to deal with massive amounts of data in data-intensive applications, e.g., SRM [275],
iRODS [276], MapReduce-MPI [277], Pilot-MapReduce [278], etc.

HPC applications use parallel programming paradigms such as MPI to exploit par-
allelism, rely on low-latency networks for message passing, and use parallel file systems,
for example, Lustre [279], GPFS [192], PVS [280], etc. Data-intensive computing makes
use of distributed file systems, which include the Google file system GFS [192], the HDFS
Hadoop distributed file system [194], etc. HPC applications use a data-intensive distributed
file system through an interface, for example, libHDFS [285]. Although these file systems
are tailored for different targeted applications and computing environments, they have
somewhat identical abstract-level designs [286]. Data consistency is not a priority for
data-intensive file systems and is usually compromised for better performance by introduc-
ing a client-side cache to improve bandwidth. Parallel file systems support concurrency,
while cache coherency is maintained in data-intensive file systems through data-locking
techniques. The client and server process is collocated for enhanced I/O performance,
while data locality is not a prime design choice for parallel file systems [44].

As discussed before, data locality is considered a major concern for optimized data
movement and the co-location of computing and data to reduce communication between
process/threads/compute nodes to achieve energy-efficient exascale computing. There is a
huge body of work related to data locality, as has been presented in the previous sections
for both the big data and HPC domains. The following sections discuss the research efforts,
which can be considered as baby steps, toward data locality-aware convergence of HPC
and big data.

5.1. MPI with Map-Reduce Frameworks

MPI is a de facto standard and is widely used in High-performance computing en-
vironments for effective and efficient communication. Researchers have successfully ex-
perimented with the idea of using MPI for data-intensive computing. Hoefler et al. [287]
proposed a scalable implementation of map-reduce functionality using MPI and numerous
possible extensions in MPI to support map-reduce. Hadoop map-reduce provides fault
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tolerance through redundant storage and reallocation of work, whereas MPI-based imple-
mentations are deprived of that. The MPI-map-reduce integration can provide efficient
implementation with optimized data movement by controlling where data reside for each
map and reduce phase, which can be achieved by user-defined hash functions [277].

The parallelization of many task applications has been tried with different work-
flow systems, e.g., MPI, ad-hoc Hadoop [193], CloudBlast [288], Spark [240], and HTCon-
dor [289]. Zhang et al. [290] used Apache Spark to parallelize many task applications
by using Kira (an astronomy image processing toolkit) and compared its performance
with equivalent parallel implementation using an HPC toolset and improved performance
is reported. Lu et al. [291] identified the challenges and potential benefits of reducing
the communication overhead by using MPI with map-reduce and also highlighted possi-
ble MPI extensions for optimized integrated MPI-map-reduce programming paradigms.
DataMPI exploits the overlapping of the map, shuffle, and merge phases of the map-reduce
framework and increases data locality during the reduce phase. This approach provides
the best performance and average energy efficiency [292]. Mohamed et al. [293] proposed
the overlapping of the map and reduce phases by running them concurrently, and MPI is
used as a message-passing communication medium between the two to exchange partial
intermediate data.

5.2. Map-Reduce Frameworks with High-Performance Interconnects

Data-intensive applications have been extensively used in HPC infrastructure with
multicore systems using the map-reduce programming model [294]. Hadoop relies on
legacy TCP/IP protocols for the transferring of intermediate data, which makes Hadoop
incapable of utilizing the benefits of RDMA. So, it finds it difficult to use high-performance
interconnects in an optimal way, and, so, different HPC-oriented map-reduce solutions
have been proposed that addresses the problem of leveraging high-performance inter-
connects [295], i.e., RDMA–Hadoop, DataMPI [296], etc. Hadoop has its own limitations
of disk and network bandwidth, and network bandwidth is increased with the use of
InfiniBand. The TCP/IP protocol is used as a communication protocol in Hadoop through
Java sockets [292]. Different solutions emerged to address this problem for efficient use of
map-reduce with high-performance interconnects.

Yandang et al. [297] presented a comparative analysis of InfiniBand and 10GigaBit and
the performance of both is evaluated on Hadoop. Performance is considerably improved
when the intermediate data size is small, while, with a large intermediate data size, perfor-
mance degradation is reported. Disk bottleneck and scalability also improved with the use
of Hadoop with high-performance interconnects. Yu et al. [298] proposed an acceleration
framework to optimize Hadoop for fast data movement and a network-levitated merge
algorithm. The reduce task gets the intermediate data from the map output and stores
it locally in the memory, which leads to multiple disk access and I/O operations. The
proposed algorithm overcomes this by fetching only a header of the segment instead of the
whole segment.

Dhabaleshwar. K Panda [299] emphasizes the effectiveness of using InfiniBand in
terms of cost for large-scale clusters compared to its counterpart, the standard Ethernet.
Most of the HPC-based map-reduce solutions (RDMA, DataMPI [296], and HMOR) are
affected by the degree of change in the default Hadoop framework to exploit the benefits of
high-speed interconnects, but Mellanox UDA [300,301] and IP over InfiniBand (IPoIB) [302]
require minimum-to-no changes to the Hadoop configuration. Hadoop is linearly scal-
able and with the increasing size of clusters, organizations started using InfiniBand and
solid-state drives (SSDs). InfiniBand along with RDMA delivered almost four times the
bandwidth of a 10GigaBit Ethernet port [299].
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According to project Aloja [303], there are numerous Hadoop performance tuneable
parameters like Hardware, RAM capacity, storage type, HDFS block size, number of
mappers and reducers, network speed, etc. According to their findings, adding InfiniBand
does not improve the performance but using it with solid state drives (SSDs) delivered
3.5X better performance compared to Gigabit Ethernet. Islam et al. [304] identifies different
challenges of pipelined replication schemes and proposes an alternative parallel replication
scheme and compared the performance of the latter with existing pipelined replication in
HDFS over Ethernet, IPoIB, 10 GigE, and RDMA and showed performance enhancement
with a parallel model for large data sizes and high-performance interconnects.

Lu et al. [295] highlighted the potential benefits of integrating Spark and the RDMA
framework and proposed an RDMA-based solution to accelerate data shuffling in Spark
by using high-performance interconnects. Similarly, Wasi-ur-Rehman et al. [305] proposed
Hadoop map-reduce over InfiniBand using RDMA, Islam et al. [306] presented HDFS with
RDMA over InfiniBand and Lu et al. [307] proposed a Hadoop RDMA-based Hadoop RPC
over InfiniBand.

5.3. Map-Reduce-like Framework for In Situ Analysis

Scientific applications are often run on High-performance computing clusters, fol-
lowed by offline data analysis tasks on smaller clusters. The expense of CPU hours on
High-End Computing (HEC) machines is one of the main reasons for this offline cluster
analysis. So, the compute-intensive simulations are run on the HEC machine and data anal-
ysis tasks are performed on smaller clusters after the completion of the simulations. This
approach has several disadvantages in terms of performance, energy consumption, and
redundant I/O, which ultimately results in an increase in data traffic between compute and
storage subsystems [165]. Scientific datasets are stored in backend storage servers in HPC
environments and these datasets can be analyzed by the YARN map-reduce program on
compute nodes. As both compute and storage servers are separated in HPC environments,
the cost of moving these large datasets is very high. Wang et al. [282] proposed a map-
reduce-like framework for in situ data analysis that requires minimal modification to the
simulation code. Compared to traditional map-reduce, their system performs the analysis
task by fetching data directly from memory in each node and keeps memory utilization low
by avoiding key-value pair output. They evaluated the system by using different scientific
simulations on both multicore and many-core clusters with minimum overhead. Although
many HPC systems have exploited in situ data analysis, there is still a need for the efficient
analysis of data stored in the backend storage system. Xu et al. [283] proposed a virtualized
Analytics Shipping (VAS) framework with fast network and disk I/O for efficient shipping
of map-reduce programs to Lustre storage servers. Spark on-demand allows users to use
Apache Spark for in situ data analysis of big data on HPC resources [284]. With this setup,
there is no longer a need to move petabytes of data for advance data analytics. Table 2
summarizes the research efforts related to the convergence of HPC and big data along with
the challenges and future directions.

Table 2. Data Locality-aware HPC and Big Data Convergence Efforts.

Convergence Convergence Efforts Challenges/Future Directions

MPI with
Map-Reduce

Hoefler et al. [287], MPI, ad-hoc Hadoop [193],
CloudBlast [288], HTCondor [289], Zhang
et al. [290], Lu et al. [291], DataMPI [292],
Mohamed et al. [293], Pilot-Jobs [308],
Pregel [118], Apache Hama [119] and
Giraph [120], SRM [275], iRODS [276],
MapReduce-MPI [277], Pilot-MapReduce [278].

• Programming Abstraction
• Minimizing Complexity (Degree of change of default

MapReduce).
• Improving Parallel Replication Scheme
• Adaptability
• Innovation in Data placement and data access strategies
• Improving data layout strategies
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Table 2. Cont.

Convergence Convergence Efforts Challenges/Future Directions

Map-Reduce
with High-
Performance
Interconnects

DataMPI [296], [240], Yandang et al. [297], Yu
et al. [298], Dhabaleshwar. K Panda [299],
Mellanox UDA [300,301], IP over InfiniBand
(IPoIB) [302], Aloja [303], Islam et al. [304], Lu
et al. [295], Wasi-ur-Rehman et al. [305], Islam
et al. [306], Lu et al. [307]

• Scalability
• Complexity
• High Bandwidth and Low-latency interconnects
• Efficient Data transfer
• Energy Efficiency
• Compatibility
• S/w H/W co-design

In Situ
Analysis

Wang et al. [282], Xu et al. [283], Spark on
demand [284].

• Data Volume
• Data Management
• Energy Efficiency
• Complexity
• Cognitive computing and storage

6. Challenges, Opportunities, and Future Directions

HPC and big data are different paradigms (compute-centric vs. datacentric) but also
have different software ecosystems. The convergence of both these paradigms demands
collaborative efforts at different levels of their ecosystems. Hadoop is relatively new but has
matured over the years and has started to support different heterogeneous workloads [44],
especially with the introduction of YARN [309] and Mesos [114]. Pilot-Jobs [308] and other
tools emerged for data-intensive jobs in HPC environments but lack the scalability of
Hadoop [44]. Table 3 summarizes the differences between big data (Hadoop) and HPC
ecosystems.

Table 3. HPC vs. Hadoop Ecosystems.

Big Data HPC

Programming Model Java Applications, SparQL Fortran, C, C++
High-level Programming Pig, Hive, Drill Domain-specific Language
Parallel run time Map-reduce MPI, Open MP, OpenCL
Data Management HBase, MySQL iRODS

Scheduling (Resource Management) YARN SLRUM (Simple LINUX utility for
resource management)

File system HDFS, SPARK (Local storage) LUSTRE (Remote storage)
Storage Local shared-nothing architecture Remote shared parallel storage
Hardware for Storage HDDS SSD
Interconnect Switch Ethernet Switch Fiber
Infrastructure Cloud Supercomputer

As we are heading towards exascale systems, achieving billion-fold parallelism within
energy constraints is an extremely challenging task. The explosion of data being produced
at a brisk speed brings many challenges that may include, but are not limited to, minimized
data movement, data locality, data storage, effective and efficient searching algorithms, and
data analysis.

Reed et al. [18] identified several exascale challenges including (1) High bandwidth
and low latency interconnect technologies that also require locality-aware algorithms for
efficient data transfer. (2) Advances in memory technology that directly influences data
movement and energy constraints. (3) Data management software to handle a massive
amount of data and efficient in situ data analysis requires some revolutionary changes in
applications and scientific workflows. (4) Programming models for expressing parallelism
and data locality, alleviating programmers’ burden of expressing billion-fold parallelism
and fault-handling.
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Data locality thus is coined as one of the major issues the computing research com-
munity is facing for exascale systems and is currently managed in petascale systems at the
application, file system, or middle level. Parallel file systems, e.g., Lustre [279], GPFS [192],
and PVS [280] are bound to be compatible with POSIX (Portable Operating System In-
terface) for maintaining compatibility between operating systems but compromise data
locality. On the other hand, the Google File System (GFS) uses the map-reduce process-
ing framework to avoid being POSIX-constrained. These frameworks represent the best
efforts to bring computation to data and are widely used in data-intensive applications.
However, these techniques tailored for data-centric computation are not well-suited, and,
therefore, not widely adopted, by the HPC community [310]. Runtime performance de-
pends on efficient task scheduling by optimally allocating tasks to the target architecture.
Over-provisioning of parallel work leads to threads spending a long time in the waiting
queues for required resources and under-provisioning leads to underutilization of resources.
Locality-aware performance optimization of an application on multicore architecture is
challenging due to the shared, hybrid, and distributed memory architecture with several
hierarchies determined by non-uniform communication latencies. Power consumption
and bounding the energy for exascale computation is perhaps one of the major challenges.
An additional challenge is dealing with sparse resilience, as hardware failure is a norm
in an exascale environment. The increasing complexity regarding memory hierarchy and
resilience demands opting for different approaches to software development, i.e., domain-
specific languages and compilers, auto-tuning software, language constructs and tools to
deal with massive parallelism, etc. The following are the key challenges and opportunities
that require careful consideration.

6.1. Programming Paradigms

Most of the current programming paradigms in the HPC and big data environments
(MPI, OpenMP, OpenCL, map-reduce) do not meet the needs of exascale computing and
this issue demands thorough reinvestigation [311]. Hybrid approaches also need some
innovation more specifically on locality-based communication to address scalability and
billion-fold parallelism. The Partitioned Global Address Space PGAS model offers a rich
set of functionalities, and its different implementations present a multi-threaded view,
while MPI depicts a fragmented data view. Load balancing, increasing complexity with
scalability, and a lack of hierarchical decomposition are some of the constraints of PGAS
that limited its growth to address issues related to a converged exascale system [310].
OpenCL can be a potential candidate due to its portability but is criticized for being too
low-level, leaving complexity to the programmer to handle data transfer, synchronization,
etc. None of the programing paradigms actually fit in the exascale era and there is a need
to build a new programming model to overcome the limitations of current programing
infrastructures. There is also a need for efficient data placement and data access strategies
to reduce communication and the cost of data movement. The complexities of handling
these low-level details compelled engineers to focus on high-level optimization by focusing
more on minimizing communication.

6.2. Programming Models and Language Support

The evolution of software productivity could not match the speed at which hardware
and network technologies have evolved over the years. There is a need for some evolution-
ary and revolutionary changes at different levels of software ecosystems to address the
issues related to the converged HPC and big data environment. Performance optimization
in terms of Gflops/sec is no longer viable in today’s world as energy consumption is one of
the primary concerns for exascale systems. Energy efficiency is directly affected by data
locality, which, in turn, can be achieved by bringing computation to data, minimizing
data movement by the efficient exploitation of cache hierarchies, reducing communication,
locality-aware process/thread mapping, and in situ/in transit data analysis. There is a
need to invest considerable effort in investigating locality-aware programming models
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with compiler support, runtime environments, high-level languages, and abstraction strate-
gies to build flexible, dynamic systems to capitalize multi/many-core architectures with
complex memory hierarchies. There is a trade-off between performance and portability
that needs to be clearly understood. Compilers need innovation and runtime systems need
intelligence for efficient exploitation of data locality and performance at runtime. At the
application level, algorithms must address data locality, load balancing, scalability, and
communication [62]. The application and data interoperability issue between different
programming models/languages also needs further investigation. Optimizing the perfor-
mance of exascale systems may require automated approaches to deal with billion-fold
parallelism and software support to facilitate application development.

6.3. Programming Abstractions

There is a need for efficient high-level programming, exploiting dynamic parallelism,
data locality through the abstraction layer, and complex structure abstractions [27] to facili-
tate and assist programmers to address data locality issues and resource abstractions (from
physical resources, i.e., memory, cores) for effective resource utilization in the converged
HPC and big data environment. Data-centric abstraction exploitation is needed for the
converged HPC and big data environment to alleviate the programmer’s burden to deal
with heterogeneous systems.

6.4. Innovations in Data Layout Strategies

Data locality issues must be addressed at different layers of the input/output stack,
which demands strategic, dynamic, adaptive, and predictive methodologies to collocate
the computation and data [310]. There is also a need for locality-aware data distribution
based on the runtime behavior of the application, which is unknown at compile time. One
way of addressing this problem is the use of machine learning-based techniques to predict
runtime behavior by capitalizing low-overhead profiling tools to extract the runtime fea-
tures (runtime data mobility from backend storage to application) that can be used to train
the predictor for optimal code/core selection to minimize communication. Intelligent data
placement algorithms need to be investigated for reducing unnecessary communication.

6.5. Locality-Aware Scheduling

As the number of computing resources is on a rise with complex memory hierar-
chies and heterogeneity making locality-aware scheduling and resource management a
challenging task that cannot be handled efficiently by the current centralized scheduling
systems, there is a need for adaptive distributed job scheduling management infrastructure,
re-engineering of locality-aware scheduling algorithms, and amalgamation of data local-
ity with an allocation mechanism but without compromising the scalability and energy
constraints. AI-assisted approaches such as those described in [57,312,313] would play an
important role in this direction.

6.6. Software Hardware Co-Design

There is a need for coordinated efforts in software-hardware co-design to address
the challenges of future-generation systems with the ability to handle applications from
multi-dimensional domains. The mapping of application and system software should
also be aided by co-design [62] so that data-locality issues can be addressed by minimiz-
ing communication.

6.7. Innovations in Memory and Storage Technologies

Minimizing data movement demands innovation in memory technologies. Classical
DRAM and SRAM may not be suitable for future systems. New non-volatile memory
technologies are emerging but are still in their infancy. There is a need for an integrated
software stack to address the issues of I/O requirements of data-centric applications via
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network/storage aggregation and efficient utilization of client-side cache, along with
server-side optimized utilization of storage management.

6.8. High-Speed Interconnects

The scalability of the communication bandwidth of high-speed interconnects must
match that of the increasing processing capability of a node with multi/many cores. The
compact integration of interconnects must minimize remote data access latency by provid-
ing high bandwidth and low-latency efficient interconnection within energy constraints.

Due to the increase in system concurrency, parallel and distributed programing have
become a major issue. Programming to achieve billion-fold parallelism faces many chal-
lenges including power consumption, memory, communication, fault tolerance, and hetero-
geneity. These challenges directly or indirectly affect data locality and require innovation
at both the hardware and software levels. Data locality abstraction, available in the forms
of libraries, runtime systems, data structures, and language, needs innovation to increase
productivity without compromising performance.

7. Proposed Future HPC and Big Data Converged System Architecture

As the complexity of computer systems is on the rise with the number of cores per
processor, different levels of cache, processors per node, and high-speed interconnects, there
is an ever-growing need for new optimization techniques to minimize communication and
an efficient way of exploiting parallelism for heterogeneous resources. Also, computation
is getting cheaper; there is a need for a paradigm shift from compute-centric to data-
centric. The current programming environments do not fully facilitate the abstraction to
optimize data locality resulting in programmers having to use other means for locality-
aware optimization. There is a potential scope to exploit locality by providing eco-friendly,
environmentally responsible computations and innovations in algorithmic research, i.e.,
communication-avoiding algorithms and a need for automated parallelism mapping on
target system software and hardware architecture [62].

Implementing codes with system characteristics in mind (minimizing communication,
avoiding cache misses by using blocks that fit in the cache) and mapping processes to
specific cores are the two main approaches studied to improve the performance of parallel
applications in multicore architectures. Optimal task mapping requires heuristics to find
the best mapping strategy but these heuristics require the runtime behavior of these tasks
to be known, which, in turn, requires static and dynamic analysis to facilitate automatic
mapping. One of the major challenges to mapping the parallel executable tasks is to obtain
the needed runtime behavior of these tasks.

One way of looking at data locality issues in converged HPC and big data environ-
ments is by effectively and efficiently utilizing resources that should ultimately minimize
communication. Once the code is parallelized, there is a need for efficient code mapping to
the underlying architecture for efficient exploitation of hardware resources. The optimal
mapping decision is non-trivial and depends not only on the parallel algorithm but also on
the relative costs of communication and computation. Expert programmers can implement
effective mapping, but this manual process is expensive and error-prone. Although manual
mapping can be effective on a particular architecture where the programmer is responsible
for all the issues, i.e., load-balancing, synchronization, communication, etc., this solution is
not portable and needs considerable effort for the code to run on a different platform [158].

Compiler-based mapping techniques can be an alternative to parallelism mapping
but manual tuning of compiler-based approaches is complex to handle with the increasing
level of hardware complexity and application diversity. Researchers engineered numerous
compiler-based heuristics (mostly platform-specific) over the years, based on analytical
models to optimize compilation decisions. Feedback-directed or iterative compiling pro-
duces multiple versions of a program and empirically measures performance by actually
running code on target hardware. This measured performance acts as feedback for the
selection of the best among different options. This does require an exhaustive search space
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for an optimal solution with an expensive compilation overhead. To overcome these issues,
predictive modeling came into the picture but much of the work in the literature is based on
sequential programs [158,314]. Predictive techniques predict optimization (without execut-
ing them on target hardware or in a simulator) based on previous knowledge generated by
offline training with different compilation options, which are then used to predict the best
among available options. In contrast to static compilation techniques, dynamic adaption
makes runtime decisions based on dynamic environment information, i.e., the number of
processing elements and the program’s execution environment for dynamic scheduling of
parallel programs.

Exascale systems are expected to have millions of components with deep hierarchical
structures both horizontally (network interconnection) and vertically (memory architec-
ture, i.e., cache hierarchies, NUMA). To achieve massive scalability, there is a need for
the efficient exploitation of resources but within energy constraints that can be achieved
by addressing data locality, i.e., how data is placed, accessed, and moved across com-
plex system hierarchies (horizontally and vertically). We believe that future computing
systems will require research in three main dimensions: characterization of workloads,
characterization of the system resources, and smart ways to map the workloads to the
underlying system resources under multiple constraints with configurable preferences. We
have highlighted some of the work related to process mapping by categorizing them as
algorithmic approaches and machine learning-based techniques. There is a need to dedicate
efforts to automated approaches to provide a portable mapping solution, which models
the interaction of parallel applications and the underlying architecture effectively and
efficiently. Machine/deep learning thus can be applied to automate the process of mapping
workload to processing cores for optimal load balancing and scalability, and address the
locality issues either by avoiding or minimizing communication. Mapping application
tasks on a multi/many-core system involves the assignment and ordering of the tasks and
their communications onto the platform resources. The communicating tasks are mapped
on the same core or close to each other in order to optimize the communication delay
and energy efficiency. There is a need to adapt environmentally friendly green computing
practices including green production, recycling, and development and design.

Figure 1 gives an abstract view of machine learning and design patterns-based solution
for the converged HPC and big data environment. Design patterns can be seen as repeatable
general solutions to commonly occurring problems in software design to allow flexible
and robust development. The standardization and organization of design patterns in both
HPC and big data environments can be seen as potential candidates for this inevitable
convergence. These design patterns serve here as a catalyst to produce a dataset that is used
for the training of AI-based models to address convergence challenges, i.e., data locality,
energy efficiency, fault tolerance, etc. These challenges and growing demands of HPDA
to speed up data analysis requires revolutionary and evolutionary changes at different
levels of HPC and big data ecosystems. Generic guidelines provided by these design
patterns would help software developers to design robust and energy-efficient solutions.
High bandwidth requirements and increasing network complexity further increase energy
consumption and heat emission. So, there is a need to shift the focus to computing with
renewable energy and green solutions for the converged HPC and big data environment.



Electronics 2023, 12, 53 29 of 44Electronics 2023, 12, x FOR PEER REVIEW 30 of 46 
 

 

 
Figure 1. Design patterns and AI-based Architecture for Converged HPC and Big Data Environ-
ments. 
Figure 1. Design patterns and AI-based Architecture for Converged HPC and Big Data Environments.



Electronics 2023, 12, 53 30 of 44

The feature extractor extracts the required static and dynamic features, which can then
be used for preparing training data for AI-based models along with an optimal solution
based on the user’s preferences. Software processing entities (processes, threads) and their
dependencies can be expressed as an application virtual topology, e.g., messages exchanged
between processes in message-passing models (MPI) and access to a common memory
location (OpenMP). These software-processing entities need to communicate with each
other regularly or irregularly, which demands efficient utilization of available resources to
facilitate data access and communication. The characteristics of the underlying hardware
architecture need to be gathered in a portable way to target a broad range of architectures.
The cluster environment demands network topology, and the multi/many-core environ-
ment demands intra-node structure information to be accumulated in a comprehensive
way, in order to map the application’s virtual topology on the targeted physical topology.
The memory access behavior for each task needs to be gathered with minimum overhead,
as many existing memory tracing techniques are based on simulating applications with a
large overhead. Hardware counters are also used for this purpose but have low accuracy
due to the sampling of application memory accesses. An alternative way is Dynamic Binary
Instrumentation (Valgrind, MemTrace) but this also has a lack of direct support for parallel
applications and overhead and accuracy issues. There is a need for more sophisticated
tools that provide us with all the necessary information with minimum overhead and
maximum accuracy [315]. As discussed above, the efficient use of virtual topology, com-
munication patterns, underlying hardware characteristics, network topology, and memory
access behavior, helps us to collect quality data features to prepare training data for the
AI-based models.

In a distributed environment, there is a need for innovation in message-passing models
to effectively utilize the internal communication pipeline based on the underlying network
topology. Current supercomputing systems use job schedulers for resource allocation
(SLRUM, PBS) but these do not consider the application communication requirements and
lack the intelligence to map tasks to the underlying topology. The complexity will increase
further with future systems with millions of cores arranged in multiple levels of hierarchies,
multiple sockets with a number of cores, nodes with multiples sockets, blades with multiple
nodes, multiple blades arranged in racks, and the whole system arranged in multiple racks,
and interconnection of these components with complex network topologies. The issues
related to resource contention, routing schemes of underlying network topology, scalability,
job scheduling, and process mapping need further investigation to achieve scalable per-
formance. There is a need for topology-aware communication libraries and schedulers to
use runtime network information to make intelligent scheduling decisions [316] and also
consider the simultaneous mapping of concurrent applications to heterogeneous resources.

The use of machine learning helps developers to automatically engineer dynamic
optimization strategies and runtime adaption methodologies to cater to changing program
behaviors. Runtime adaptions can be facilitated by the dynamic configuration of hardware
using machine-learning techniques. Capturing the static program features along with
dynamic features can be used to predict application behavior, which can then be used
to configure hardware resources. There is a need to find a synergy between high-level
optimizations for parallelism mapping and low-level compiler transformations by carefully
considering the trade-offs for an optimized mapping [317].

Design patterns, thus, can be used at different layers of the software ecosystem to
address a broad range of challenges including scalability, elasticity, adaptability, robustness,
locality, and storage with solutions that are already tested and implemented in similar
or closely related environments, e.g., parallel design patterns (Our Pattern Language
OPL) [318] and big-data patterns [319]. Both OPL and big-data patterns are organized
in a logical architecture of different layers. Figure 1 shows the layered architecture of
design patterns, which act as a catalyst to produce high-quality data for AI-based models
to address different problems based on the user’s preferences including fault tolerance,
parallelization mapping, which ultimately improves data locality, and energy efficiency,
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thus providing green solutions for the converged HPC and big data environment. Applying
multiple design patterns is itself a tedious task due to the diverse nature of these design
patterns and there are few efforts to address these challenges using machine-learning
techniques [320,321]. These design patterns assist (both HPC and big data) software
developers to design and address data locality issues efficiently. Designing software
architecture is a complex process and requires the identification of quality attributes that
must be in-line with functional requirements. As these processes are done in multiple
phases, therefore, applying a systematic approach to designing a software architecture is of
fundamental importance. Software architecture patterns are not straight forward to apply
and demand an automated process to carefully consider different factors such as stake
holder’s expectations, functional and nonfunctional requirements, etc.

Design solutions for data visualization and interactive management are hard to as-
sess and reapply. At the abstract level, different design patterns at the visualization and
management layer are defined to address distributed, parallel, interactive, and live data
visualization and analysis. Most of the available tools don’t provide a built-in provision to
facilitate data visualization and information distribution at scale. The processing layer gath-
ers structured, unstructured, and semi-structured data from heterogeneous resources and
makes it available after processing for the rest of the pipeline. It supports both batch and
real-time processing. The processing layer includes design patterns, high-velocity real-time
processing, large-scale batch/graph analysis, strategy patterns, data conversion, structural
and computational patterns, etc. The trade-off between fault tolerance, performance, and
energy efficiency needs careful monitoring by incorporating best practices from both the
HPC and big data environments. One of the major issues in the data ingestion process is
to keep data in the right place. Data ingestion systems help to transfer data in the form
of events or messages to other applications and data stores, which allows reliable data
processing. Data storage is critical to facilitate access at scale, as data are stored in numerous
formats. Big data analytics and strategic enterprise applications demands/require different
varieties of data. Here, structured and unstructured data is sourced from heterogeneous
resources including IoT, scientific simulations, social media, etc., all of which have different
scalability and availability requirements. Parallel and distributed design patterns for smart
storage and efficient retrieval are organized at the storage and access layer, as shown in
Figure 1. The diverse storage options provide different characteristics in terms of data
availability, scalability, and performance. These design patterns provide cognitive storage
(automated purging), data size reduction, and high-volume hierarchical, linked, tabular,
and binary storage with indirect and integrated data access.

Limitations of Proposed Solution

Implementing design patterns in applications is proven and tested. They are evolved
as reusable components and make our application reliable, scalable, and easily maintainable.
At the same time, using a design pattern itself is a tedious task due to the high volume and
complexity of these design patterns. This requires developers to learn and test different
patterns and choose the optimal one, which is a time-consuming process due to their
vague and abstract nature. The use of design-pattern recognition based on their theoretical
description results in a poor assignment. The proposed solution is very much dependent
on the quality of data being produced by the use of HPC and big data design patterns. Due
to the high volume and application complexity of these design patterns, there is a need
to focus on the exploration of innovative approaches to automate the process of applying
these design patterns to address convergence challenges. At the same time, design solutions
for data visualization and interactive management are hard to assess and reapply.

The use of AI techniques, standardization, and efficient exploitation of design patterns
can lead to an effective and systematic solution to address the locality and other challenges
of converged HPC and big-data environments.
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8. Conclusions

This paper presented a review of cutting-edge research on data locality in HPC, big
data, and converged systems. The efficient resource utilization and performance of parallel
applications demand intelligent parallelism mapping to the target architecture but within
energy constraints. Numerous research efforts dedicated to data locality issues at different
levels of HPC and big-data software ecosystems are presented. The paper also reviewed
research efforts for the inevitable convergence of HPC and big data primarily focusing on
locality and highlighted some of the challenges that need further investigation. To address
these challenges, we also presented future trends and proposed a solution to be considered
as a future direction. The explosion of data more specifically in the edge environment from
multidisciplinary domains (IoT, smart cities, and remote sensors, i.e., satellite imagery)
demands the investment of research efforts towards “fog or edge” computing infrastructure
to provide storage, processing, and communication facilities for the integrated HPC and
big data environment. So, there is a need to promote the development of software libraries
for intermediate processing. The connected and ubiquitous synergy between HPC and
big data demands the exploration of some revolutionary and evolutionary innovations
and coordinated efforts at different levels of integrated software ecosystems. The use of
design patterns, cognitive computing (machine learning, natural language processing), and
intelligent process mapping can be seen as potential candidates to address data locality
and other challenges for the integrated HPC and big data environment.

Author Contributions: Conceptualization, S.U. and R.M.; methodology, S.U. and R.M.; validation,
S.U., R.M., I.K. and A.A.; formal analysis, S.U., R.M., I.K. and A.A.; investigation, S.U., R.M., I.K. and
A.A.; resources, R.M., I.K. and A.A.; data curation, S.U.; writing—original draft preparation, S.U. and
R.M.; writing—review and editing, R.M., I.K. and A.A.; visualization, S.U.; supervision, R.M. and
I.K.; project administration, R.M., I.K. and A.A.; funding acquisition, R.M., I.K. and A.A. All authors
have read and agreed to the published version of the manuscript.

Funding: The authors acknowledge with thanks the technical and financial support from the Dean-
ship of Scientific Research (DSR) at the King Abdulaziz University (KAU), Jeddah, Saudi Arabia,
under Grant No. RG-10-611-38.

Data Availability Statement: Not applicable.

Acknowledgments: The work carried out in this paper is supported by the HPC Center at the King
Abdulaziz University.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, M.; Mao, S.; Liu, Y. Big Data: A Survey. Mob. Netw. Appl. 2014, 19, 171–209. [CrossRef]
2. Farber, R. The Convergence of Big Data and Extreme-Scale HPC, HPC Wire. 2018. Available online: https://www.hpcwire.com/

2018/08/31/the-convergence-of-big-data-and-extreme-scale-hpc/ (accessed on 1 November 2022).
3. Alam, F.; Almaghthawi, A.; Katib, I.; Albeshri, A.; Mehmood, R. iResponse: An AI and IoT-Enabled Framework for Autonomous

COVID-19 Pandemic Management. Sustainability 2021, 13, 3797. [CrossRef]
4. Alomari, E.; Katib, I.; Albeshri, A.; Yigitcanlar, T.; Mehmood, R. Iktishaf+: A Big Data Tool with Automatic Labeling for Road

Traffic Social Sensing and Event Detection Using Distributed Machine Learning. Sensors 2021, 21, 2993. [CrossRef] [PubMed]
5. Alkhayat, G.; Hasan, S.H.; Mehmood, R. SENERGY: A Novel Deep Learning-Based Auto-Selective Approach and Tool for Solar

Energy Forecasting. Energies 2022, 15, 6659. [CrossRef]
6. Alahmari, N.; Alswedani, S.; Alzahrani, A.; Katib, I.; Albeshri, A.; Mehmood, R. Musawah: A Data-Driven AI Approach and Tool

to Co-Create Healthcare Services with a Case Study on Cancer Disease in Saudi Arabia. Sustainability 2022, 14, 3313. [CrossRef]
7. Alswedani, S.; Mehmood, R.; Katib, I. Sustainable Participatory Governance: Data-Driven Discovery of Parameters for Planning

Online and In-Class Education in Saudi Arabia During COVID-19. Front. Sustain. Cities 2022, 4, 97. [CrossRef]
8. Alaql, A.A.; AlQurashi, F.; Mehmood, R. Data-Driven Deep Journalism to Discover Age Dynamics in Multi-Generational Labour

Markets from LinkedIn Media. Mathmatics & Computer Science. Preprints 2022, 2022100472. [CrossRef]
9. Alqahtani, E.; Janbi, N.; Sharaf, S.; Mehmood, R. Smart Homes and Families to Enable Sustainable Societies: A Data-Driven

Approach for Multi-Perspective Parameter Discovery Using BERT Modelling. Sustainability 2022, 14, 13534. [CrossRef]
10. Janbi, N.; Mehmood, R.; Katib, I.; Albeshri, A.; Corchado, J.M.; Yigitcanlar, T. Imtidad: A Reference Architecture and a Case Study

on Developing Distributed AI Services for Skin Disease Diagnosis over Cloud, Fog and Edge. Sensors 2022, 22, 1854. [CrossRef]

http://doi.org/10.1007/s11036-013-0489-0
https://www.hpcwire.com/2018/08/31/the-convergence-of-big-data-and-extreme-scale-hpc/
https://www.hpcwire.com/2018/08/31/the-convergence-of-big-data-and-extreme-scale-hpc/
http://doi.org/10.3390/su13073797
http://doi.org/10.3390/s21092993
http://www.ncbi.nlm.nih.gov/pubmed/33923247
http://doi.org/10.3390/en15186659
http://doi.org/10.3390/su14063313
http://doi.org/10.3389/frsc.2022.871171
http://doi.org/10.20944/PREPRINTS202210.0472.V1
http://doi.org/10.3390/su142013534
http://doi.org/10.3390/s22051854


Electronics 2023, 12, 53 33 of 44

11. Arfat, Y.; Usman, S.; Mehmood, R.; Katib, I. Big data tools, technologies, and applications: A survey. In Smart Infra-Structure and
Applications Foundations for Smarter Cities and Societies; Springer: Cham, Switzerland, 2020; pp. 453–490.

12. Mehmood, R.; Sheikh, A.; Catlett, C.; Chlamtac, I. Editorial: Smart Societies, Infrastructure, Systems, Technologies, and
Applications. Mob. Netw. Appl. 2022, 1, 1–5. [CrossRef]

13. Yigitcanlar, T.; Butler, L.; Windle, E.; DeSouza, K.C.; Mehmood, R.; Corchado, J.M. Can Building “Artificially Intelligent Cities”
Safeguard Humanity from Natural Disasters, Pandemics, and Other Catastrophes? An Urban Scholar’s Perspective. Sensors 2020,
20, 2988. [CrossRef] [PubMed]

14. Yigitcanlar, T.; Corchado, J.M.; Mehmood, R.; Li, R.Y.M.; Mossberger, K.; Desouza, K. Responsible Urban Innovation with Local
Government Artificial Intelligence (AI): A Conceptual Framework and Research Agenda. J. Open Innov. Technol. Mark. Complex.
2021, 7, 71. [CrossRef]

15. Yigitcanlar, T.; Mehmood, R.; Corchado, J.M. Green Artificial Intelligence: Towards an Efficient, Sustainable and Equitable
Technology for Smart Cities and Futures. Sustainability 2021, 13, 8952. [CrossRef]

16. Alsaigh, R.; Mehmood, R.; Katib, I. AI Explainability and Governance in Smart Energy Systems: A Review. arXiv 2022,
arXiv:arXiv:2211.00069. [CrossRef]

17. Schwartz, R.; Dodge, J.; Smith, N.A.; Etzioni, O. Green AI. Commun. ACM 2020, 63, 54–63. [CrossRef]
18. Reed, D.A.; Dongarra, J. Exascale computing and big data. Commun. ACM 2015, 58, 56–68. [CrossRef]
19. Elia, D.; Fiore, S.; Aloisio, G. Towards HPC and Big Data Analytics Convergence: Design and Experimental Evaluation of a HPDA

Framework for eScience at Scale. IEEE Access 2021, 9, 73307–73326. [CrossRef]
20. Brox, P.; Garcia-Blas, J.; Singh, D.E.; Carretero, J. DICE: Generic Data Abstraction for Enhancing the Convergence of HPC and Big

Data. In Proceedings of the Latin American High Performance Computing Conference, Guadalajara, Mexico, 6-8 October 2021;
pp. 106–119. [CrossRef]
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