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Abstract: In e-commerce logistics, government registration, financial transportation and other fields,
communication addresses are required. Analyzing the communication address is crucial. There are
various challenges in address recognition due to the address text’s features of free writing, numerous
aliases and significant text similarity. This study shows an ENEX-FP address recognition model,
which consists of an entity extractor (ENEX) and a feature processor (FP) for address recognition,
as a solution to the issues mentioned. This study uses adversarial training to enhance the model’s
robustness and a hierarchical learning rate setup and learning rate attenuation technique to enhance
recognition accuracy. Compared with traditional named entity recognition models, our model
achieves an F1-score of 93.47% and 94.59% in the dataset, demonstrating the ENEX-FP model’s
effectiveness in recognizing addresses.
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1. Introduction

Addresses are an essential type of textual information in everyday life. Many scenarios
require the registration of addresses, such as e-commerce shopping, takeaway delivery
and census. Address element parsing is breaking down address text into semantically
independent elements and identifying the type of these elements. Information extraction
(IE) automatically helps classify, extract and reconstruct large amounts of content. One
of the approaches is named entity recognition (NER), which may extract predetermined
semantic kinds from text [1]. NER is a crucial component of IE and has an impact on various
downstream activities, such as relationship extraction and knowledge disambiguation [2].

Deep learning (DL) has been used in NER [3]. Recurrent Neural Networks (RNNs)
and their variants have successfully modeled sequence data [4]. In particular, bidirectional
RNNs effectively exploit past and future information in a specific time frame [5]. Long-
distance dependencies are more effectively captured by Long Short Term Memory (LSTM).
However, LSTM modeling cannot encode backward–forward information. Therefore, Bi-
directional Long Short-Term Memory (BILSTM) is proposed based on LSTM [6], which
combines LSTM to better understand contextual information. Before transformer, people
commonly used CNN, RNN and Encoder–Decoder [7], three primary feature extraction
techniques. However, the transformer model uses a self-attention mechanism instead
of RNN’s sequential structure, allowing the model to be trained in parallel and to have
global information. Bidirectional Encoder Representation from Transformers (BERT) is a
pre-training model, it places a strong emphasis on pre-training the bidirectional transformer
to provide deep bidirectional language representations by employing the new masked
language model (MLM).

BILSTM captures the semantics of each word in context. However, Jacob Devlin et al.
proposed that BERT has strong feature extraction ability and BERT is superior to LSTM in
feature acquisition [8]. Therefore, adding aBERT language pre-processing model to BILSTM
model can better obtain word embedding.
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However, after the input of the semantic information migrated through the BERT
model into the BILSTM model, the output results may be affected by the insufficient
feature richness, the low efficiency of BILSTM and the poor performance of the context
long-distance dependence problem. Additionally, the BILSTM outputs the scores for each
category that corresponds to a word after pre-processing the data, with the highest score
being reported as the output. However, there may be instances where I is the first word or
there are multiple consecutive Bs, which will decrease the identification’s accuracy.

In summary, common address recognition models cannot fully use the results output
by BERT, and the output feature vectors need to be further rounded up. Aiming at the
characteristics of address text, such as free writing and often omitting terms, this paper
makes full use of the feature vectors extracted by BERT and the advantages of being
embedded as word vectors, which can carry out accurate recognition of addresses. This
paper puts forward three contributions, which can be summarized as follows:

• Firstly, this paper constructs the ENEX, which fully uses the output of BERT as word
vector embedding and feature vector extraction and aggregates the output of BERT
and BILSTM. After the extractor processes the address text, it can reduce the impact of
long-distance dependence between the left and right contexts, obtain richer features
and better extract entity features.

• Secondly, this paper proposes the FP model to process the feature vector and condition
constraints, increase the dependence between the learning labels, further improve the
generalization of the model and significantly improve its effectiveness.

• Finally, this paper uses a learning rate decay strategy and a hierarchical setting learning
rate operation to improve the model’s accuracy effectively. Adversarial training is
added to enhance the robustness of the model.

The rest of the paper is structured as follows: There is a review of relevant research in
this field in Section 2. Section 3 presents the ENEX-FP model and the optimization method.
Section 4 presents the experiments and provides a discussion. Finally, Section 5 presents
the conclusion.

2. Related Work
2.1. NER

Named entity recognition (NER) is the process of identifying relevant entities in a text.
John D. Lafferty proposed Conditional Random Fields (CRFs) [9] which combines the char-
acteristics of the hidden Markov model and the maximum entropy model is an undirected
graph model that has shown promise in recent years for applications requiring sequence
annotation. In 2015, Baidu [10] published a paper concerning the BILSTM-CRF model,
which combines a CRF and a bidirectional long short-term memory network (LSTM); this
addresses the issue of text annotation. The BERT-CRF model has been utilized for Beijing
air pollution complaints to aid in the [11] addition of text data from responses to public
complaints about air pollution in Beijing from 2019 to 2020. Lin Junting et al. [12] used
a CNN-BILSTM-CRF model for NER of underground onboard equipment, the accuracy
of this model on the marked metro vehicle-mounted fault data is up to 0.95, which is
higher than other entity recognition models. Ref. [13] propose a Chinese address recogni-
tion method based on multi-feature fusion; the accuracy of the proposed method is 4 to
10 percentage points higher than other methods on the self-constructed dataset. In order
to automatically extract medical knowledge such as disease and treatment terms from
Chinese electronic medical records, Dong, X.S. et al. [14] suggested a bidirectional recurrent
neural network for NER, in discharge summary and progress records; the MacroF-scores of
the proposed method are 0.03 higher than those of the baseline method. However, after the
transformer model was proposed by A. Vaswani et al. [15], the self-attentive mechanism
was widely applied to NER.

Traditional lexicon and rule-based approaches for Chinese address recognition rely
excessively on lexicons and rule bases and have low recognition rates for ambiguous and
unregistered words. The approach put forward in [16] by Paolo Nesi et al. addresses
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recognition by using techniques such as pattern matching, clustering and NLP to geolocate
Web domains and businesses, with Precision and Recall both above 0.90; the system exhibits
excellent skills for extracting pertinent information about the geographic location of the
studied web domains. Grumiau Christopher et al. [17] proposed using the predictive power
of geotagged datasets to identify users’ relevant points of interest (POIs). These works have
some impact on address recognition.

BERT, as the encoder part of transformer, can be executed concurrently compared
to RNN and LSTM and can more thoroughly depict sentence semantics by extracting
the relationship characteristics of words in sentences at various levels. Xu, Lei et al. [18]
proposed to use BERT-BiLSTM-CRF combined with attention for NER. The experimental
results show that the F1-score of this method in the Chinese NER task reaches 0.9512.

Paper [19] introduces the BERT-BiGRU-CRF model, which is specially designed for
these linguistic irregularities. The accuracy of this model on the MSRA dataset is 0.981,
higher than other recognition models such as BERT-BILSTM-CRF. The ENEX-FP model
makes full use of the feature vectors extracted from the BERT model and the advantages
of embedding as word vectors to obtain the aggregated feature vectors and the features
are dropped out and constrained conditionally to obtain a better recognition model than
BERT-BiGRU-CRF.

2.2. Model Optimization

The learning rate tuning strategy is essential for DL. Ref. [20] introduces a new method
for setting learning rates, called cyclic learning rates, which eliminates the need to find
optimal values and schedules for global learning rates experimentally. Pavel Izmailov et al.
show [21] that simply averaging multiple points along a Stochastic Gradient Descent (SGD)
trajectory with a cyclic or constant learning rate allows for better generalization than
conventional training.

The robustness can be enhanced through adversarial training and the accuracy can
be further enhanced. Ref. [22] discovered the phenomenon of adversarial samples; they
found that models with different structures will be affected by adversarial samples, which
indicates that adversarial samples reveal the basic blind spot of the algorithm. Ref. [23] pro-
posed that the fundamental reason for the vulnerability of neural networks to adversarial
examples is its linear characteristics, which also explains the generalization of adversarial
examples on the structure and training set and, on this basis, proposed the Fast Gradient
Sign Method (FGSM) algorithm to generate adversarial examples. Goodfellow made some
improvements based on the previous FGSM attack method; FSGM takes the same step in
each direction and the Fast Gradient Method (FGM) subsequently proposed [24] carries
out the scale according to the specific gradient to obtain better confrontation samples.

Therefore, this paper improves the model’s accuracy on address recognition by ad-
justing the learning rate parameters. The training efficiency and model robustness are
improved by adversarial training.

3. Our Method
3.1. Overview

The ENEX-FP model has the architecture diagram shown in Figure 1. After tuning
and validation, we set lstm_units = 128; there are 128 × 2 LSTMS in Figure 1. We use two
BERT models, each using a 12-layer encoder. The encoder’s architecture is the encoder of
the transformer, we illustrate this architecture in Figure 2 of Section 3.3.

The model inputs the address text into the ENEX, which, after vector representation,
is fed into the BERT model of the extractor to obtain the feature vector extracted from the
context. This vector is fed into the BILSTM processing to obtain the text vector. Finally,
the text vector and the feature vector extracted from the context are features aggregated
and sent to the feature processor for feature rounding and constraint processing and the
result is output. Steps are as follows: extract text features in the ENEX to obtain a vector
of batch_size * seq_length*(2*lstm_units+hidden_size) and finally, enter the FP for some
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feature rounding and perform feature space transformation to obtain a vector of batch_size
* seq_length* num_labels dimensions, then carry out the process further. The constraints
are then further optimized to compute the optimal annotation sequence.

ENEX

                                                           
BERT

LSTM LSTM

LSTM LSTM

LSTM

LSTM LSTM

LSTM

CONCAT
Feature

processor

Word 
vector

Text 
Vector

Position 
vector

Encoder

Word 
embedding 

Word vector

Text Vector

Position vector

Feature 
vector

                                               
BERT

Encoder

     Encoder

Encoder

Output

Encoder

Encoder

Input

Figure 1. ENEX-FP model architecture.

3.2. Data Processing

During the training of this model, the sequence annotation method used for the
address data is the BIOES annotation method. A train set, a dev set and a test set will be
built from the address element resolution dataset. In the train set, the model is fitted to the
data samples; in the dev set, the model’s hyperparameters are changed; and in the test set,
the final model’s generalizability is assessed.

For deep learning approaches, a sizable annotated corpus is typically required. Other-
wise, it is highly susceptible to overfitting and cannot achieve the expected generalization
ability. We found in our experiments that the test results of some data labels, such as poi
and community, could be better and the recognition results of these labels can be improved
by data augmentation. Specifically, the corpus of the original address element resolution
dataset is divided into sentences. Then the individual sentences are randomly spliced
and used as the training corpus together with the original sentences. In addition, this
paper uses the collected address elements, after manual BIOES annotation, to add them
to the address element resolution dataset to obtain an expansion of the dataset, or uses
random replacement to replace the labeled entities in the corpus with them to obtain an
enhanced corpus.

3.3. ENEX Entity Extractor

The data after processing are fed into the ENEX for further processing. The primary
baseline model of the ENEX is BERT, which is mainly used to generate feature vectors
incorporating contextual information and consists of multiple encoders of the transformer;
the transformer–encoder part is shown in Figure 2. This is done by mapping the Query,
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Key and Value through h different linear transformations, stitching together the different
Attentions and finally performing another linear transformation. The whole computational
process can be represented as below.

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO

headi = Attention(QWi
Q, KWi

K, VWi
V)

(1)

where Q, K and V are the value of Query, Key and Value, and W denotes the matrix
of weights.

Multi-head 

self-attention

encoder

Input
vector 

Feed Forward

Output
Vector

Add&Norm

Add&Norm

Input
vector 

Output
Vector

Figure 2. Transformer–encoder architecture.

In the base model, BERT outputs the vector in order to create the word embedding vec-
tor along with context data. This vector is then entered into the BILSTM model for feature
extraction. To recognize the significance of long-distance information, LSTM introduces a
memory unit and threshold mechanism. In ref. [25], to make optimal use of the feature data
prior to and following the input, the author employs an improved threshold technique.
The LSTM recurrent unit is shown in Figure 3. The LSTM consists of three gates: the forget
gate is responsible for what history information is forgotten, the update gate is responsible
for what history information is added and the output gate is the output [26]. Formulae for
the three gates are shown below.

Γ〈t〉f = σ(W f [a〈t−1〉, x〈t〉] + b f ) (2)

Γ〈t〉u = σ(Wu[a〈t−1〉, x〈t〉] + bu) (3)

Γ〈t〉o = σ(Wo[a〈t−1〉, x〈t〉] + bo) (4)
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where σ is the activation function, W is the weight matrix, b is the bias vector and a〈t−1〉 is
the update state at time t, and Γ〈t〉f , Γ〈t〉u , Γ〈t〉o are the outputs of the forget gate, the updating
gate and the output gate.

After the feature vector enters BILSTM, it is trained to obtain the label prediction of
each text. ENEX not only outputs the results of the model BERT-BILSTM but also outputs
the extracted feature vectors. This happens because BERT, which has a higher ability
to extract features, has learned the syntactic aspects and extensive semantic features of
the text. To gain richer features and enhance the model’s entity feature extraction, it can
more effectively address the issues of long-distance dependence between the left and right
contexts, insufficient features and text understanding errors.

C R F

Dropout=0.1

Feature space 

change

 ENEX entity extractor

Output

Feature 

vector

Figure 3. FP model.

3.4. Feature Processor

Processing the output of ENEX’s feature fusion vectors, the research suggests an FP
model. The FP model uses dropout to perform feature rounding on the input vectors,
removing some dimensions of the input data to improve feature accuracy, mitigating
overfit and mapping the dimensions of the feature-rounded vectors to the number of
labels through a dense layer. The feature-transformed vectors are input to the FP module,
as shown in Figure 3.

Figure 3 consists of four layers, which are the Feature vector extracted by ENEX, the
Dropout layer, the Feature space change layer and the CRF model. After ENEX, the three-
dimensional feature vector input to FP was [batch_size, seq_length, lstm_units * 2 + 768].
The value 768 is the output dimension of BERT. After parameter adjustment and verification,
we finally set lstm_units = 128. In the process of setting the dropout, it is easy to produce
the underfitting phenomenon when the dropout is too large. We use a dropout of 0.1 for
experiments which can effectively reduce the occurrence of overfitting. We use dropouts of
0.1, 0.3 and 0.5 and find that the effect of a dropout of 0.1 is a little better. Therefore, 10% of
the hidden neurons will be temporarily ignored after passing the dropout and the vector
dimension will still be [batch_size, seq_length, lstm_units * 2 + 768]. After the feature space
change layer, the dimension changes to [batch_size, seq_length, num_labels], where the
dataset’s total number of labels is num_labes. The vector is then input to the CRF layer for
conditional constraints after feature conversion. The CRF layer can automatically learn
these restrictions while processing training data.
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The learning rate decay and stratified setting of the learning rate were also included in
this model in this study, along with adversarial training, to further improve it.

3.5. Optimise the Model
3.5.1. Learning Rate

The learning rate is an important hyperparameter when optimizing neural networks.
The value of the learning rate α is very critical, the larger the learning rate, the more quickly
the weights will be updated. In a gradient descent method, if it is too large, it will not
converge; if it is too small, it will converge too slowly.

The ENEX-FP model is optimized using a learning rate decay strategy. We use the
Adam Learning Rate Optimizer, an extension of SGD [27]. Adam incorporates the advan-
tages of Adagrad and the momentum gradient descent algorithm to accommodate both
sparse gradients to mitigate gradient oscillations [28].

The BERT parameters have already reached a good level due to pre-training and the
learning rate cannot be too large if it is to be kept from degrading. At the same time,
the underlying structure is trained from scratch and training with a small learning rate is
slow and difficult to synchronize with the BERT ontology training. This paper, therefore,
sets up a learning rate stratification, setting a lower learning rate for the pre-training layer
and a larger learning rate for the underjoin layer during training.

3.5.2. Antagonistic Training

Goodfellow first introduced adversarial training, which, in essence, entails perturbing
the initial input sample to create an adversarial sample, which is subsequently trained.
The purpose of adversarial training in NLP tasks is now more to regularize and enhance the
generalization of the model rather than to protect against gradient-based malicious attacks.
Madry’s 2018 paper [29] proposes that adversarial training can be written uniformly in the
following format.

min
θ

E(x,y)∼D

[
max
∆x∈Ω

L(x + ∆x, y; θ)

]
(5)

where D represents the distribution of the input samples, x represents the input, y rep-
resents the label, θ is the model parameter, ∆x is the perturbation and Ω is the perturba-
tion space.

This adversarial training process can be performed smoothly for tasks in computer
vision, adding a continuous perturbation to the input. However, NLP is different. The input
to NLP is text, which is essentially a one-hot vector and two different one-hot vectors,
for which there is theoretically no “small perturbation”; hence, ref. [24] proposes to add
the perturbation to the embedding layer. The model is further optimized using the FGM
adversarial training, which increases the model’s robustness.

4. Experiment
4.1. Datasets

The first dataset (DATA1) is the CCKS2021 Chinese Address Resolution Academic
Assessment Task, a dataset provided by the Alibaba Dharma Institute for the resolution of
Chinese address elements, which includes province, city, district, town, community, road,
etc. In this paper, we added some collected Chinese addresses to this dataset, annotated
them with BIOES sequences and added them to the dataset. This updated dataset is mainly
used for entity recognition of Chinese addresses. The detailed statistics of the DATA1
corpus are summarized in Table 1. There are 9468 address texts in the train set, including
47,580 address elements. The dev set has 2367 address texts, including 11,854 address
elements. The test set has 2708 address texts, including 13,590 address elements. What we
need to do is to train and identify these address elements.
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Table 1. Detailed statistics of the DATA1 corpus.

Corpus Train Set Test Set Dev Set

Address Element Resolution 9468 2708 2367

We used open source address resolution data from Neural Chinese Address Resolution
as the second dataset (DATA2), cleaned the data with rules and installed BIO parsing to
parse the text, a total of 14,926 data were obtained, the type of address element is 23,
including 84,662 address elements. According to 6:2:2 parsing, the data was arbitrarily split
into a train set, a dev set and a test set. Detailed statistics of the DATA2 corpus are shown
in Table 2.

Table 2. Detailed statistics of the DATA2 corpus.

Corpus Train Set Test Set Dev Set

Neural Chinese Address Parsing 8957 2985 2985

4.2. Experimental Setup

Our model is mainly trained with the Tensorflow [30] and Keras libraries for code
writing. The optimizer used is Tensorflow’s Adam optimizer. The initial learning rate
set in this paper is 0.00001 and the learning rate is decayed using Adam. BERT is the
beginning learning rate according to the learning rate hierarchy and its successor module’s
learning rate is 100 times the original learning rate. For adversarial training, FGN is used
for adversarial training in this paper. The detailed hyperparameter list is shown in Table 3.

Table 3. List of hyperparameters.

Parameters Values

optimizer Adam
batch_size 64

epoch 50
max_len 70

lstm_units 128
drop_rate 0.1

learning_rate 1× 10−5, 1× 10−3, 1× 10−3

activation relu

In the process of super parameter selection, we used batch_size of 32, 64, 128 for exper-
iments. The experimental results show that when batch_size is 32, the training efficiency is
low and the accuracy rate varies considerably. When batch_size is set to 128, the required
memory capacity increases. Finally, when using batch_size of 64, the model’s overall
effectiveness and its content capacity are well-balanced, which facilitates the completion
of the experiment. In the process of setting dropout, it is easy to produce the underfitting
phenomenon when the dropout is too large. When we use dropout of 0.1 for experiments,
we can effectively reduce the occurrence of overfitting. With dropouts of 0.1, 0.3 and 0.5, we
found that a dropout of 0.1 is a little better. In the address element dataset, the maximum
sample length of the training set is 69 and the average sample length is 17, and the maxi-
mum sample length of the verification set is 76 and the average sample length is 16. We
limit the maximum sample length to 70, which can effectively train and verify the address
text. The design of other hyperparameters is also selected by us after a large number of
repeated tests, which are favorable to the experimental results.

4.3. Assessment Indicators

The paper uses Precision, Recall and F1-score to evaluate our experimental results.
Precision is the percentage of system results correctly identified and Recall is the percentage
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of total entities correctly identified by the system. The following equations give Precision,
Recall and F1-score:

Precision =
#TP

#(TP + FP)
(6)

Recall =
#TP

#(TP + FN)
(7)

F1− score = 2× Precision× Recall
Precision + Recall

(8)

TP is a positive sample that the model projected to be in the positive class; FP is a
negative sample that the model predicted to be in the positive class; FN is a positive sample
that the model predicted to be in the negative class.

4.4. Experimental Results

Three experiments are conducted in this paper, namely the comparison model experi-
ment, the ablation experiment and the data enhancement experiment, to demonstrate the
accuracy of the model for address element recognition.

4.4.1. Comparative Model Experiment

In the comparative model experiment, we contrast our model with other widely used
NER models. Under the same equipment and conditions and using the same dataset,
we conducted at least eight repeated tests on every model, discarded its maximum and
minimum values and obtained the average of the remaining results as the result of the ex-
periment.

Figure 4 displays the outcomes of the comparative trials in DATA1.

COMPARISON MODEL RESULTS IN DATAl 

Fl-score (%) 

Recall (%) 

Precision C %) 

82.34% 

75.00% 80.00% 85.00% 

Prec
．

1s
． 

1on (%) Recall (%) 

•ENEX-FP 93.67% 93.29% 

• BERT-BIGRU-CRF 93.20% 92.34% 

• BERT-BILSTM-CRF 92.06% 91.58% 

• CNN-BILSTM-CRF 86.59% 88.94% 

•BERT-CRF 89.67% 88.97% 

• BILSTM-CRF t 82.34% 84.67% 

• ENEX-FP • BERT-BIGRU-CRF

• CNN-BILSTM-CRF • BERT-CRF

90.00% 95.00% 

Fl-score C %) 

93.47% 

92.77% 

91.81% 

87.74% 

89.32% 

83.49% 

• BERT-BILSTM-CRF

• BILSTM-CRF

Figure 4. Comparison model results in DATA1.
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As seen from Figure 4, the model improved the Precision, Recall and F1-score in the
recognition of address elements compared to other common NER models. The ENEX-
FP model can improve the F1-score by 0.7% compared to the recent used BERT-BIGRU-
CRF model and by 1.66% compared to the commonly used BERT-BILSTM-CRF model.
Additionally, the model with the BERT outperforms the model without the BERT in terms
of F1-score. This is due to the fact that the BERT model, in contrast to the other models,
uses a word2vec splitter to create static word vectors before introducing the BERT model to
pre-process the word vectors. As a result, the trial outcomes were all better than those of
the model without word vector processing and met more criteria for satisfactory outcomes.

With simple cross-verification, according to 6:2:2 parsing, DATA2 was randomly split
into a train set, a dev set and a test set. After that, the samples are mixed up and a new
selection of the train set, dev set and test set is made using the 6:2:2 ratio to continue
testing the model and training the data. After each sample shuffling, the number of address
elements included in the train set, dev set and test set would change and the experimental
result would also change relatively, but the difference was about 0.5%. We scrambled
the text five times in total and conducted several experiments in each dataset. The final
experimental result was determined as the average value of each model outcome. Figure 5
displays the outcomes of the comparative experiments in DATA2.

As seen from Figure 5, compared to other widely used NER models, the ENEX-FP’s
F1-score improved. Particularly, the F1-score can be improved by the ENEX-FP model by
1.34% compared to the recently BERT-BIGRU-CRF model and by 1.16% percent compared
to the widely used BERT-BILSTM-CRF model.

Figure 5. Comparison model results in DATA2.
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Because BIGRU uses fewer parameters than BILSTM and converges more quickly,
it has recently been widely used in NER problems. We compare the two models in two
different datasets and discover that they are similar. In DATA1, the BERT-BIGRU-CRF
F1-score is 0.96% higher than the BERT-BILSTM-CRF. In DATA2, the BERT-BILSTM-CRF
F1-score is 0.18% higher than the BERT-BIGRU-CRF. After BERT word embedding, we
eventually selected BILSTM as the model because BIGRU is an LSTM simplification. Three
gates in the LSTM unit allow it to more effectively regulate gradient information propa-
gation more than the BIGRU, reducing gradient disappearance and producing superior
text characteristics. Based on the aforementioned models, our model makes full use of
BERT’s ability to extract features, not only using BERT output as word embedding but
also aggregating BERT output feature vectors with BILSTM output. In order to increase
feature accuracy and reduce overfitting, we also include a layer of dropout before the
feature space changes, which eliminates some input data dimensions. To increase accuracy,
we also use adversarial training and learning rate optimization. The experiment shows
that ENEX-FP produces better experimental outcomes than other widely used address
recognition models.

4.4.2. Ablation Experiments

In ablation experiments, the first group mainly trained the BERT-BILSTM-FP model
and the ENEX-FP model to evaluate the effectiveness of the ENEX entity extractor and the
FP module of the feature processor. We evaluated the models after each training. Table 4
displays the results of the ablation tests.

Table 4. Comparative results of the first ablation experiments.

Model Precision Recall F1-Score

BERT-BILSTM-FP 92.25% 91.68% 91.96%
ENEX-CRF 92.38% 91.77% 92.04%
OUR MODELS 92.46% 92.06% 92.24%

The above experiments show that the ENEX is a little more effective than the baseline
model BERT-BILSTM, where the F1-score can be improved by 0.28% in the comparison
between ENEX-FP and BERT-BILSTM-FP. We also replace the FP with an existing CRF
module and the F1-score can be improved by 0.2% in the comparison between ENEX-FP
and ENEX-CRF. Therefore, the ENEN and FP model proposed in this paper work a little
better in the recognition of addresses.

The second group focuses on training our proposed ENEX-FP model, as well as
a model with adversarial training only, a model with learning rate decay and learning
rate stratification, and a model with learning rate decay, learning rate stratification and
adversarial training on top of this baseline model. Table 5 displays the results of the
ablation tests.

Table 5. Comparative results of the second ablation experiments.

Model Precision Recall F1-Score

ENEX-FP 92.46% 92.06% 92.24%
+ Counter training 92.88% 92.77% 92.82%
+ Learning rate optimization 93.02% 92.98% 93.00%
+ Learning rate optimization and adversarial training 93.67% 93.29% 93.48%

The results of the above experiments show that adding learning rate stratification to
the model and learning rate decay adversarial training both improve the F1-score of the
model. In the F1-score, the model with adversarial training only outperformed the ENEX-
FP model by 0.58%, the model with learning rate optimization only outperformed the
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model by 0.76% and the model both with learning rate optimization and using adversarial
training outperformed the ENEX-FP model by 1.23%. Therefore, optimizing the model with
learning rate and adversarial training gives the optimal F1-score, which is 1.23% higher
than the baseline ENEX-FP model.

This paper also shows that the model after learning rate decay and learning rate
stratification has better results than the baseline model. The learning rate parameter metric,
which is a crucial parameter, decides whether or not the objective function will reach a local
minimum. The target function can quickly arrive at a local minimum with the right learning
rate. Finally, this study increases the learning rate by include adversarial training, which
may enable the model to be further improved and, ultimately, become better optimized.

4.4.3. Data Enhancement Comparison Experiments

The experimental results of using the ENEX-FP model optimized by learning rate
decay and hierarchical settings and adversarial training on the address element parsing
dataset are shown in Table 6. From Table 6, we can recognize that the optimized model
has different results in Precision, Recall and F1-score for different address labels, such
as distance, prov, etc., which can reach almost 100%, but in poi, subpoi, community, etc.,
the recognition effect does not reach the expected value. The address element dataset is
divided into sentences and then the individual sentences are randomly spliced and finally
used as the training corpus together with the original sentences. In addition, this paper uses
the collected address elements, after manual BIOES annotation, to add them to the DATA1
to obtain an expansion of the dataset. It also uses random replacement to replace the labeled
entities in the corpus with them to obtain an augmented corpus. The experimental results
of this paper are shown using the same model in Table 7.

Table 6. Experimental results of the address element parsing dataset.

Precision (%) Recall (%) F1-Score (%)

poi 80.47% 84.29% 82.34%
town 96.71% 94.78% 95.73%
road 93.84% 95.22% 94.52%
floorno 94.31% 95.56% 94.93%
district 96.21% 93.84% 95.01%
prov 99.81% 99.90% 99.86%
subpoi 88.04% 83.41% 85.66%
roadno 98.88% 98.27% 98.58%
community 78.02% 82.77% 80.33%
houseno 98.68% 95.63% 97.13%
city 98.84% 97.71% 98.28%
devzone 97.59% 94.93% 96.24%
cellno 99.18% 98.37% 98.78%
assist 84.77% 88.26% 87.75%
intersection 86.74% 86.84% 86.78%
village_group 96.79% 97.87% 97.32%
distance 100.00% 100.00% 100.00%
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Table 7. Experimental results for the data enhancement dataset.

Precision (%) Recall (%) F1-Score (%)

poi 87.00% 84.03% 85.49%
town 93.31% 94.56% 93.93%
subpoi 87.67% 87.97% 87.81%
devzone 94.05% 99.75% 96.81%
roadno 97.85% 98.20% 98.03%
road 95.95% 96.95% 96.44%
houseno 98.24% 96.82% 97.52%
prov 99.68% 99.76% 99.72%
district 96.79% 96.38% 96.58%
community 82.82% 82.06% 82.43%
floorno 96.19% 95.73% 95.96%
city 98.35% 98.23% 98.29%
assist 85.45% 95.81% 90.33%
village_group 99.13% 97.62% 98.36%
cellno 92.17% 97.73% 94.86%
intersection 90.32% 87.50% 88.89%
distance 100.00% 100.00% 100.00%

From the results of the above experiments, this paper shows that there is a significant
improvement in the effectiveness of the experiments after supplementation and random
replacement of the corpus, especially for some low-precision tags. However, this data aug-
mentation method is the most basic manual processing of the corpus, which is demanding
in terms of time and effort. Therefore, it can be combined with the data augmentation in
NER [31]. This is one of the focuses of future research in this paper.

5. Conclusions

The ENEX-FP model has the following improvements over other NER models. First
of all, we proposed an ENEX entity extractor, which makes full use of the feature vectors
extracted by BERT; BERT’s output is not only embedded into the BILSTM model as a word
vector but also the feature vector of BERT output is aggregated with the results of BILSTM.
After the two vectors were combined, it was possible to address the impact of the left and
right context’s long-distance dependence, the lack of rich features, the text understanding
and other issues and better entity feature extraction to fully obtain text features. Secondly,
we propose the FP feature processor, which adds the dropout layer before the CRF layer
and the full-connection layer, so it can round off the features of the input vector, remove
some dimensions of the input data to improve feature accuracy and alleviate overfitting. FP
can also perform feature space transformation on the vector to make conditional constraints
on the text vector, solve some problems of BILSTM model output error and obtain the
optimal address entity type. Finally, learning rate attenuation and layering are added to the
model. The Adam learning rate optimizer is used to distinguish the learning rates of BERT
and other layers, to improve the accuracy of the model. To increase the model’s robustness
and accuracy, the FGM adversarial training is added based on the learning rate.

Compared with other NER models, the ENEX-FP model has a noticeable improvement
in address element recognition; especially after numerous trainings, the effect is more
pronounced. This expected result shows the importance of the learning rate parameter and
adversarial training. However, there are still some problems in this model. For example,
there is no comparison experiment between the learning rate optimizer and adversarial
training algorithm and the accuracy of some entity label recognition could be better. In short,
the ENEX-FP model can identify addresses with high accuracy and the learning rate
adjustment and adversarial training can also effectively improve the F1-score of the model.
In addition, we believe that the characteristics obtained by the BERT model can be applied
more widely. BERT has 12 layers of encoders, each of which takes the characteristics of the
text, so these 12 layers of encoders may be processed further. This idea can probably be
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added to any model that uses BERT. We will test this idea in future experiments. Finally, it
is hoped that the problems mentioned above can be further solved in NER, obtain a better
model, better deal with the identification of address elements and other application fields
and achieve more excellent values.

Author Contributions: Propose research topics, M.L.; final review paper, M.L.; drafting the paper,
Z.L.; funding acquisition, G.L. and M.Z.; Instructional support D.H. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by Plan of Youth Innovation Team Development of Colleges and
Universities in Shandong Province (SD2019-161).

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Acknowledgments: The authors appreciate all of the anonymous reviewers’ insightful criticism and
helpful recommendations.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nadeau, D.; Sekine, S. A survey of named entity recognition and classification. Int. J. Linguist. Lang. Resour. 2007, 30, 3–26.

[CrossRef]
2. Tang, X.; Huang, Y.; Xia, M.; Long, C. A Multi-Task BERT-BiLSTM-AM-CRF Strategy for Chinese Named Entity Recognition.

Neural Process. Lett. 2022, 1–21. [CrossRef]
3. Zhou, S.; Tan, B. Electrocardiogram soft computing using hybrid deep learning CNN-ELM. Appl. Soft Comput. 2020, 86, 105778.

[CrossRef]
4. Li, J.; Sun, A.; Han, J.; Li, C. A Survey on Deep Learning for Named Entity Recognition. arXiv 2018, arXiv:1812.09449.
5. Zou, H.; Liu, H.; Zhou, T.; Jiashun, L.; Zhan, Y. Short-Term Traffic Flow Prediction using DTW-BiGRU Model. In Proceedings of

the 2020 35th Youth Academic Annual Conference of Chinese Association of Automation (YAC), Zhanjiang, China, 16–18 October
2020. [CrossRef]

6. Wang, Z.; Yang, B. Attention-based Bidirectional Long Short-Term Memory Networks for Relation Classification Using Knowledge
Distillation from BERT. In Proceedings of the 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on
Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology
Congress (DASC/PiCom/CBDCom/CyberSciTech), Calgary, AB, Canada, 17–22 August 2020. [CrossRef]

7. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef] [PubMed]

8. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [CrossRef]

9. Lafferty, J.D.; McCallum, A.; Pereira, F.C.N. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling
Sequence Data. In Proceedings of the Eighteenth International Conference on Machine Learning; Morgan Kaufmann Publishers Inc.:
San Francisco, CA, USA, 2001; pp. 282–289.

10. Huang, Z.; Xu, W.; Yu, K. Bidirectional LSTM-CRF Models for Sequence Tagging. arXiv 2015, arXiv:1508.01991.
11. Wang, X.; Zhu, Y.; Zeng, H.; Cheng, Q.; Zhao, X.; Xu, H.; Zhou, T. Spatialized Analysis of Air Pollution Complaints in Beijing

Using the BERT+CRF Model. Atmosphere 2022, 13, 1023. [CrossRef]
12. Lin, J.; Liu, E. Research on Named Entity Recognition Method of Metro On-Board Equipment Based on Multiheaded Self-Attention

Mechanism and CNN-BiLSTM-CRF. Comput. Intell. Neurosci. 2022, 2022, 1–13. [CrossRef]
13. Wang, Y.; Wang, M.; Ding, C.; Yang, X.; Chen, J. Chinese Address Recognition Method Based on Multi-Feature Fusion. IEEE

Access 2022, 10, 108905–108913. [CrossRef]
14. Dong, X.; Chowdhury, S.; Qian, L.; Guan, Y.; Yang, J.; Yu, Q. Transfer bi-directional LSTM RNN for named entity recognition

in Chinese electronic medical records. In Proceedings of the 2017 IEEE 19th International Conference on e-Health Networking,
Applications and Services (Healthcom), Dalian, China, 12–15 October 2017. [CrossRef]

15. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All You Need. In
Proceedings of the 31st International Conference on Neural Information Processing Systems; Curran Associates Inc.: Long Beach, CA,
USA, 2017; pp. 6000–6010.

16. Nesi, P.; Pantaleo, G.; Tenti, M. Geographical localization of web domains and organization addresses recognition by employing
natural language processing, Pattern Matching and clustering. Eng. Appl. Artif. Intel. 2016, 51, 202–211. [CrossRef]

17. Grumiau, C.; Mostoufi, M.; Pavlioglou, S.; Verdonck, T. Address Identification Using Telematics: An Algorithm to Identify Dwell
Locations. Risks 2020, 8, 92. [CrossRef]

http://doi.org/10.1075/li.30.1.03nad
http://dx.doi.org/10.1007/s11063-022-10933-3
http://dx.doi.org/10.1016/j.asoc.2019.105778
http://dx.doi.org/10.1109/yac51587.2020.9337579
http://dx.doi.org/10.1109/dasc-picom-cbdcom-cyberscitech49142.2020.00100
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.3390/atmos13071023
http://dx.doi.org/10.1155/2022/6374988
http://dx.doi.org/10.1109/ACCESS.2022.3213976
http://dx.doi.org/10.1109/healthcom.2017.8210840
http://dx.doi.org/10.1016/j.engappai.2016.01.011
http://dx.doi.org/10.3390/risks8030092


Electronics 2023, 12, 209 15 of 15

18. Xu, L.; Li, S.; Wang, Y.; Xu, L. Named Entity Recognition of BERTBiLSTMCRF Combined with Self-attention. In Web Information
Systems and Applications. WISA 2021; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2021; Volume 12999.
[CrossRef]

19. Lv, X.; Xie, Z.; Xu, D.; Jin, X.; Ma, K.; Tao, L. Chinese Named Entity Recognition in the Geoscience Domain Based on BERT. Earth
Space Sci. 2022, 9, E2021EA002166. [CrossRef]

20. Alyafi, B.; Tushar, F.I.; Toshpulatov, Z. Cyclical Learning Rates for Training Neural Networks with Unbalanced Datasets. In Jmd in
Medical Image Analysis and Applicationspattern Recognition Module; University of Cassino and Southern Latium: Cassino, Italy,
January 2018. [CrossRef]

21. Izmailov, P.; Podoprikhin, D.; Garipov, T.; Vetrov, D.; Wilson, A.G. Averaging Weights Leads to Wider Optima and Better
Generalization. arXiv 2018, arXiv:1803.05407.

22. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks.
arXiv 2013, arXiv:1312.6199.

23. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. arXiv 2014, arXiv:1412.6572.
24. Miyato, T.; Dai, A.M.; Goodfellow, I. Adversarial Training Methods for Semi-Supervised Text Classification. arXiv 2016,

arXiv:1605.07725.
25. Graves, A.; rahman Mohamed, A.; Hinton, G. Speech recognition with deep recurrent neural networks. In Proceedings of the 2013

IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013. [CrossRef]
26. Sak, H.; Senior, A.; Beaufays, F. Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary

Speech Recognition. arXiv 2014, arXiv:1402.1128.
27. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
28. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
29. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards Deep Learning Models Resistant to Adversarial Attacks.

arXiv 2017, arXiv:1706.06083.
30. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow:

A system for Large-Scale machine learning. In Proceedings of the 12th USENIX conference on Operating Systems Design and
Implementation, Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

31. Ding, B.; Liu, L.; Bing, L.; Kruengkrai, C.; Nguyen, T.H.; Joty, S.; Si, L.; Miao, C. DAGA: Data Augmentation with a Generation
Approach for Low-Resource Tagging Tasks. arXiv 2020, arXiv:2011.01549.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-030-87571-8_48
http://dx.doi.org/10.1029/2021EA002166
http://dx.doi.org/10.13140/RG.2.2.28455.80806
http://dx.doi.org/10.1109/icassp.2013.6638947

	Introduction
	Related Work
	NER
	Model Optimization

	Our Method
	Overview
	Data Processing
	ENEX Entity Extractor
	Feature Processor
	Optimise the Model
	Learning Rate
	Antagonistic Training


	Experiment
	Datasets
	Experimental Setup
	Assessment Indicators
	Experimental Results
	Comparative Model Experiment
	Ablation Experiments
	Data Enhancement Comparison Experiments


	Conclusions
	References

