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Abstract: Deep generative models, such as deep Boltzmann machines, focused on models that
provided parametric specification of probability distribution functions. Such models are trained by
maximizing intractable likelihood functions, and therefore require numerous approximations to the
likelihood gradient. This underlying difficulty led to the development of generative machines such
as generative stochastic networks, which do not represent the likelihood functions explicitly, like the
earlier models, but are trained with exact backpropagation rather than the numerous approximations.
These models use piecewise linear units that are having well behaved gradients. Generative machines
were further extended with the introduction of an associative adversarial network leading to the
generative adversarial nets (GANs) model by Goodfellow in 2014. The estimations in GANs process
two multilayer perceptrons, called the generative model and the discriminative model. These are
learned jointly by alternating the training of the two models, using game theory principles. However,
GAN has many difficulties, including: the difficulty of training the models; criticality in the selection
of hyper-parameters; difficulty in the control of generated samples; balancing the convergence of
the discriminator and generator; and the problem of modal collapse. Since its inception, efforts
have been made to tackle these issues one at a time or in multiples at several stages by many
researchers. However, most of these have been handled efficiently in the boundary equilibrium
generative adversarial networks (BEGAN) model introduced by Berthelot et al. in 2017. In this work
we presented the advent of adversarial networks, starting with the history behind the models and c
developments done on GANs until the BEGAN model was introduced. Since some time has elapsed
since the proposal of BEGAN, we provided an up-to-date study, as well as future directions for
various aspects of adversarial learning.

Keywords: adversarial training; generative adversarial networks; neural networks; deep learning;
image processing; computer vision

1. Introduction

In an effort to mimic the functionality of a human brain more closely than previously
achieved by neural networks, researchers have attempted to train deeper networks. Their
architectures have proved capable of representing some complex functions which could
not be represented as efficiently otherwise [1]. A function can be expressed by using a com-
position of computational elements from a given set. It has been observed that a function
which has compact representations using architecture of depth k may require an expo-
nential number of computational elements if an architecture of depth k-1 is used, thereby
establishing a benefit of depth [2]. These layers are not designed by human engineers but
are learned from data using a general-purpose learning procedure. Classification-based
machine learning algorithms are often classified into two categories based on the estimation
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criterion they use for adjusting their parameters and/or structure, namely discriminative
and generative models.

Discriminative models focus only on the conditional relation of the label given in
the training data; the classification objective is used to optimize their parameterized de-
cision boundaries leading to a large margin of separation for the classes; however, they
traditionally require that all classes be considered simultaneously. Discriminative models
generally produce robust and highly accurate classes and are used for specified tasks such
as classification or prediction, with support vector machines and boosting algorithms.

Generative models, on the other hand, work with a joint probability distribution over
the examples and the labels i.e., they can be trained with missing data and can predict the
output on inputs corresponding to the missing data. These models enable machine learning
to work with multi-modal outputs [3]. Time-series data may be used in generative models
to simulate possible futures. Some tasks, such as single image super resolution, the creation
of art, and image-to-image translation, require realistic generation of samples from some
distributions: this can be achieved with generative models. Thus, generative models have
the ability to create new input datasets based on outputs that do not belong in the original
training dataset, marking the next stage of machine intelligence after classification and
regression: synthetization and generation. This ability opens up new avenues for machine
learning and allows for more noteworthy contributions to a wider range of applications
and implementations. For example, generative models can be used for generating images
of faces and places that do not exist [4].

Generative models have been a popular research subject for the past half-decade, with
numerous new architectures being introduced at breakneck speed. This rapid development
has created a branch of machine learning that can be called a field of its own. One of
the major breakthroughs in the efficiency and efficacy of successful generative models is
the development of the adversarial model of generative Networks. As GANs only need
an arbitrary latent vector to generate realistic samples, they are powerful and have been
applied widely in a variety of fields. GANs are well known for their applications involving
digital images, such as generation, in-painting, person re-identification, super-resolution,
and object detection. They have also been used in video generation, image-to-image
translation, text-to-image translation, and the generation of deep-fakes. They have also
been used to generate human speech and music [5]. With major developments in research,
GANs are becoming more sophisticated and powerful, and are spreading to use in various
fields including academia, entertainment, and healthcare.

Two terms which play a significant role when a robust machine learning model is built
are generalization and regularization. The ability to process the new data of a system is
called generalization. This process helps the system in generating accurate predictions. The
generalizing capability of a system is reflected in its success. Generalization is likely to be
prevented in the case when the system is over-trained. It may produce inaccurate results
when new data is fed to the system. In such cases, when new data is supplied, it will make
inaccurate predictions. This situation is termed as overfitting. Overfitting occurs when
a network performs well on the training set but performs poorly in general. In a sense,
generalization deals with the model’s behavior. On the other hand, it is responsible for
enhancing the model performance. Similarly, it is said that under-fitting occurs when a
model is trained with insufficient data. It has its effects on the system to such an extent that,
even given the training data, the model may not produce correct results. As a result, the
system becomes ineffective like the case of overfitting. This also leads to poor generalization.
Regularization prevents overfitting by discouraging the learning of a more complicated or
flexible model. In a straightforward way, regularization has no effect on the algorithm’s
performance on the datasets used to learn the feature weights of the model. However, it
enhances the performance of generalization. It means that the algorithm performs better on
newly taken and previously unknown data. In a nutshell, it can be said that regularization
helps the machine learning models to improve generalization.
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The development of various gradient descent methods, and the improvement of
network structures and their connectivity style have smoothened the optimization of deep
learning. So, the effectiveness of a network depends upon its generalization ability. This
has been an efficient way to improve the generalization ability of deep CNN, because it
makes it possible to train more complex models while maintaining a lower overfitting.
In [6] an approach is presented to optimize the feature boundary of deep CNN through
a two-stage training method (pre-training process and implicit regularization training
process) to reduce the overfitting problem. This approach has been verified to be effective
and provides better results, and also, through a variety of strategies to explore and analyze
the implicit role of regularization in the two-stage training process. The Voxel Embed: 3D
instance segmentation and tracking with Voxel embedding-based deep learning [7–11]. An
application of this process applied to face recognition was obtained in [12] and for action
recognition in [13].

Generative adversarial networks (GANs), which are the main focus of this paper, are a
class of generative models that work by training a generative model in competition with
a discriminative model [14]. To understand the necessity that fueled the development of
adversarial networks, it is first necessary to conduct a preliminary study of the taxonomy
of non-adversarial generative networks with a focus on the maximum likelihood estima-
tors discussed in Section 2. In Section 2, we also introduce adversarial networks. From
Sections 3–12, we discuss specific relevant image- or video-based generative adversarial
models [15] including: generative adversarial networks [16,17], conditional adversarial
networks, deep multi-scaled video prediction beyond MSE, adversarial autoencoders,
deep convolutional GANs, energy-based GANs, least square GANs, adaptive GANs (Ada-
GANs) [18], Wasserstein GANs, and BEGANs [19]. In Sections 13–16, we discuss specific
developments on, or use-cases of, image-based GANs in the order of creative adversarial
networks (CANs), improved learning techniques, visual manipulations, and image-to-
image translation. In Section 17, we discuss how GANs can be used outside image-related
domains via speech enhancement GANs. Section 18 discusses recent developments in re-
search with regard to GANs, and Section 19 discusses possible future avenues for research.
Finally, the paper is concluded in Section 20.

2. Non-Adversarial Generative Networks

Generative models usually work by estimating a function that allows it to generate
input data matching an output that was not present in the training data. Two major estima-
tors used in generative models are density estimation models and maximum likelihood
estimators (MLEs). Density estimation models take a training set of examples drawn from
an unknown data-generation distribution PD and return an estimate probability distribu-
tion PM of that distribution, such that PM can be evaluated at every value x to obtain an
estimation PM(x) of the true density of x [20]. In some cases, PM is explicitly estimated,
while in other cases only samples of PM are generated by the model. Some models are able
to do both.

In this paper, we restricted ourselves to deep generative models that work by max-
imizing likelihood, as GANs fall in this category. In statistics, maximum likelihood esti-
mation [21] is a method for estimating the parameters of a statistical model given some
observations, by finding parameter values that maximize the likelihood of the making
of observations if the parameters were given. The basic idea behind MLE is to define a
model that provides an estimate of a probability distribution, using a parameter θ. Then,
the likelihood is the probability that the model assigns to the training data πm

i=1PM(x(i), θ)

for a dataset containing m training examples x(i).
Speaking literally, the principle of maximum likelihood requires selecting those pa-

rameters for the model that maximize the likelihood of the training data occurring. In
Equation (1), the logarithm function is used as it increases everywhere and does not change
the location of the maximum. MLE can be explained in the following computations.
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If θ∗ is the optimum value of the likelihood function then,

θ∗ = argmax
θ

πm
i=1PM(x(i), θ)

= argmax
θ

log πm
i=1PM(x(i), θ)

= argmax
θ

∑m
i=1 logPM(x(i), θ)

(1)

MLE can be seen as a special case of the maximum posteriori estimation (MAP) that
assumes a uniform prior distribution of the parameter θ. MAP is an estimate of an unknown
quantity that equals to the mode of the posterior distribution. MLE can also be seen as a
variant of the MAP that ignores the prior and therefore is not regularized.

If we consider MLE-based generative models to be a class on their own, then the
taxonomy of this classification can be given by Figure 1. This consists of two major
categories, namely explicit and implicit density-based models, where GANs are classified
in the latter category.
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2.1. Explicit Density Models

These models provide explicit density functions which are intractable and require
the approximation to optimize the likelihood. There are two categories under this group;
the models under the first category use deterministic approximations, mostly leading
to variational methods and the other category use stochastic approximations, which are
mostly Markov chain Monte Carlo methods.

For these models, an explicit density function PM(x, θ) is defined, that is, there is a
prior distribution assumed on the data [22]. The model’s definition of density function is
put into the expression for the likelihood, and this is maximized using the gradient uphill
method. One drawback of explicit density models is in designing a model that captures all
the complexity of data to be generated and is still computationally tractable. To handle this
problem, models are constructed such that their structures guarantee tractability and others
are constructed to admit tractable approximations to the likelihood and its gradients. The
tractability of an explicit density function is the ability to define a parametric function that
is able to capture the distribution effectively. Explicit density models can be divided based
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on whether they are tractable or not, into structures of tractable density and structures of
approximate density, respectively.

2.1.1. Structures of Tractable Density

Structures of tractable density, as their name suggests, have a density that can be
solved or is assumed to be solvable. That is, for such models, the density is assumed to
be definite and known. Five major models fall under this category: fully visible belief
networks (FVBNs); change of variables models such as nonlinear independent components
analysis (nonlinear ICA); neural autoregressive distributed estimator (NADE); masked
autoregressive for distribution automation (MADE); and PixelRNN.

Fully visible belief networks (FVBNs): FVBNs fall among the three most popular
approaches to generative modeling, along with generative adversarial networks (GANs)
and variational autoencoders. This model uses the chain rule of probability to decompose
a probability distribution of an n-dimensional vector into a product of one-dimensional
probability distributions:

Let x = (x1, x2, . . . , xn), then the formula is given by Equation (2).

PM(x) = πn
i=1PM(xi|x1, x2, . . . xi−1) (2)

FVBNs are both computationally expensive, as the distribution over each x is computed
by a deep neural network, and resistant to parallelization. Due to this, generation via FVBNs
is time consuming and unsuitable for real-time applications. GANs, on the other hand, are
capable of generating all of x in parallel, greatly reducing computation time.

Nonlinear independent components analysis (Nonlinear ICA): Nonlinear ICAs are
another popular tractable density method and are often mentioned in comparison to FVBNs
and GANs. They are based on the definition of a continuous, non-linear transformation of
data between two different spaces or dimensionalities. As the name suggests, it attempts to
represent the observed data as statistically independent component variables.

In Equation (3), a vector of latent variables z and a continuous, differentiable, invertible
transformation g is considered such that g(z) yields a sample from the model in x space.

px(x) = pz(g−1(x))
∣∣∣det((∂g−1(x))/∂x)

∣∣∣ (3)

One member of this family is the real-valued non-volume preserving (real NVP) trans-
formations, a set of powerful, stably invertible, and learnable transformations, resulting
in an unsupervised learning algorithm with exact log-likelihood computation, exact and
efficient sampling, exact and efficient inference of latent variables, and an interpretable
latent space.

The transformation g can be designed such that the density is tractable; however, the
model requires that the transformation be continuous, differentiable, and invertible. The
invertibility constraint requires that x and z must have the same dimensions. This means
that to generate 5000 pixels, you need to have 5000 latent variables within the model to
allow it to work efficiently [23]. On the contrary, GANs put no such restriction on g and do
not impose any restrictions on z and x as stated above.

Neural Autoregressive Distributed Estimator (NADE): Neural autoregressive dis-
tributed estimator (NADE) models are neural network architectures that can be applied
to the problem of unsupervised distribution and density estimation. They leverage the
probability product rule and a weight sharing scheme inspired from restricted Boltzmann
machines, to yield an estimator that is both tractable and has good generalization perfor-
mance [24].

Masked Autoregressive Distributed Estimator (MADE): Masked autoregressive mod-
els use a binary mask matrix for an element wise multiplication for each matrix to zero
connections so as to fulfill the autoregressive property. Here, computing the negative
log-likelihood is equivalent to sequentially predicting each dimension of input x [25].
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PixelRNN: PixelRNN is a deep neural network that sequentially predicts the pixels
in an image along with the two spatial dimensions. This method models the discrete
probability of the raw pixel values and encodes the complete set of dependencies in
the image. Architectural novelties include fast two-dimensional recurrent layers and an
effective use of residual connections in deep recurrent networks [25].

2.1.2. Variational Approximations

Variational methods define a lower bound as in Equation (4).

L(x; θ) ≤ log PM(x; θ) (4)

Any learning algorithm that maximizes L must obtain as high a value as log likelihood.
Variational autoencoder is one among the top three popular models, along with FVBN
and GAN. In practice, variational methods often obtain very good likelihood, but the
generated samples are regarded as lower quality samples. However, measuring sample
quality is a subjective opinion as there is no quantitative measure for it. Although GANs are
supposed to generate better sample quality, it is difficult to specify any single aspect which
is responsible for a better or worse sample quality. The main drawback of the variational
methods is that when too weak of an approximate posterior distribution or too weak of a
prior distribution is used, even with a perfect optimization algorithm and infinite training
data, the gap between L and the true likelihood can result in PM learning something other
than the true PD.

Variational Auto Encoder (VAE): VAEs are appealing because they are built upon
standard function approximators (neural networks) and can be trained with stochastic gra-
dient descent. VAEs have already shown promise in generating many kinds of complicated
data, including handwritten digits, faces, house numbers, CIFAR images, physical models
of scenes, segmentation, and predicting the future from static images [26].

2.1.3. Markov Chain Approximations

Usually, sampling-based approximations work reasonably well as long as a fair sample
can be generated quickly and the variance across samples is not too high. In some cases,
Markov chain techniques are used to generate more expensive samples.

A Markov chain is a process for generating samples by repeatedly drawing a sample
x′ ∼ q(x′/x). Here q is a transition operator. Markov chain methods can sometimes
guarantee that x will eventually converge to a sample from PM(x). However, this process
cannot always be predicted to converge and even if it converges the process is very slow.
In high dimensional spaces, Markov chains become less efficient. Boltzmann machines
are an example of such models, and their present-day use is limited due to this drawback.
While Markov chain approximations may be efficient in the training process itself, the
process of generating samples from the trained model is computationally considerably
more expensive than single-step generation methods.

Restricted Boltzmann Machines: A restricted Boltzmann machine (RBM) [27] is a
generative stochastic artificial neural network that can learn a probability distribution over
its set of inputs. As the taxonomy indicates, RBMs are a variant of Boltzmann machines,
with the restriction that the neurons must form a bipartite graph: a pair of nodes from
each of the two groups of units (commonly referred to as the “visible” and “hidden” units
respectively) may have a symmetric connection between them; and there are no connections
between nodes within a group.

2.2. Implicit Density Models

In implicit density models, the training is carried out without specifying the density
functions explicitly. The training is provided to the model while interacting indirectly with
PM and mostly just sampling from it.

Some models under this category draw samples from PM and define a Markov chain
transition operator which is run several times in order to get a sample from the model. An
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example of this type of network is the generative stochastic model. However, as any model
using Markov chains, they face difficulty in scaling high dimensional spaces and have
significantly high computational costs. GANs are an exception to this, despite utilizing
Markov chains, they avoid these issues by generating the samples in a single step.

Some implicit density models function on kernelized moment matching, such as the
generative moment matching networks. Here, deep neural network kernels are used to
learn a deterministic mapping from a simple and easy to sample distribution, to samples
from the given data distribution by minimizing the maximum mean discrepancy. The
training can be scaled to large datasets using minibatch stochastic gradient descent.

2.2.1. Goal-Seeking Neural Networks (GSN)

The GSN model has been generated in response to a number of observed weaknesses
in the probabilistic logic node (PLN) proposed by Kan [28]. Filho et al. [29] identify these
problems and show how the goal-seeking nature of the GSN overcomes them. The GSN is
designed to make efficient use of its memory space by reducing its internal representation
and allowing new patterns to be learned without overwriting existing memories. This
is achieved without losing the potential for direct hardware implementation, or its local
processing characteristics.

Although the models that define explicit and tractable density are highly effective as
an optimization algorithm can be applied on the log-likelihood of the training data, they
are rare and the families involved have many other disadvantages.

2.2.2. Adversarial Networks

While generative models were an active area of research long before adversarial nets
were proposed the initial architecture of generative adversarial networks, proposed by Ian
Goodfellow et al. [14], marked a breakthrough in generative models. GANs surpassed other
generative networks in terms of quality of results produced, the data generated by GANs
was regularly indistinguishable from real data. Developments in adversarial networks
often rely on the basic idea behind GANs, hence GANs will be central to the explanation of
adversarial networks in this section, and their results will be discussed in the next section
as well.

As the name suggests, the adversarial network presents an “adversary” or opponent
to a generative learner or “generator”, called the discriminator. The generator and dis-
criminator work on the generative and discriminative statistical principles as discussed
in Section 1. The generator, similar to a regular generative model, attempts to create data
samples that could have come from the same distribution as that of the given training data.
Its adversary, the discriminator, is usually a binary supervised learner that attempts to
identify created samples by classifying inputs as either original or generated. Thus, the two
models are posed as opponents, and learn based on the efficiency of their opponent. In the
traditional GAN, these models were posed against each other in a minimax game, where
the discriminator attempts to minimize cross-entropy (or rate of false-negatives), while the
generator tries to maximize the same.

This paper discusses various milestones in the development of adversarial networks.
Table 1 draws a comparison between these models in terms of the technologies used and
major areas of impact, along with other factors.

Table 1. A tabular comparison of the generative adversarial networks discussed in this paper.

Model Year Author Generative Model Discriminative Model

Generative Adversarial
Networks (GANs) 2014 Goodfellow [14] Multilayer Perceptron Multilayer Perceptron

Conditional Adversarial
Networks (CGANs) 2014 Mirza & Osindero [30] Multilayer perceptron

with Conditional y
Multilayer Perceptron with

Conditional y
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Table 1. Cont.

Model Year Author Generative Model Discriminative Model

Deep Multi-Scaled Video
Prediction beyond Mean

Square Error
2015 Mathieu et al. [31] Padded Convolutions interlaced

with ReLU non-linearities

Standard non-padded
convolutions followed by fully

connected layers and ReLU
non-linearities

Adversarial
Autoencoders (AAE) 2015 Makhzani et al. [32]

Encoder and Decoder using
Universal Approximator Posterior

that encode the features
as distribution

discriminator using Universal
Approximator Posterior

Deep Convolutional
GANs (DCGANs) 2016 Radford et al. [33]

CNN with batch normalization,
connecting highest convolutional

features to input/output,
ReLU activation

CNN with strided convolutions,
batch normalizations and

flattening of last convolution layer,
leaky ReLU activation

Energy Based
GANs (EBGAN) 2016 Zhao et al. [34]

Ladder Network (LN) model with
autoencoder using batch

normalization to generate low
energy output

Ladder Network model with CNN
as autoencoder using batch

normalization to assign high
energy to generated output

Least Square
GANs (LSGAN) 2017 Mao et al. [35]

Following DCGANs, ReLU
activation on CNN without

batch normalization

Least Square Loss function with
leaky ReLU on CNN

AdaGAN: Boosting
Generative Model 2017 Tolstikhin et al. [18]

Two hidden ReLU layers with size
10 and 5 respectively, and latent

space Z = R5

Two hidden layers of ReLU of size
20 and 10 respectively

Wasserstein GANs 2017 Arjovsky et al. [36]

Multi-Layer Perceptron network
with 4 hidden layers and 512 units

at each layer, using
Wasserstein distance

Tested with both MLP
discriminator and

DCGAN discriminator

Boundary Equilibrium
GANs (BEGAN) 2017 Berthelot et al. [19]

Generator uses same architecture
as discriminators decoder with

different weights

Convolutional Deep Neural
Network built as am Autoencoder
as proposed in EBGAN with ELUs

Creative
Adversarial Networks 2017 Elgammal et al. [31]

Similar to DCGAN architecture,
starting with a 4 × 4 spatial extant

with 2048 feature maps and
converted to finally a 256 × 256

pixel image.

Constructed as a ‘body’ of
convolutional layers, each of

which is followed by a leaky ReLU
activation, and two heads,

representing multi-label loss and
fake image loss

Speech
Enhancement GANs 2017 Pascual S, et al. [37]

Fully convolutional neural
network with strided convolutions
and parametric ReLUs with skip

connections between encoding and
decoding units; LSGAN loss

One-dimensional convolutional
structure using batch

normalization and Leaky ReLU
non-linearities

3. Generative Adversarial Networks

Generative models are models that capture the joint probability of the set of training
data with a set of labels, or the probability of the training data if the labels are not provided.
Discriminative models, on the other hand, work on the conditional property of the labels
given the data. Generative models are more powerful than discriminative models as they
are capable of generating new data instances. Generative models are thus also more com-
plex to make and train successfully than discriminative models. This can be explained as
the generative models are desirable due to their ability to capture the underlying generation
process of a data; they are complex as these samples may lie on a very complex manifold
and the structure of high dimensional data space is generally unknown.

In extension of generative models, deep generative models (DGMs) are neural net-
works that consist of many hidden layers. They are trained to learn an unknown or
intractable probability distribution from given samples. The model should then be able to
create new samples from the learned distribution. However, the DGM has many drawbacks.
To start with, the basis of uniquely identifying a probability distribution from a finite num-
ber of samples is nearly impossible, resulting in the high dependency of the model on its
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hyper parameters. Then, the two major approaches of quantifying the samples’ similarities
to those from the intractable distribution are both complicated. The first is to invert the
generator, which is complicated even when the NN is linear. The second is quantifying
the two probability distributions for comparison, however this leads to two-sample test
problems which are difficult to solve without prior assumptions on the distributions. Lastly,
most common approaches for training DGMs work with the assumption that the intractable
distribution can be approximated by transforming a known and much simpler probability
distribution in a latent space of known dimension. However, determining the dimension
is impossible and thus must be chosen, which is difficult and can lead to an ineffective,
difficult to train model if not done right. To top it all off, analysis as to why some DGMs
work well and others do not is also challenging.

Generative adversarial nets (GANs) was proposed by Goodfellow [14], in a paper
published in 2014. The paper recognized that the most effective developments till then
had been in discriminative models and wanted to improve DGMs to achieve better results
by sidestepping the main difficulties faced by DGMS. The GAN model works by creating
two separate models, one that is a deep generative model, G, and the other that is a
discriminative model, D, that estimates the probability that a sample came from the training
data rather than from G. These two models are then pitted against each other in a sort of
minimax two player game as each other’s adversaries, leading to the name adversarial
nets. That is, the generative model is trained to maximize the probability of the D making a
mistake [represented by log(1-D(G(z))], and D is driven to minimize its own probability of
making a mistake. This process continues until G is able to create data that D is not able to
distinguish from the sample data [14].

This new method was proposed as a minimax game between two models, a generator
and a discriminator.

The generator G uses a probability distribution pg over the data x, which is learnt by
defining a prior (i.e., prior knowledge) over the input noise variables, pg(z). This is then
mapped to a data space in the form of G(z : Θg) where G is the differentiable function of
the multilayer perceptron over Θg.

The discriminator D is defined by a multilayer perceptron as well in the form of
D(x : Θd). D(x) is the function that determines where x came from the generative network
or the original dataset. In this model the two networks are trained simultaneously in a
minimax game, where the task of the generator is to generate data so that the discriminator
incorrectly labels it as data from the original dataset, as seen in Figure 2. This is done by
maximizing D with the probability of correct label assignment and minimizing log(1 −
D(G(z))) using Equation (5).

min
G

max
D

V(G, D) = Ex∼pdata(x)[log D(x)] + Ex∼pz(z)[log(1− D(G(z)))] (5)

where V (G, D) is the minimax value function, pdata is the probability distribution of
the original data, pz is the probability distribution of the generated data, D(x) is the
discriminator function and G(z) is the generator function. z signifies the probability value
of the generated image data while E gives the expected value of the random variable.

Generative adversarial networks are trained by updating the discriminative distribu-
tion. These are shown by the blue line in Figure 2 in order to distinguish it from the data
generative distribution, shown in the green line. Finally, the actual data is shown using
the black dotted line. The horizontal lines in the lower portion show the mapping from
the distribution of z to that of x. It can be seen that the data were mapped uniformly [14].
The different figures are alike; Figure 2a shows a fairly decent discriminator, while the
distribution of the original data and the generated data are different. In Figure 2b, the
discriminator converges to learn how to discriminate generated data and the original data
by the equation D ∗ (x) = Pdata(x)

Pdata(x)+Pg(x) . Figure 2c Learning from the gradient of the
discriminator, the generator learns how to get better at generating samples that are closer
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to the original dataset. In Figure 2d, the discriminator fails to discriminate between the two
distributions and converges to D(x) = 1

2 .
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GANs have been found to be in the study of bigdata applications [38] and integrated
blockchain environments [39].

3.1. Convergence and Stability Issues of Generative Adversarial Networks

During the process of training a GAN, two kinds of problems are faced; instability
and failure to converge.

In practice, training a GAN can be tricky. There are two main groups of issues one
might face:

i. Instability;
ii. Failure to converge.

Several solutions are obtained to handle these common problems. It has been observed
that it is better to have higher complexity to the discriminator or the loss function than
that of the generator. The reason in favor of this argument is that, although both involve
training costs, the former is free for production inference. Some twists are based on the
idea that if the discriminator is not allowed to be good, then the cases in which images are
deviational from the real distribution also provide useful gradients to the generator.

The question arises as to which methods are to be followed to train a GAN so that it
will definitely converge [40]. GAN training is framed as a two-person game, where the
participants are the two networks, namely the generator and the discriminator, contesting
with each other. In the scenario of a GAN, we say that a convergence or Nash equilibrium
is reached when the loss of the discriminator does not get reduced at the expense of the
generator. It has been shown in [14] that if both the generator and discriminator are
powerful enough to approximate any real valued function, the unique Nash equilibrium of
this two-player game is given by a generator that produces the true data distribution and a
discriminator which is 0 everywhere on the data distribution. The basis of GANs is not an
optimization problem but a minimax game being associated with a value function given
by (5), in which one agent wants to maximize and the other wants to minimize. A saddle
pint is the termination value of the game, which, with respect to one player’s strategy is a
minimum, and a maximum with respect to that of the other.

Following the notation in [41], the training objective for the two players can be de-
scribed by an objective function/loss function L(θ, ψ) as given in (6).

L(θ, ψ) = Ep(z)[Dψ(Gθ(z)))] + EpD(x)[ f (−Dψ(x))] (6)

for some real-valued function f, which is supposed to be continuously differentiable and
f ′(t) 6= 0 for all real values t. When the function is given by f (t) = − log(1 + exp(−t)) we
arrive at the loss function taken in [14]. The goal of the training process of a GAN is to find
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a parametric solution for (6), say (θ′, ψ′) such that none of the agents can improve their
utilization alone, i.e., a Nash equilibrium is reached.

Usually, simultaneous gradient descent (SimGD) or alternating gradient descent
(AltGD) are used to train GANs. These two algorithms are fixed point algorithms [42] in
which the parameter values (θ, ψ) are subjected through a transformation FP to realize
Fh(θ, ψ).

The simultaneous gradient descent is led by the operator Fh(θ, ψ) = (θ, ψ) + h.ν(θ, ψ),

where ν(θ, ψ) denotes the gradient vector field
(
−∇θ L(θ, ψ)
∇ψL(θ, ψ)

)
. Similarly, alternating

gradient descent can be described by an operator Fh = F2,h ◦ F1,h, where F1,h and F2,h
perform an update for the generator and discriminator, respectively [42].

GANs have been found to be very powerful models, which have latent variables and
are useful in the learning of complex real-world distributions, particularly for images for
which GANs, after proper training, can generate new realistic-looking samples. However,
the training process seems to be critical in the beginning as it has been observed that
gradient descent-based optimization techniques do not lead to convergence. As a result, a
lot of research has been conducted to find better methods for training GANs. Some of these
works are by Arjovsky et al. [36]; Gulrajani et al. [43]; Kodali et al. [44]; Sønderby et al. [45]
and Roth et al. [46]. In spite of all these efforts, the training dynamics of GANs were not
completely understood.

It was shown by Mescheder et al. [40] and Nagarajan & Kolter [41] that local con-
vergence and stability properties of GAN training can be analyzed by examining the
eigenvalues of the Jacobian of the associated gradient vector field. In fact, it was observed
that the Jacobian has only eigenvalues with negative real parts at the equilibrium point,
GAN training converges locally for small enough learning rates. Alternatively, GAN is not
locally convergent in general if the Jacobian has eigenvalues on the imaginary axis. It was
shown in [40] that if the eigenvalues are not on the imaginary axis but close to it then to
achieve convergence the training process requires very small learning rates. However, the
observations in [40] do not answer whether the closeness of the eigenvalues is a general
phenomenon and if so, whether this is the main reason for training. Following this a partial
answer in the form that for absolutely continuous data and generator distributions, all
eigenvalues of the Jacobian have negative real part, leading to the conclusion that GANs
are locally convergent for small enough learning rates in this case. However, as observed
in [45,47], absolute continuity fails to be true in the cases where both distributions may lie
on lower dimensional manifolds, which is the situation for common use cases of GANs.

Based on the above findings, it can be inferred that local convergence occurs for GAN
training when the data and generator distributions are absolutely continuous. In [40] it was
shown that the requirement of absolute continuity is necessary. To good effect, a counter
example was provided here to establish that unregulated GAN is not convergent when
the distributions are not absolutely continuous. On the other hand, it was established that
GANs with instance noise or zero-cantered gradient penalties converge. However, it was
shown that convergence to the equilibrium point cannot be guaranteed for Wasserstein-
GANs (WGANs) and WGAN-GPs with a finite number of discriminator updates per
generator update. Moving on, a general result was established to prove local convergence
for simplified gradient penalties even if the generator and data distributions lie on lower
dimensional manifolds.

The simple example taken in this work was used to examine the effect of the tech-
niques developed up to that time. In fact, it was concluded that neither Wasserstein GANs
(WGANs) [36] nor Wasserstein GANs with gradient penalty (WGAN-GP) [43] nor DRA-
GAN [44] converge on this simple example for a fixed number of discriminator updates
per generator update. Also, it was established that instance noise [45,47], zero-cantered
gradient penalties [46] and consensus optimization [42] lead to local convergence. The
reason behind the instabilities commonly observed when training GANs based on dis-
criminator gradients orthogonal to the tangent space of the data manifold was presented.
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The gradient penalties were simplified, so that local convergence is confirmed. These
simpler gradient penalties work well in shedding light on the learning of high-resolution
image-based generative models for a variety of datasets with little hyper-parameter tuning.

It was shown that ([42]) analysis of the spectrum of Fh(θ
′, ψ′) at the equilibrium point

(θ′, ψ′) to study the local convergence of GAN training near (θ′, ψ′). The criterion depends
upon the absolute value of the eigenvalues of Fh(θ

′, ψ′). If these are greater than 1, the
training algorithm will generally not converge to (θ′, ψ′), otherwise, If these are greater
than 1, it will converge to (θ′, ψ′) with linear rate. The rate is O(|λmax|k) where λmax is
being the largest eigenvalue. Finally, if all the eigenvalues have absolute value 1 then the
behavior of the algorithm cannot be predicted. However, in the case that it converges, the
convergence is a sub-linear rate.

Overfitting of the discriminator is likely to arise if too little data are used in the training
of a GAN. This phenomenon leads to divergence of the training. The augmentation of
datasets is an ideal solution to enhance the size of the datasets. In [48] several adaptive
discriminator augmentation mechanisms were proposed, which, while solving the data
augmentation problem, have the advantage of not requiring changes to loss functions or
network architectures. This approach is applicable in both cases, starting from scratch or
fine-tuning an existing GAN on another dataset. So, one can start with a few thousand
training images and expect good results. In the beginning, a comprehensive analysis of
the conditions that prevent the augmentations from leaking is presented. The diverse set
of augmentation techniques developed follow an adaptive control scheme that enables
the same approach to be used regardless of the amount of training data; properties of the
dataset on any of the two approaches of starting from scratch or transfer learning [49,50].

The WGAN has led to more stable training than GAN although it leads to generation
of samples of low quality and even sometimes it fails to converge. It was observed in [43]
that this problem is mostly due to use of weight clipping in WGAN, which imposes a
Lipschitz constraint on the critic and so there arises undesirable behavior. An alternative
approach to the clipping of weights was introduced in [43] which penalized the norm of
gradient of the critic with respect to its input. This method, in addition to being more stable
than WGAN, requires no hyper-parameter tuning. The quality of generations is also high,
and was expected to provide stronger modelling performance on large-scale image datasets
and language.

In order to handle the problem of convergence of GANs, a two time-scale update rule
(TTUR) for training GANs with stochastic gradient descent on arbitrary GAN loss functions
was developed [51]. TTUR has an individual learning rate for both the discriminator and
the generator. It has been established that TTUR converges under simple assumptions to a
stationary local Nash equilibrium. The importance concept of Fréchet inception distance
(FID) was used to evaluate the performance of GANs in generating images and it measures
the similarity of generated images to real ones better than the inception score. It has been
established to have better learning performance than the established deep convolutional
GAN (DCGAN) and Wasserstein GAN with gradient penalty (WGAN-GP).

In order to stabilize the training of the discriminator a novel weight normalization
technique, which is a deviational one from the conventional normalizations, called spectral
normalization was introduced in [52]. This technique is computationally less expensive
and easy to implement. It has been experimentally verified that the spectrally normalized
GANs (SN-GANs) are capable of generating images of better or equal quality relative to
the previous training stabilization techniques. The method imposes global regularization
on the discriminator as opposed to local regularization introduced by WGAN-GP.

3.2. Comparative Analysis of Generative Adversarial Networks

GANs are often regarded as a model that produces high-quality samples along with
PixelCNN, however as this is a subjective, qualitative aspect, it would be imprudent to
say that their samples are better than all other models. However, in quantitative measures,
GANs have ranked better than traditional generative networks. Their performance involves
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a more human touch of competitiveness and are easy to comprehend, thereby allowing
them to be modified easily. This has led to the development of various types of GANs
and other adversarial networks that are discussed in further sections. GANs use a latent
code and can generate samples in parallel, which is an advantage over FVBNs. They
are also asymptomatically consistent, overcoming the drawback of VAEs. Also, since
GANs do not require Markov chains, their computational complexity is not as expensive as
Boltzmann Machines.

It can be seen from Table 2 that generative adversarial networks performed better than
most other generative non-adversarial models. Since GANs were a novel development
and performed quite well on the MNIST and TFD datasets, they are still considered a
benchmark when comparing any generative models. The values in Table 2 show the
comparison made by the authors in [14] using the models adversarial networks versus
deep belief networks [53], stacked conditional autoencoders and deep gradient stochastic
networks over the MNIST dataset of handwritten digits and the Toronto Face Dataset. The
values tested were real pixel values and not binary data values.

Table 2. Window-based mean log-likelihood estimation of adversarial networks versus deep belief
networks, stacked conditional autoencoders and deep gradient stochastic networks.

Model MNIST (×102) TFD (×103)

Deep GSN [54] 2.14 ± 0.011 1.890 ± 0.029
DBN [55] 1.38 ± 0.02 1.909 ± 0.066

Stacked CAE [55] 1.21 ± 0.016 2.110 ± 0.05
Adversarial nets 2.25 ± 0.02 2.057 ± 0.026

3.3. Critical Analysis of Generative Adversarial Networks

The GAN as described by Goodfellow et al. [14] uses a new learning mechanism for
generative models that allow a generator to extrapolate the values from a given distribution
z and maps it to the real data distribution x by computing the combined loss of both
the generator and the discriminator. This allows the network to learn the probability
distribution of the original dataset.

However, the traditional GAN did have some room for improvement. The learning
model of the GAN often presents the mode collapse problem, which can be thought of as
discriminator overfitting for the generator. This occurs when the generator produces an
output that is so plausible that it eventually learns only to produce a small set of identical
samples. With such extremely low diversity in generator output, the discriminator may not
be able to discriminate between the samples. It can learn to flag all identical samples as
false. However, this problem creates a ridge in the functional plain, and if the next iteration
of the discriminator converges to the local minima, the next generator will easily be able
to find the data that is accepted by the discriminator as true data. As this continues, the
generator will continue to overfit on the particular discriminator for each iteration, while
the discriminators are stuck in the minima.

The developments and improvements upon GANs did deal with some of the above-
mentioned problems. Conditional GANs, discussed in Section 5, were proposed to counteract
mode collapse. Various methods have been proposed to improve learning in situations with
limited training data, some of which are discussed in Section 18, titled recent developments.

4. Conditional Generative Adversarial Nets

While traditional GANs have various advantages, they lack the ability to control
the modes of the data being generated. Conditional generative adversarial nets (cGANs)
provide this control by conditioning both the discriminator and the generator on some
additional information. This additional data could be any format that complements the
given information, such as class labels or even data from a different modality; the additional
data is commonly referred to as y. The conditioning can be implemented by inputting y
into both models as an additional input layer.
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A joint hidden representation is constructed by combining the random input noise for
the GAN, pz(z), and ground truth, y, in the generator. This allows the input for conditioning
and the prior noise input to be considered in one single layer. The extent of complex
generation mechanisms between these two abstract entities can be modified using higher
order interactions.

A discriminative function is generated along with the ground truth ‘y’, and the input
variable, ‘x’. The function is an extension of a two-player minimax game and is given by
Equation (7).

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x|y)] + Ez∼pz(z)[log(1− D(G(z|y))] (7)

Figure 3 elaborates upon the architecture of the conditional adversarial net [56]. The
discriminator in the upper portion has an additional input ‘y’ that is an integer representing
the class label of the image, so that the image can be made conditional on the provided
class. The generator in the lower portion also embeds ‘y’ into a unique element vector that
is then passed through a fully connected layer.
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4.1. Comparative Analysis of Conditional Generative Adversarial Nets

Conditional GANs were first introduced in 2014, and at the time they were a huge im-
provement on the capabilities of a GAN. Despite the fact that cGANs have been surpassed
by more recent developments, the ability to guide the data generation process warrants
notice when the history of GANs is discussed.

For the comparison of cGANs, models existing at the time were considered, i.e., most
of them are non-conditional networks. The architectural decisions and hyper-parameters
included were determined by validation procedures, and grid search for parameter tuning.

The original model for the CGAN was originally trained on the MNIST handwritten
numbers images, where the class labels were encoded into one-hot vectors and considered
as additional information y.
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The model used stochastic gradient descent (SGD) as its learning heuristic with the
batch size of 100. The model used the rectified linear unit (ReLU) activation function with
200 layers mapped onto the input noise and 1000 layers mapped onto the ground truth.
The generated output was 784-dimensional MNIST samples. The comparative results are
shown in Table 3.

Table 3. Results for different models used over MNIST dataset [30].

Model MNIST

Deep Belief Network [57] 138 ± 2
Stacked ConvAutoEncoder [58] 121 ± 1.6
Deep Stochastic Network [54] 214 ± 1.1

Generative Adversarial Network [14] 225 ± 2
Conditional Adversarial Network [30] 132 ± 1.8

The procedure followed is same as that followed by Ian Goodfellow et al. [14], for
computing log-likelihood estimates based on the Parzen window. These results were
obtained in [30].

4.2. Critical Analysis of Conditional Generative Adversarial Nets

While cGANs were able to perform well on data with a single mode, multi-model data
presented a challenge. Consider the subjective nature of images and labels—in the real
world, data are labeled by a statutory of human perception and understanding, rather than
by stoic rules. Thus, for realistic use-cases, the model should be able to handle multiple
labels. Then, the generative network should be able to create a multi-modal distribution
of vectors which are conditional over the image features. Here, the cGAN lacked in
performance due to an inability to handle various modes of the same data, resulting in
mode collapse, a solution to which was presented by WGANs, Section 11. Furthermore, the
generated images were quite discernible to a human viewer due to issues such as blurriness.
The following section discusses an approach for handling blurriness.

5. Deep Multi Scale Video Prediction beyond Mean Square Error

Mathieu et al. [59] introduced an improvement on video prediction techniques in 2015,
in an attempt to improve sharpness in the predictions using adversarial networks. They
focused on the fact that convolutional networks compromise on the resolution to preserve
long-range dependencies, and that some loss functions produce more blurry predictions
than others.

The former limitation can be overcome using a multi-scale network, where the models
are trained at different “scales” of the input—which can be thought of as levels of abstraction
or sizes of input; a smaller scale may be a pixel while a larger scale may be the whole image.
If SN is the number of scales, then for each prediction of size Sk a prediction of the next
frame, Ŷk, is calculated by the network G′k as in (8).

Ŷk = Gk(X) = uk(Ŷk−1) + G′k(Xk, uk(Ŷk−1)), (8)

where uk is the upscaling operator and Xk is the input image of scale k. Figure 4 demon-
strates how frame Yk, generated by inputs Xk, is computed from Yk−1.
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Furthermore, the blurriness of predicted images can also be attributed to the loss
function used for the adversarial network. The l2, or least square errors, loss function
assumes that the assumptions are drawn from a Gaussian distribution and therefore works
poorly with multimodal distributions. In comparison to the least absolute deviations (l1),
the loss function results in considerably less blurriness as specified in (9).

l1 =
n

∑
i=1

∣∣∣ytrue − ypredicted

∣∣∣ (9)

However, along with l1, sharpness could be increased by penalizing the differences
of image gradient predictions in the generative loss function, as defined by the gradient
difference loss (GDL) in (10); that is a function between the ground truth and the prediction,
which can be combined with other loss functions.

LX(X, Y) = LX
(
Ŷ, Y

)
= ∑

i,j
||Yi,j −Yi−1,j| − |Ŷi−1,j − Ŷi−1,j||∞ + ||Yi,j−1 −Yi,j| − |Ŷi,j−1 − Ŷi,j||∞ (10)

The final model uses a combination of both l1 and GDL with different weights, where
Lbce is the binary cross entropy loss. The loss function for the generator is a combination of
λadvLadv and λlpLp to avoid the situation where the generated values are not closer to Y
yet still confuse the discriminator. This can cause the generator to learn a distribution that
is far from the original dataset, yet is able to confuse the discriminator. λlp and λadv are
parameters that determine the sharpness of the prediction and the relative closeness to the
ground truth. The function is given by (11).

L(X, Y) = λadvLG
adv(X, Y) + λlpLp(X, Y) + λgdl Lgdl(X, Y) (11)

5.1. Comparative Analysis of Deep Multi Scale Video Prediction beyond Mean Square Error

The initial research used peak signal T-noise ratio (PSNR) and structural similarity
index (SSIM) as the primary metrics to determine which loss function was most suitable
for the network. The models were originally trained on the Sports1m dataset, and then
fine-tuned using the UCF101 dataset. Given four frames, the models are expected to predict
what the next frame will contain. The results of this model are compared with other losses
in Table 4. This table shows the comparison of addition of different loss functions on the
UCF101 database images. Here, the 1st and 2nd frames are the respective 5th and 6th
frames predicted by the network, which was given the first four frames as input.

Table 4. Comparison results obtained after addition of different loss functions [59].

Type of Loss 1st Frame Similarity 2nd Frame Similarity

PSNR SSIM PSNR SSIM

Single scale l2 loss 26.5 0.84 22.4 0.82
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Table 4. Cont.

Type of Loss 1st Frame Similarity 2nd Frame Similarity

PSNR SSIM PSNR SSIM

Multi scale l2 loss 27.6 0.86 22.5 0.81

Multi scale l1 loss 28.7 0.88 23.8 0.83

Multi Scale Gradient Difference l1 Loss 29.4 0.90 24.9 0.84

Multi Scale Gradient Difference l∗1 Loss 29.9 0.90 26.4 0.87

Adversarial Loss * 30.6 0.89 26.1 0.85

Adversarial Gradient Difference Loss * 31.5 0.91 28.0 0.87

Adversarial Fine-Tuned Gradient
Difference Loss * 32.0 0.92 28.9 0.89

* Models fine-tuned on patches of size 64× 64.

5.2. Critical Analysis of Deep Multi Scale Video Prediction beyond Mean Square Error

While this method is fully differentiable and can be used for a variety of predictive
image tasks, there remains a dependence on optical flow predictions. While the optical
flow network itself may be improved using memory or recurrence, it can also be modified
to work in frame prediction instead. Furthermore, a classification criterion may be required
to train the network in a weakly supervised context.

Furthermore, the system could be remodeled to generate only the immediate next
frame in applications such as video segmentation in deep reinforcement learning. Here, the
next frame prediction would take precedence over optical flow prediction. A similar ap-
proach is also used in the combination of adversarial learning and variational autoencoders,
which are discussed in the next section.

6. Adversarial Autoencoders (AAE)

In a variational autoencoders (Section 2.1.2), there exists a recognition network whose
function is to predict the distribution over the variables. Adversarial autoencoders (AAE)
are modeled by training an autoencoder with dual objectives:

• A traditional reconstruction error criterion;
• An adversarial learning criterion to configure the output dispersion of distribution.

Basically, the aggregated posterior is matched to an arbitrary prior by linking an
adversarial network on top of the code vector of the autoencoder, as shown in Figure 5.
The basic premise of combining the two models, was that the adversarial net can reduce
the reconstruction error of the autoencoder by ensuring that the generation from any part
of the prior yields meaningful results.
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The autoencoder and the adversarial network are trained together using the stochastic
gradient descent algorithm. The function that handles the encoding over the autoencoder
is defined by the following:

q(z) =
∫

x
q(z|x) pd(x) dx (12)

In (12), q(z) is the encoding function, z is the encoding output, x is the input and pd(x)
is the distribution function.

6.1. Comparative Analysis of Adversarial Autoencoders

The results of the semi-supervised classification performance over the datasets of
MNIST and SVHN are mentioned in Table 5. They deal specifically with the scenario
of demonstrating the error rate upon the performance of the autoencoder (AE) upon the
variational autoencoder (VAT). Also, the other models used for comparison are catGAN [60]
and VAT [61]. The autoencoder is outperformed by the ladder network [62] and ADGM [63].
The labels of MNIST dataset were 1000 and the model was trained on all the available
labels and the error rate obtained was 0.85%. On the other hand, the SVHN dataset, the
adversarial autoencoder is able to contest the performance of the ADGM. This is due to the
use of the GAN framework, using which direct inference is attained over the discrete latent
variables. Log-likelihood of test data on MNIST and Toronto Face Dataset (TFD)is reported
in Table 5 for the Parzen window estimate by drawing 10,000 (10K) or 1,000,000 (10M)
samples from the real model.

Table 5. Results on Window estimate obtained in [32].

MNIST (10K) MNIST (10M) TFD (10K) TFD (10M)

Deep Belief Nets 138 ± 2 - 1909 ± 66 -

Stacked Convolutional AE 121 ± 1.6 - 2110 ± 50 -

Deep GSN 214 ± 1.1 - 1890 ± 29 -

GAN 225 ± 2 386 2057 ± 26 -

Generative Moment
Matching Nets + AE 282 ± 2 - 2204 ± 20 -

Adversarial Autoencoders 340 ± 2 427 2252 ± 16 2522

6.2. Critical Analysis of Adversarial Autoencoders

Adversarial autoencoders achieved the highest benchmarks in semi-supervised learn-
ing situations, when compared to available technology at the time. AAEs also produced
competitive results in supervised learning scenarios. However, the benefit of AAEs also
presents one of their major drawbacks. Since the adversarial training makes no assumptions
about the distributions being compared, it cannot exploit smooth and low-dimensional
distributions, and must depend on approximation by sampling. Still, AAEs can also be
modified for use in dimensionality reduction, data visualization, and disentangling of style
from content of the image, and for competitive results in unsupervised clustering. Another
model that is known to give competitive results in unsupervised clustering, DCGAN, is
discussed in the next section.

7. Deep Convolutional Generative Adversarial Networks

Deep convolutional generative adversarial networks (DCGANs) were created primar-
ily to improve the performance of GANs in unsupervised learning. Radford et al. [33] set
out to overcome three major issues of generative models:

1. Instability of training that makes it difficult to reproduce results;
2. Blurriness of generated real-world images (i.e., improvement of accuracy);
3. Explaining the role of different convolution filters in the network.
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Using convolutional parameters in GANs removes the model’s dependency on clus-
tering by allowing it to learn representations that can be used for deep feature extraction.
However, these models also failed to reproduce natural or real-world images. To improve
natural image generation, the CNN model used was modified in the following ways:

• Deterministic spatial pooling functions were replaced with strided convolutions;
• Fully connected layers on top of convolutional features were eliminated.

Furthermore, the input to the entire network was preprocessed with batch normaliza-
tion to stabilize the input to each unit, except to the generator’s output layer and to the
discriminator’s input layer.

Radford et al. [33] looks at the problem of unsupervised representation learning and
tackles the same by generative models and adversarial training that use convolutional
parameters to learn the representation instead of using clustering and leveraging the
labels. This allows for a much deeper feature extraction and image representation. But
this still does not account for natural image generation using any of these algorithms
as most algorithms in practice are non-parametric in nature. Natural images generated
by parametric methods usually yielded incomprehensible and gibberish-filled images
that were far from the original dataset. The generator’s deep CNN used ReLU and Tanh
activations and the discriminator used leaky ReLU.

In order to explain the functioning of the filters in the CNN, the filters before and after
training were visualized and explained through vector arithmetic.

7.1. Comparative Analysis of DCGANs

The resultant error rate when models were trained over the StreetView House Num-
bers (SVHN) dataset using the GANs for feature extraction is shown in Table 6. It can be
seen that the DCGAN along with the support vector machine of L2 normalization trained
on top of the discriminator yielded the best results for the classification job. Furthermore, a
pure CNN using the same architecture as DCGAN was also tested, in order to prove that
the efficiency of DCGAN was not entirely based on the CNN [33].

Table 6. Results based on classification of SVHN digits where GANs are used as feature extractors [33].

Model Error Rate

KNN 77.93%
TVSM 66.55%

M1 + KNN 65.63%
M1 + TVSM 54.33%
mM + M2 36.02%

SWWAE without dropout 27.83%
SWWAE with dropout 23.56%

Supervised CNN with same architecture as proposed 28.87%
DCGAN + L2-SVM 22.48%

The DCGAN was also tested to find the functionality of the convolutional filter layers
in the model. The original, random filters show no distinct features in a room from the
large-scale scene understanding (LSUN) dataset bedroom images; however, the trained
filters showed distinct features such as windows, doors, beds, or pillows. The fractional
convolutional layers used by the DCGAN are shown in Figure 6. Further, if a particular
filter is dropped from the generator, the final images are slightly less clear but are still
logically composed, suggesting that the generator was successful in disentangling scene
representation from particular object representation. The final observation revealed that
GANs were unstable for single sample vector arithmetic operations but yielded better
results when an average arithmetic operation was performed.
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7.2. Critical Analysis of DCGANs

The DCGAN tackles some major problems in the stability of GANs, in particular the
reproducibility and the relationship between object representations and scene representa-
tions learned by the generator. However, if the model is trained for longer than required
mode collapse occurs: an occasional collapse of subset filters to a single oscillating mode is
observed. Further, DCGANs are susceptible to vanishing gradients, which results in an
incredibly weak generator.

8. Energy-Based GANs

In Section 6, AAEs were discussed as a combination of VAEs and GANs in order to
produce better results. Energy-based GANs, or EBGANs incorporate the energy-based
functions proposed by LeCun et al. [64] in order to improve the stability of the discriminator.
The energy assignment function tends to assign low energies to regions in the data space
where data density is high, and high energies to lower density regions. The discriminator
is meant to use this to assign higher values to fake values created by the generator and
low energies to real values. This is done by converting a probability distribution of the
dataset into an energy-based model via Gibbs distribution. Figure 7 gives an overview of
this model.
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To train the generator G(z) and for assignment of energy to images by the discriminator
D(x), (13) is used. Here, m denotes the energy difference of maximum and minimum energy
bounds provided to the model.

fD(x, z) = D(x) + max(m− D(G(z)), 0) (13)

The generator function G(z) can be defined as in (14).

fG(z) = ‖D(G(z))‖ (14)

The discriminator function D(x) can be defined as in (15).

D(x) = ‖Dec(Enc(x))− x‖ (15)

One common approach to dealing with mode collapse problem for GANs is called
minibatch discrimination [65], which means segregating the data into batches to give to the
discriminator. A modified version, called the pulling-away term (PT), was incorporated
into EBGAN, given by (16).

fPT(S) =
1

bs(bs− 1)∑i
∑
j 6=i

(
ST

i Sj

‖Si‖ ‖Sj‖

)2

(16)

where, for an image set S taken from the encoder input layer, Si denotes the ith image in
the set and Sit is the transpose of image Si. Here, bs refers to the batch size that has been
chosen for processing.

The pulling away term is responsible for reducing the cosine similarity, thereby making
the input as orthogonal as possible so that the generator avoids any single mode and
produces outputs that can fool the discriminator much more effectively. This method takes
a softer approach to deducing real images from fake ones, which allows the generator to
produce images that are not necessarily similar to the ones it had produced before, based on
a continuous energy density value. These energy densities can be converted to probabilities
via Gibbs Distribution [64].

8.1. Comparative Analysis of Energy-Based Generative Adversarial Network

The general parameters used by the authors include batch normalization [64] along
with ReLU for all layers except the last layer, which uses Tanh activation. The Adam opti-
mizer was used as the optimization function with variable learning rates and using dropout
for better convergence [34]. The baseline EBGAN and GAN are compared. (CENTER) Both
EBGAN and GAN have four layers. (RIGHT) Both EBGAN and GAN have three layers.
The x-axis shows the inception score [65] and the y-axis shows the bin (in percentages).

As can be seen in Figure 8, that the comparison between EBGAN and GAN produced
resultant histograms showing various bins along with inception scores of both architectures.
Histogram in Figure 8a is showing general comparison between the models GAN and
EBGAN. Histogram in Figure 8b,c are showing comparison between the models GAN and
EBGAN for 4-layers and 3-layers respectively. Their results pertain to four datasets, namely
MNIST, LSUN, CelebA, and ImageNet dataset with a variety of encoder and decoder
architectures that allow for an output vector grid of sizes 128 × 128 and 256 × 256 with
ImageNet, with the latter being an ambitious output, as shown in Figure 9. Their work
shows that energy-based models do outperform baseline GANs in terms of output and
other aspects [34].
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8.2. Critical Analysis of Energy-Based Generative Adversarial Network

While the EBGAN did perform better than the original GAN for ImageNet generation,
they are far from ideal [66,67]. While some noticeable features such as the eyes, nose, and
fur of the animals are discernible, it is evident from visual inspection that these images are
close to gibberish, let alone comparable to the original real images. While the improvement
compared to DCGANs is significant, the generator is still not capable of fooling a human
viewer, which is the entire purpose of the model.

9. Least Squares Generative Adversarial Networks

As discussed since Section 3, GANs suffer from a vanishing gradient problem; Mao et al. [35]
proposed a work around of the sigmoid cross entropy loss function in order to deal with this
problem. The proposed least square GAN (LSGAN) uses the least squares (L2) error function.

The vanishing gradient problem, may occur when the fake data generated by the gener-
ator that lies on the boundary of the decision but far from the real data will be classified as
real data, which will cause the generator to update using the loss function of cross-entropy
towards that data point, causing vanishing gradients as the discriminator will be unable to
distinguish between the real data and the data lying on the boundary. They claim that the
least square loss function performs better as it penalizes the data points that lie too far from
either side of the decision boundary and brings them closer to the boundary. They also state
that their method also bypasses the objective function minimization problem as the L2 loss
penalizes based on the distance from the boundary. Their final claim states that minimizing
the objective function of LSGAN is akin to minimizing the Pearson x2 divergence.
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We see the objective function of LSGANs is as in (17) for the generator and as in (18)
for the discriminator.

min
G

VLSGAN(G) =
1
2

Ez∼pz(z)[(D(G(z))− c)2] (17)

min
D

VLSGAN(D) =
1
2

Ex∼Pdata(x)[(D(x)− b)2] +
1
2

Ez∼Pz(z)[(D(G(z))− a)2] (18)

Here all other values correspond to their usual nomenclature while ‘a’ denotes the
real data, ‘b’ denotes the fake data and ‘c’ denotes the data that the generator wants
the discriminator to believe. Just as the original generative adversarial network yield
the minimization of the Jenson–Shannon Divergence, the LSGAN that denotes the x2

Pearson divergence.
Figure 10 shows the architecture used for the LSUN dataset that compared their

results. The paper [35] follows the DCGAN route of using leaky ReLU activation functions.
The architecture was tested with two datasets, LSUN and the Chinese character dataset.
This allowed them to test the linear mapping methodology of taking larger vectors and
converting them to smaller ones before concatenating them to the input layer, thereby
allowing them to create better output for cases where multi-class input is converted into
single-class output (such as with the Chinese character set). The network was trained on five
sub-datasets of the LSUN dataset: Bedroom, Kitchen, Church, Dining room and Conference
room. Figure 10 shows the model architecture used for the LSUN dataset to compare the
results obtained. Part (a) is for the generator and part (b) is for the discriminator with
the model architecture of LSGAN. K × K defines the kernel size, conv or deconv defines
which layer is present, C defines the number of filters, S denotes the strides present in the
convolutional layer. BN defines the batch normalization layers present, while fc denotes
the fully connected layer with N output nodes for that layer.
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9.1. Comparative Analysis of LSGANs

The original LSGAN was tested and compared against the vanilla GAN by Mao et al. [35]
on two datasets, the LSUN dataset and on the HWDB1.0 Chinese handwritten characters
database. The latter was used primarily to test the ability of LSGANs for databases with a large
number of input classes. For the latter, the generated data were found to be only slightly different
from the original dataset by the measure of the character stroke consistency and the width. This
shows that even complex character generation is possible under the LSGAN architecture.

Furthermore, Gaussian kernel estimation was used to show the various stages of the
training process for vanilla GANs and LSGANs when starting from a similar random
distribution. As shown in Figure 11, the LSGAN has a more stable process, with a logical
consistency between the estimated kernels throughout the training process [35].
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9.2. Critical Analysis of LSGANs

The use of the L2 loss function in LSGANs provides better results in terms of generation
of higher quality images, better stability, and the ability to create multi-class single output
data as well.

One of the major drawbacks of LSGANs, however, is the excessive penalty that is
inadvertently applied to any outliers. This greatly reduces the diversity of the generated
images; while the quality is increased, variation is reduced. Furthermore, the gradient
penalty forces an additional computational and memory cost. Additionally, the images
generated by the LSGAN may fluctuate between better and worse and the best output may
not be in the final iteration.

Further research from LSGANs included using real data to pull the samples towards,
rather than depending on the decision boundary. In order to improve the model further,
ensemble techniques should be discussed.

10. AdaGAN: Boosting Generative Models

AdaGAN [18] is an adaptively boosted ensemble version of a vanilla GAN. Each of
the real images, i.e., the images in the training set, is assigned a weight and this weight is an
indicator of the confidence of the discriminator that the image is real. The AdaGAN then
works on the idea that the discriminator will be less confident for images that have had
some aspects convincingly reproduced by the generator. By this logic, the discriminator
will be more confident about images that have features that have not yet been learned by
the generator. Since the confidence of the discriminator is reflected in the weights of the
images, the generator of the ith iteration can use the weights to give more importance to
images that have not been learned by the generators in the preceding iterations. Due to its
adaptive nature in identifying imaged that have already been generated and re-weighting
them, the model is adaptive, and the algorithm resembles the boosting of models; hence
the name AdaGAN.
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The agreement between the model generated distribution and the true distribution of
the data is defines using f-divergence.

PT
model :=

T

∑
i=1

αiPi (19)

In (19), αi ≥ 0, ∑i αi = 1. T defines the component that corresponds to the number of
generative model densities present in the ensemble. The mixture works in the form that the
sampling from the mixture is done by a multimodal distribution to produce the optimal
nominal model combination.

Another concept that comes into play is incremental mixture building. This is done as
follows: the initial divergence function which is to be minimized in each iteration is given
by (20), where P is the initial given distribution and Q is the target distribution such that
Q ∈ G. Using this equation, multiple such distributions are modeled from P1 to PT. The
first distribution is trained by using (20) on P1 and then setting α1 = 1.

min
Q∈G

D f (Q||P). (20)

Repeating this process to change the mixture, Equation (21) is derived, where β ∈ [0, 1]
is the weight of the data distribution that is being considered for the current iteration of the
data distribution.

Pt+1
model :=

t

∑
i=1

(1− β)αiPi + βQ. (21)

For an optimal solution, Q must be found such that Equation (22) holds true for any c < 1.

D f ((1− β)Pg + βQ||Pd) ≤ c. D f (Pg||Pd) (22)

10.1. Analysis of AdaGAN Algorithm

Tolstikhin et al. [18] test their algorithm on the MNIST and MNIST3 dataset where
MNIST3 dataset is the set of images with 3 digits. They name each class as modes and test
various architectures on the basis of a metric called Coverage C. Each entry in the following
table is defined as the Coverage C, the probability mass [18] of Pd of the 5th percentile
of Pg.

The results of this experiment are shown in Table 7. The baseline is considered to be
the vanilla GAN. The “Best of T” is considered as a slightly overestimated performance,
where the best of the T independent runs of the Vanilla GAN are considered. “Ensemble”
denotes a mixture of T GANs, trained independently and then combined with equal
weights. “TopKLast0.5” is a GAN where the top r = 0.5 examples are kept based on
the discriminator’s response to the previous generator. “Boosted” denotes the proposed
AdaGAN method, and has obtained the best results. Table 7 gives the coverage score C of
each model, where is the probability mass of the discriminator covered by the 5th percentile
of the generator. The final score is the median defined by the 5th and 95th percentile, which
are in parenthesis. These results were obtained by [18].

10.2. Critical Analysis of AdaGAN

Unfortunately, the complexity of the model causes the latent space to be non-traceable,
unlike vanilla GANs. This is due to the fact that the network obtained by this method is
not a single network but a mixture of several networks. The latent structure is considered
non-smooth, which creates the problem of traversing it. Furthermore, the advantage over
vanilla GANs and other GANs available at the time is not necessarily certain.
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Table 7. Coverage score C for different models.

Modes: 1 Modes: 2 Modes: 3 Modes: 5 Modes: 7 Modes:
10

Vanilla GAN
0.97 0.88 0.63 0.72 0.58 0.59

(0.9; 1.0) (0.4; 1.0) (0.5; 1.0) (0.5; 0.8) (0.4; 0.8) (0.2; 0.7)

Best of T (T = 3)
0.99 0.96 0.91 0.80 0:84 0.70

(1.0; 1.0) (0.9; 1.0) (0.7; 1.0) (0.7; 0.9) (0.7; 0.9) (0.6; 0.8)

Best of T (T = 10)
0.99 0.99 0.98 0.80 0.87 0.71

(1.0; 1.0) (1.0; 1.0) (0.8; 1.0) (0.8; 0.9) (0.8; 0.9) (0.7; 0.8)

Ensemble (T = 3)
0.99 0.98 0.93 0.78 0.85 0.80

(1.0; 1.0) (0.9; 1.0) (0.8; 1.0) (0.6; 1.0) (0.6; 1.0) (0.6; 1.0)

Ensemble (T = 10)
1.00 0.99 1.00 0.91 0.88 0.89

(1.0; 1.0) (1.0; 1.0) (1.0; 1.0) (0.8; 1.0) (0.8; 1.0) (0.7; 1.0)

TopKLast0.5 (T = 3)
0.98 0.98 0.95 0:95 0.86 0.86

(0.9; 1.0) (0.9; 1.0) (0.9; 1.0) (0.8; 1.0) (0.7; 1.0) (0.6; 0.9)

TopKLast0.5 (T = 10)
0.99 0.98 0.98 0:99 0.99 1.00

(1.0; 1.0) (0.9; 1.0) (1.0; 1.0) (0.8; 1.0) (0.8; 1.0) (0.8; 1.0)

Boosted (T = 3)
0.99 0.99 0.98 0.91 0.91 0.86

(1.0; 1.0) (0.9; 1.0) (0.9; 1.0) (0.8; 1.0) (0.8; 1.0) (0.7; 1.0)

Boosted (T = 10)
1.00 1.00 1.00 1.00 1.00 1.00

(1.0; 1.0) (1.0; 1.0) (1.0; 1.0) (1.0; 1.0) (1.0; 1.0) (1.0; 1.0)

11. Wasserstein GAN

A new network called the Wasserstein generative adversarial network which uses the
Wasserstein distance as its main metric for determining the distance between the original
data distribution and the data generated by the generative model is proposed [36].

W(Pr, Pg) = inf
γ∈∏(Pr ,Pg)

E(x,y)∼γ[‖x− y‖] (23)

The Wasserstein distance is defined in (23), where, ∏(Pr, Pg) gives all the joint distri-
bution sets between γ(x, y) where γ gives the “mass” that must be moved between the two
distributions x and y to change the overall structure of Pr to Pg. This distance, also called
the earth mover’s distance, is meant to improve the convergence and allow the generator
to learn faster. This is based on two theorems which state that:

1. If the generator function is continuous on the noise latent space, Lipschitz locally,
and adheres to the regularity assumption 1, then the Wasserstein distance of the two
distributions in question will also be continuous everywhere and differentiable almost
everywhere;

2. The total variation distance and Jenson–Shanon divergence reach zero while compar-
ing two distributions where the original distribution is P and the generated distribu-
tion is Pn, n ∈ N, n→ ∞ . This also happens for the Wasserstein distance but only
when the two distributions converge as Pn converges to P.

The Wasserstein distance is used in the GAN architecture given by (24), and a solution
to this is given by (25).

max
‖ f ‖L≤1

Ex∼Pr [ f (x)]− Ex∼Pθ
[ f (x)] (24)

∇θW(Pr, Pθ) = −Ez∼p(z)[∇θ f (gθ(z))] (25)

Back-propagation is used to solve for f under a closed space W. Having a compact space
is necessary as the function must be K–Lipschitz so that the function depends on K and the
weights. To keep the space compact, the weights are clipped such that W = [−0.01, 0.01]l
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where l is any arbitrary function for clamping the weights. The clipping is intended to
avoid both large weights that will lead to higher convergence time and smaller weights
that may lead to vanishing gradients.

They explain that the Jenson–Shannon divergence is locally saturated and contains a
true gradient of 0, while the Wasserstein distance function can train the critic to optimality.

Figure 12 shows that the discriminator from the vanilla GAN saturates at a point and
results in vanishing gradients. At the same time, it is also visible how the WGAN critic has
clean gradients during the entire training procedure which allows it to evade the problem
encountered by the original network [36].
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11.1. Comparative Analysis of Wasserstein GAN

Adding Wasserstein loss to the GAN stabilizes the JS estimate curve for both MLP
and DCGAN, and the loss correlates well with improvements in generative model. These
curves were generated in [36]. Further, training was done on a DCGAN generator and
an MLP generator, and each competed with both a WGAN discriminator and a standard
GAN discriminator; the results were compared on the basis of the generator. While the
improvement in quality of the images was noticeable but not too significant with the
DCGAN models, the improvement with WGAN in the MLP models was significant, as
shown in Figure 13. The WGAN model successfully avoided mode collapse in the latter
situation. The images have distinctive room-like qualities.
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Figure 13. Images generated by Wasserstein GAN with DCGAN generator.

11.2. Critical Analysis of Wasserstein GAN

Even though Wasserstein generative adversarial networks show more robust operation
capabilities in terms of stability and avoiding mode collapse, there are still significant areas
for improvement:
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1. WGAN suffer from the lack of scalability of the critic, which means that networks
cannot be compared with different critics;

2. The critics do not have in finite capacity and need to be estimated with intuition for
how close to the EM distance they are;

3. The architecture becomes unstable when any moment base optimizer is used to train
it as the loss function is non-stationary. Hence, RMSProp was used;

4. The training of WGANs takes much longer than other popular GAN models.

Changing the loss function in WGANs solved the mode collapse problem in MLP-
based GANs and improved the convergence of the GAN. This idea is built upon with
BEGANs, which are discussed in the next section.

12. BEGAN: Boundary Equilibrium Generative Adversarial Networks

Running along with the same ideology as that of Wasserstein GAN, boundary equi-
librium generative adversarial networks look at a similar convergence distance function
with an autoencoder as a discriminator similar to that of the EBGAN [34]. The loss function
is derived from WGAN [36]. BEGANs also add an equilibrium term in the network to
balance the generator and the discriminator. The lower bound of the Wasserstein function
is found to derive the loss function which is given by (26).

W1(µ1, µ2) = inf
γ∈Γ(µ1,µ2)

E(x1,x2)∼γ[|x1 − x2|] (26)

Using (26) and the Jensen inequality, (27) can be derived.

inf E[|x1 − x2|] ≥ inf|E[x1 − x2]|=|m1 −m2| (27)

The estimation in (27) is the stipulated lower bound of the Wasserstein distance. This
lower bound is used to optimize the autoencoder loss distributions effectively.

(a)


W1(µ1, µ2) ≥ m1 −m2

m1 → ∞
m2 → 0

or (b)


W1(µ1, µ2) ≥ m2 −m1

m1 → 0
m2 → ∞

(28)

In (28), µ1 is the loss distribution L(x) and µ2 is the loss distribution L(G(z)). In order
to minimize |m1 − m2|, either of the equations in (28) can be used. Since the minimization
of m1 is conducive to autoencoding the images, (28(b)) is used for BEGAN. The equilibrium
factor, as stated before, can then be given by (29).

E[L(x)] = E[L(G(z))] (29)

This is meant to share the error when the discriminator cannot distinguish between
the original images and the fake images, allowing for the even distribution of error across
both the generator and the discriminator. Further, a diversity ratio is defined, as in (30).

γ =
E[L(G(z))]

E[L(x)]
(30)

This parameter allows the discriminator, which has the dual job of autoencoding
images as well as working as a discriminator for the GAN, to work in two modes:

1. When the diversity ratio is lowered, the discriminator focuses on autoencoding images
and reduces the image diversity of the generated samples;

2. When the diversity ratio is higher, more emphasis is subjected towards discriminating
the generated images, hence the diversity of the images produced increases.

The boundary equilibrium condition objective is given by (31), where θD is the discrim-
inator parameter, θG is the generator parameter and kt is the parameter from proportional
control theory that allows the equilibrium to occur. kt is defined as kt ∈ [0, 1] and λk is the
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proportional gain for k. It can also be seen as the learning rate for k and was initially set as
0.001 for the experiments.

LD = L(x)− kt.L(G(zD)) for θD
LG = L(G(zG)) for θG
kt+1 = kt + λk(γL(x)− L(G(zG))) for each training step t.

(31)

Here, there is no need to train the generator and discriminator in alternation to add
stability to the network. Using the equilibrium and the diversity ratio, the network can be
trained without any such alternations. The final global measure of convergence, a metric to
determine the convergence of any GAN, is defined in (32).

Mglobal = L(x)+
∣∣∣γL(x)− L(G(zG))

∣∣∣ (32)

This measure can be used to determine whether a model has reach convergence or has
collapsed. The model architecture is shown in Figure 14. To improve training, vanishing
residuals based on deep residual networks [68,69] are also used. Furthermore, skip connec-
tions allow for better gradient propagation. One critical thing to note is the omission of the
usage of batch normalization, dropout, and other such regular methods to train GANs in
the original proposal of the BEGAN model. The dataset used by Berthelot et al. [19] was
the 360K celebrity face dataset along with the Adam optimizer.
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12.1. Comparative Analysis of BEGAN: Boundary Equilibrium Generative Adversarial Networks

From the initial results in Table 8, it is evident that BEGAN performs better than
vanilla GAN, adversarially learned inference (ALI) and WGANs. It is to be noted that these
values were measured on the CIFAR-100 dataset. A comparison of GAN architectures with
respect to BEGAN in their inception score [36] is done in Table 8. From Figure 15, a stark
improvement in the generation of faces can be seen; the faces generated by EBGAN are
distorted while those generated by BEGANs look realistic [19].

Table 8. The inception scores of various GANs, compared to real data.

Method (Unsupervised) Score

Real Data 11.24
BEGAN 5.62

ALI 5.34
MIX + WGAN 4.04
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12.2. Critical Analysis of BEGANs

While boundary equilibrium GANs show a significant improvement compared to previ-
ously discussed GANs models, they do raise some important questions for further research:

• The question of the necessity to have an autoencoder discriminator;
• The question of the latent space size for the autoencoder from the previous point;
• The improvement of using variational auto encoders;
• The problem of knowing when to add noise to the input.

Furthermore, there is a striking resemblance to the original WGAN model, but the
only difference is the autoencoder–equilibrium function of the network in their work which
fulfills the job of the K–Lipschitz constraint. They also suggest future regarding the control
of the diversity of the generator even more.

While the BEGAN model did improve the output from the generative model, the
generated images are still often discernible as fake to a human. The following section,
Section 12, discusses an improved technique for training GANs, which uses a visual Turing
test to gauge how good a generated sample truly is.

13. Creative Adversarial Networks

Although GANs have been highly successful in generating art, they are limited to
the features of the original art. In fact, one of the caveats of GANs is that the generator
may lose any originality if they find an image that suitably fools the discriminator. Of
course, this problem has been solved by models such as CGANs that force the generator
to generate images that look different from each other; however, they are still expected
to look similar to the training images as that is what the discriminator expects. However,
creative adversarial networks, proposed by Elgammal et al. [31] attempt to force generators
to create novel pieces of art, as any artist strives to do.

While traditional GANs receive only one signal from the discriminator, the creative
adversarial network works by having two contradictory forces—one is the usual signal
of whether the discriminator thinks the given image is real or fake, and the second is a
measure of how well the discriminator can classify the image into an established style.
While a GAN would want the generator to maximize the latter as well, the CAN promotes
creativity and therefore the two signals work against each other. The CAN includes these
measures in the form of a classification loss and a style ambiguity loss. The CAN generator
works to minimize the cross entropy between the class posterior and the uniform target
distribution, which minimizes when the classes are equiprobable.

13.1. Critical Analysis of CANs

In order to correctly validate the CAN, it was tested by Elgammal et al. [31] with
qualitative comparison of the CAN against the DCGAN on the same training images. The
results were compared by human judges; those that were marked most realistic and creative
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are shown in Figure 16. Objectively, the CAN was better at identifying and replicating
identifiable objects such as faces, crowds, and landscapes, whereas the GAN art appeared
more abstract due to lack of identifiable objects.
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human subjects.

The CAN was also tested subjectively against the DCGAN and against art created by
human artists to answer:

• Whether the art was created by humans or a computer;
• Whether the art was original and held novelty or not.

While the main intention of the CAN is to create unique pieces of art, it is also
important that they appear to be created by a human. In this sense, the CAN outperformed
the DCGAN significantly.

However, in order to test for the CANs creativity, it was compared against three
datasets of human art by human judges. These questions were meant to elicit whether
the art seemed intentional, creative, and inspiring to the viewer. While these measures
are completely subjective, it can be seen from Table 9 that CANs outperformed even
human-created art in the given criteria.

Table 9. Results of the subjective comparison of CAN against the datasets: Art created by human
artists, Abstract Expressionist, Art Basel 2016, and the combination of the two.

Painting Set Question 1 (std)
Intentionality

Question 2 (std)
Structure

Question 3 (std)
Communication

Question 4 (std)
Inspiration

CAN 3.3 (0.47) 3.2 (0.47) 2.7 (0.46) 2.5 (0.41)

Abstract
Expressionist 2.8 (0.43) 2.6 (0.35) 2.4 (0.41) 2.3 (0.27)

Art Basel 2016 2.5 (0.72) 2.4 (0.64) 2.1 (0.59) 1.9 (0.54)

Artist sets
combined 2.7 (0.6) 2.5 (0.52) 2.2 (0.54) 2.1 (0.45)
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The results obtained by Elgammal et al. [31] for the subjective comparison of CAN
against three datasets of art created by human artists, the Abstract Expressionist, the Art
Basel 2016, and the combination of the two aforementioned datasets. Question 1 asked
whether the judge can see the artist’s intention behind the painting, Question 2 determined
whether the painting seemed to have a visual structure, Question 3 asked the judge of they
felt the image was communicating with them, and Question 4 asked the judges whether
the painting made them feel elevated or inspired are presented in Table 9.

13.2. Critical Analysis of CANs

The CAN was intended to generate creative pieces of art, and it was able to do so
in a manner that outperformed the creativity of human-generated art as evaluated on
four parameters by human judges. It also outperformed the DCGAN in terms of whether
the image seemed to be created by a human. The CAN was able to achieve this without a
human-in-the-loop for judging creativity. This is accomplished by the interactions between
the two signals that reward the generator for staying close to the boundary of realism
while also forcing it to deviate and explore new styles. Of course, all GANs face the same
issue in validation in that the realism of the image is relatively subjective and therefore
hard to measure; however, the CAN takes this issue further as creativity is even more
subjective and humans also have a natural bias to consider images that fit into a certain
style as realistic.

14. Mini-Batch Processing and Other Improved Techniques for Training GANs

GANs are known to produce superior samples compared to other generative models,
but their training methodologies are rigorous compared to others and the final output
is often quite easily discernible from the original dataset. This section elaborates upon
the work of OpenAI in devising new architectural features and novel training procedures
in order to streamline the GAN training procedure. A visual Turing test is performed to
gauge the quality of the images; the model generated MNIST samples that the human eye
could not distinguish from the real MNIST samples. In a nutshell, training a generative
adversarial network consists of attaining a Nash equilibrium to a two-player mini-max
game where each player intends to minimize the cost function associated with it. The
methodologies to help the model attain Nash equilibrium include: feature matching,
minibatch discrimination, historical averaging, one-sided label smoothing, and virtual
batch normalization.

GANs can be understood to approximately maximize Jensen–Shannon divergence:
a metric that only requires the model to produce some samples that look like the real
data, but not necessarily to assign high probability to every single example. So far,
GANs have been more successful in generating real-looking images on challenging high-
dimensional datasets of natural images, which also makes them a promising candidate for
semi-supervised learning.

14.1. Comparative Analysis of Improved Techniques for Training GAN’s

Over the MNIST dataset, semi-supervised training was performed. The MNIST dataset
contains 60,000 labeled pairs of digits and their images. About a fraction of these were
randomly picked and compared with random subsets of the same setup of labeled data.
In a Turing test, a human judge cannot differentiate between human-generated data and
machine-generated data. The networks used had five hidden layers each. The results
observed in the experiment performed passed the visual Turing test with high marks. The
quality of the images generated were visually improved after the implementation of mini-
batch discrimination, as shown in Figure 17. In part (a) shows samples generated by the
model during semi-supervised training. These samples can be clearly distinguished from
images coming from MNIST dataset. In part (b) samples generated with minibatch discrim-
ination are presented. Samples are completely indistinguishable from the dataset images.
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14.2. Critical Analysis of Improved Techniques for Training GANs

Mini-batch discrimination is a measure that determines how similar a variation is to
other features in the same minibatch. This allows the discriminator gradients to encourage
generated examples to be different from each other. This prevents a common situation in
which many generated examples are identical in nature, which we have seen in vanilla
GANs (Section 3) and LSGANs (Section 9). Because gradient descent is unable to separate
identical variables, generator nets that begin to emit partially identical samples will never
converge to the correct equilibrium.

Furthermore, the improved techniques also include changes to the standard GAN
specification which ameliorates the instability caused by these two effects. These techniques
do not guarantee success, but the authors showed that they work well enough to signifi-
cantly improve upon the models than can be trained using regular GAN. The stabilization
method, in turn, allows us to successfully perform semi-supervised training.

Until now, the models discussed have mostly focused on image generation. In the
next section, the utility of GANs will be expanded into image manipulation. In Sections 11
and 12, we will also see the use of GANs for image-to-image translation and speech
generation, respectively.

15. Generative Visual Manipulation on the Natural Image Manifold

Image manipulation includes the addition of figures, colors, or other elements to an
existing image. This can be used to create a better interface between search engines and
people with limited artistic capabilities. Research conducted at UC Berkley in collaboration
with Adobe tackled realistic image manipulation with the use of GANs. It involved
designing a model whose task was to understand and model projections of a given natural
image. Then, based on the users’ preference and sentiment, the model generates images
subjective to the degree of manipulation. The tool they designed is able to create visual
content and produce images by sampling a latent vector space. The image generation is
not user-controlled.

The model proposed by Zhu et al. [70] targets three core applications towards vi-
sual manipulation:

• alteration in shape and color;
• transformation of an image;
• generation of a new image pertaining to the user data.
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These manipulations are all attained by gradient descent-based optimization that adds
to the simplicity of the tool generated. The implemented model acts as an interactive image
generation tool using a method called motion plus color flow.

15.1. Comparative Analysis of Generative Visual Manipulation on the Natural Image Manifold

A set of approximately 500 images from five different datasets were used as input
for this model. The performance was measured over the metric of image reconstruction
error. Most comparable results were observed from optimization and NN-based methods.
The results were obtained while performing the task of realistic photo manipulation of
color and shape. These results are demonstrated in Table 10, and the generated images are
presented in Figure 18. The user used the brush tools to generate an image from scratch
(top row) and then kept adding more scribbles to the result (2nd and 3rd rows). In the
last row, we show the most similar real images to the generated images. A dashed line
represents the sketch tool, and a color scribble represents the color brush.

Table 10. Average error measured for image reconstruction per dataset [70].

Shoes Church
Outdoor

Outdoor
Natural Handbags Shirts

Optimization-based 0.155 0.319 0.176 0.299 0.284

Network-based 0.210 0.338 0.198 0.302 0.265

Hybrid (Zhu et al.) 0.140 0.250 0.145 0.242 0.184

Figure 18. Images generated while performing the task of realistic photo manipulation of color
and shape.

15.2. Critical Analysis of Generative Visual Manipulation on the Natural Image Manifold

Upon training the model on a class specific dataset, in contrast to cross-class trained
models, there was a significant decrease in the reconstruction errors observed. The hybrid
approach conducted led to the best results in all the classes. Their approach incorporated
DGCANs to manipulate the images. The quality of the generated images is limited to
the quality and variety of the images in the dataset; however, a trade-off is expected
between model computation and size of the dataset. Further, the generated images, in some
situations, still look like gibberish to a human viewer.

This model discussed the manipulation of an image using user drawn inputs. In the
next section, GANs are used to create another image based on an input image.

16. Image-to-Image Translation with Conditional Adversarial Networks

Just as a concept may be expressed in either English or French, a scene may be
rendered as either an RGB photograph or a semantic label map, among many other possible
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visualizations. In analogy to language translation, this paper elaborates upon image-to-
image translation as the problem of translating one possible rendering of a scene into
another. Problems of this kind are common throughout computer vision and graphics. One
reason why language translation is difficult is that the mapping between languages is rarely
one-to-one as any given concept is easier to express in one language than another. This is in
part because the “real versus fake” discriminator becomes significantly powerful when it is
allowed to notice any tiny artifact in a huge output image. For image translation tasks, they
require that large images can be generated. CGANs, discussed in Section 4, make this is
achievable by restricting the discriminator of the GAN to only consider realism at the patch
level. A surprising result is that applying the GAN discriminator just at the patch level, in
a fully convolutional manner, is often sufficient to produce globally realistic images. This
setup marries the GAN framework with classical work on Markov models of images.

Applying the GAN at the patch level allows us to scale to large images, but the
optimization still has a pitfall. GANs involve a two-player minimax game, and such games
are prone to oscillation and often fail to converge. To dampen these oscillations, it was
found effective to add an auxiliary loss, such as a traditional Euclidean loss. Interestingly,
even though the Euclidean loss is inappropriate for many problems, when combined with
a GAN it produces sharp results. The model is a convolutional encoder–decoder with skip
connections between each layer and the previous one. The experiments demonstrated
that the skip connections dramatically improve results. For the discriminator, they used
a fully convolutional “PatchGAN” classifier. This net looks at each (N × N) patch in the
synthesized output and classifies it as real or fake. By restricting the discriminator to
patches, it can be trained quickly even on large images.

16.1. Comparative Analysis of Image-to-Image Translation with Conditional Adversarial Networks

Fully convolutional networks for semantic segmentation are used to derive FCN-
scores for different generator architectures evaluated on Cityscapes labels photos. U-net is
the encoder–decoder with skip connections included. Table 11 shows the results obtained
in [71].

Table 11. FCN-scores for different generator architectures [71].

Loss Pixel-per acc. Per-Class acc. Class IOU

Encoder-decoder(L2) 0.35 0.12 0.08

Encoder-Decoder (L1+cGAN) 0.29 0.09 0.05

U-net (L1) 0.48 0.18 0.13

U-net (L1+cGAN) [71] 0.55 0.20 0.14

Since it is difficult to gauge the accuracy of image-to-image translation models based
on statistical metrics, the performance of the model was tested in Turing test-like settings
with human participants, and the results are in Table 11. Unfortunately, due to minor errors
in the output, the generated photos of chaotic scenarios, such as aerial images translated
from maps, fooled participants in 18.9% of the cases, which is much higher than the simple
L1 baseline. However, in the inverse case, in more organized images such as images of
maps translated from aerial images, participants were less likely to be fooled. This can
be attributed to the fact that maps are clean, organized representations, which are more
difficult for the machine to learn. Figure 19 provides a comparison of the different losses:
the L1+cGAN consistently generates realistic looking images; whereas while cGAN does
perform well, some of the images lack clarity or details.
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16.2. Critical Analysis of Image-to-Image Translation with Conditional Adversarial Networks

The cGAN loss can handle a lot of problems where traditionally one would use a
handcrafted representation or loss, such as classification problems, problems with class
imbalance, and creation of sharp images. The L1+cGAN loss can deal with this since the
loss is computed over extended windows, so the rare classes affect more image windows.
Also, the distribution matching property means that the cGAN with pixel features will want
1% blue pixels whereas a MAP per-pixel classifier might never output a blue pixel. In order
to apply conditional GANs to high resolution images, the discriminator architecture was
restricted only consider (N × N) patches in the generator’s output. Full image coverage is
achieved by running this discriminator fully convolutionally over all overlapping patches.

However, despite the efficiency of GANs in creating realistic real-world images, there
is a requirement for map or organized image generation from real-world images.

This section marks the end of the discussion of specific GANs as image process models.
The following section, Section 16, discusses GANs in the context of speech generation.

17. SEGAN: Speech Enhancement Generative Adversarial Network

Speech enhancement is about increasing speech signals’ intelligibility, as well as their
perceptual quality. This task can precede many others in the speech processing domain,
where a clean signal is rather preferred to achieve better detection, as in automatic speech
recognition, or a higher quality acoustic modeling, as in text-to-speech. Besides, deep
networks are known to effectively deal with structured and correlated data like speech,
without any need for handcrafted feature transformations, so that models can be built
within an end-to-end framework. The proposed model can be seen as a learned loss
function within an adversarial framework that works at the waveform level. Pascual
et al. [37] evaluated the proposed approach by using an independent test set of x hours of
audio and y noise conditions, and perform both objective and subjective evaluations.

The architectures that have been used for denoising are referred to as denoising
autoencoders (DAE). A DAE is a neural network which attempts to map noisy inputs
to their clean version. The proposed architecture is based on the adversarial training
technique, where the generator (G) network learns to clean a full chunk of waveform in a
single inference pass, whilst the discriminator (D) network tries to identify whether the
waveform comes from G or from the training set. This architecture for the encoder–decoder
is shown in Figure 20. During training, for every noisy signal, a clean reference is obtained.
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The model proposed by Pascual et al. [37] follows the conditioned generative adversarial
approach described in Section 5.
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17.1. Analysis of SEGAN

For SEGAN, batch normalization was used where the batching was parallelized in
four GPUs to speed up the training. The batch size was picked to be 100 (an effective size
of 400 with an averaging of the resulting gradients from the individual batches sent to the
GPUs). used NVIDIA Titan X GPUs and a multiple-threaded loader for the data samples
to avoid slowing down the training during data reading. The total time per epoch was
around 20 min.

The discriminator, D, learns about the appropriate characteristics to tell the difference
between the clean signal and the corrupted noise. On the other hand, when the fake pair
is shown, D differentiates it as an invalid enhancement of the signal. This way, when
the generator, G, is updated to fool D, G should be correcting those mistakes that clearly
show its fake behavior, with the final objective of generating cleaner outputs during the
iterative process.

Various metrics such as the perceptual evaluation of speech quality (PESQ), mean
opinion score (MOS) to the speech signal (CSIG), MOS to the intrusiveness of background
noise (COVL) and segmental signal-to-noise ratio (SSNR) were used for quantitative anal-
ysis of the results. The signals were enhanced using the Wiener method based on priori
SNR estimation as a benchmark for the SEGAN model. The results of various metrics on
the original data, the data generated by the benchmark model, and the data generated by
SEGAN are presented in Table 12. As observed, SEGAN outperforms Weiner-enhancement
in all metrics except for PESQ [37].
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Table 12. The results of various metrics on the original data, the data generated by the benchmark
model, and the data generated by SEGAN [37].

Metric Original Noisy Signal Wiener-Enhancement SEGAN Enhancement

PESQ 1.97 2.22 2.16

CSIG 3.35 3.23 3.48

CBAK 2.44 2.68 2.94

COVL 2.63 2.67 2.80

SSNR 1.68 5.07 7.73

17.2. Critical Analysis of SEGAN

The results show that the proposed method can enhance speech under a wide range
of noisy conditions. Figure 21 shows the waveform and spectrogram of a sentence (“We
were surprised to see”). The top plot shows the clean signal, and the middle plot shows the
signal with additive background noise. The bottom plot shows the waveform generated
by the SEGAN. Dashed lines shown in Figure 21 represent gradient backdrop. It can be
observed how the noise of low frequencies (till 4 kHz are significantly attenuated, even if it
contains formant tracks of background voices. This is more effective in segments when the
signal does not have low frequency content such as silence. The high frequency noise is
attenuated but still present.
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to the sentence—“We were surprised to see”.

18. Recent Developments
18.1. Transfer Learning

Transfer learning [72] is a machine learning method where a model developed for a
task is reused as the starting point for a model on a second task.

It is a popular approach in deep learning where pre-trained models are used as the
starting point on computer vision and natural language processing tasks given the vast
computational and time resources required to develop neural network models on these
problems and from the huge jumps in skill that they provide on related problems.

Transfer learning has been applied to GANs by freezing lower-layers of both the
generator and discriminator for pre-trained GANs. This method allows efficient GANs to
be trained even on low quality data and may cut down on resources required in training.
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Mahapatra & Ge utilized transfer learning with segmented augmented registration for
image registration [73].

Figure 22 outlines some commonly used transfer learning techniques [72]. Transfer
learning looks at a methodology that uses a pre-trained model from one dataset with minor
changes in another model of a similar dataset in order to predict results with acceptable
accuracy. This type of learning deals with porting models to be used for novel tasks that
the original dataset did not have, or had, a part of. Transfer learning is important in the
adversarial domain as it allows adversarial networks to be ported to other generative
models that can be used to generate images that were not previously present in the dataset.
The generative models designed this way must know the spatial representation of the
data they are trained on, thereby being able to learn most presentations of similar data in
a domain.
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18.2. Progressive Growing

Progressive growing of generative adversarial networks refers to a synchronous train-
ing of the generator, G, and discriminator, D, in order to stabilize the model and produce
more efficient results. At the time of this work, a recently published work by researchers
at NVIDIA, proposed progressive growing, where the number of layers in both G and D
are gradually increased [75]. As shown in Figure 24, the model begins with low-resolution
images and a small number of layers, and both G and D are gradually improved through
the training process. As training starts, initially, the resolution is low, and the numbers of
layers are less. As time goes on, more resolution is added along with symmetrically adding
more layers to both the architectures.
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Figure 24. Improvement of G and D values gradually through the training process.

All existing layers in both models remain mutable throughout the entire training
progress. However, the older layers are expected to be mapped to smaller-features and
should be maintained to some extent throughout the training process. Thus, when a new
layer is created, it is faded into the model slowly in order to avoid shocks to previously
existing layers (Figure 25). Thus, the addition of layers can be done smoothly, thereby
avoiding the shocking of the already existing trained layers. The learning is much more
stable at first as the amount of later space representations to be learned is less as compared to
the training procedure at a further time-period. (a), (b), (c) part of Figure 25 are representing
the different stages of a newly created layer being added into the model.
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The results generated using the progressive growth GAN on the ‘Celeb A’ dataset is
presented in Figure 26a. It is observed that some of the images look slightly distorted; but
this distortion is minimal in comparison to other methods as can be seen from the results
for the WGANs with gradient penalty method, which is shown in Figure 26b.
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19. Future Avenues

The proposal of GANs opened a new avenue for generative models since 2015, with
multiple new technologies in GANs being proposed each year. The improvement of GANs
has led to more stability in the models, better generations, and the ability to cover a wide
range of applications. Amongst these results, there has been some notable work that has
further pushed the boundaries of Adversarial training which are listed as follows.

19.1. Adversarial Noise

It is a sub domain of adversarial learning which uses noise layers to fool a classifier
using a white box method [76]. This method uses a combined gradient, just like in adver-
sarial learning, to learn the gradient updates of any classifier. This form of learning allows
the noise layer to adapt to the classifiers learning mechanism and fool it once learned.
However, adversarial noise has only been discussed in the context of adversarial attacks,
where the classifier is forced to misclassify due to misleading noise. Further research into
the white-box applications of adversarial noise may lead to a low-cost solution for training.

19.2. Pruning of Adversarial Networks

Most GANs use some form of Neural Network to form the generative and discrim-
inative models. It follows logically that the concept of NN pruning is also applicable to
GANs. Pruning of an NN is done to remove unimportant weighted information via second
derivative data, in order to reduce the size of the network and to improve the speed of
processing. Since GANs function with two separate NNs, pruning can drastically improve
the speed of the network. Research has been done to create efficient pruning strategies for
GANs. Many works utilize evolutionary algorithms for pruning; however, these iterative
algorithms themselves have a high overhead and can increase the training time, which is
counterproductive. Yu & Pool [77] propose a self-pruning GAN model, where the discrimi-
nator also acts as an agent that tests the efficacy of pruning—if the results of G are the same
before and after pruning, pruning is performed. Song et al. [78] proposed another method
of self-pruning that utilizes Euclidean distance to calculate the correlation between each
pair of feature maps in a convolutional layer. One random feature map out of each of the
two pairs that has lowest inter-pair Euclidean distance is dropped, since low Euclidean
distance represents high correlation.

19.3. Adversarial Compression

This application of Adversarial learning involves using GANs to create a compression
mechanism for high quality images to be compressed by learning the spatial features of the
images. The dataset is first learned by the GAN and then compress as latent space variables
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using an autoencoder generator that maps the original images to the latent space [79]. While
current compression methods using GANs do produce higher quality images compared
to baseline GAN models, there is still significant loss of the individual objects or textures
in an image. In order to be applicable to real world scenarios, compressed images must
preserve a significant amount of the information in the original images. Furthermore, more
research in the process of image decompression using GANs could lead to a compression-
to-decompression GAN-based pipeline for image transfer.

19.4. Single Image Super Resolution

This is one of the most widely applied use-case of generative models. It is performed
hand in glove with image compression. This method uses combination of neural architec-
tures to generate artifacts within an image that would increase the resolution of the image
adding sharpness in feature and increasing confidence while performing a visual Turing
test. Multi-scale approaches and back-engineering approaches have been applied to the
super-resolution problem; however, some existing models seem to reduce the resolution
rather than improving it. Image super resolution has significant applications in astronomy
and medical imaging.

19.5. New Architectures

Since the inception of GAN’s in 2014 there has been an uptick in the amount of
adversarial architectures designed and implemented. The adversarial approach has been
applied to multiple use cases namely, upsampling, classification, and generation. One
of the newer modifications to the existing GAN models is the introduction of shared or
hidden connecting layers between the discriminator and the generator, in order to make it
more difficult to fool the discriminator. Other advances include utilization of other types of
NNs, utilization of various combinations of loss functions and activation functions, and
modifications to the architecture to non-image-based applications.

19.6. Other Avenues for Future Work

Till now, the work done to create compact cross modal GANs has only been able to
achieve a 20% reduction in complexity and cost of computation. Making GANs that are
compact enough to run on mobile devices is an important step towards improving the
usefulness of the models from an individual user perspective [80].

GANs are incredibly powerful networks, but their training takes a long time as the
generative model needs to compete with the discriminative model. There have been many
methods proposed to tackle this, including sample mixing. Some of the proposed methods
are Mixup, CutMix and SRMix. However, these methods do not provide consistent results.
SRMix does not always work, Mixup does not generate good low-level features and CutMix
does not generate good high-level features. Thus, work is required, either in improving
mixing methods or in formulating other techniques to improve the training efficiency of
GANs [81].

GANs generally require large datasets to train the model to achieve quality results.
The work done to reduce the required size of dataset either did not achieve the standard
of results or did not work for conditional GAN tasks. Tasks such as image extrapolation
or image-to-image translation still require huge datasets to work effectively. Furthermore,
the robustness of the GANs trained on limited sets of noisy data has not been quantified.
These are all directions in which future work is required [82].

While research has been done to make GANs more effective in learning complex high
dimensional data, the results are either unsatisfactory or need to be developed further.
For example, partitioning the space could potentially deteriorate the GAN by introducing
an extra gradient. Furthermore, the proposed model for partitioning has not been made
flexible enough to work in supervised learning where the data label may have its own
partitioning. The partitioning approach could also be improved by removing the local
minima of the guide function [83].
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20. Conclusions

Generative adversarial networks are a powerful class of neural networks that are used
for unsupervised learning. In GANs, there are two competing neural network models in
the form of a generator and a discriminator. The generator generates fake samples of data
and tries to fool the discriminator. The discriminator, on the other hand, tries to distinguish
between the real and fake samples. Our goal in this work was to critically analyze the
development of the adversarial networks from its beginning, preceded by the stage on
which it is based. There are several properties, such as regularization and generalization
that are common with machine learning algorithms. We presented these notions. Also, the
problems faced by GANs are in the form of convergence and stability. We have devoted
a complete section to discussing the developments in this direction. There have been
several milestones in the gradual development of GANs, and improved models have been
proposed. The BEGAN model can efficiently handle many of the drawbacks in the original
GAN and its improvements. Several other problems faced by even the BEGAN model
were elaborated on, and the approached made so far in handling some of these problems,
fully or partially, were critically analyzed and presented. We have followed a chronological
order of elaboration explaining the architecture and training procedure in descriptive detail.
Each of the research works were discussed elaborately, comparatively, and critically. The
techniques covered in Sections 3–16 were outlined with minimum assumptions and careful
explanations. Presently, generative models are used extensively in computing parallel
frameworks and optimization in many application areas. Our survey of generative models
provides a critical analysis of the existing techniques and outlines some avenues for the
future development of GANs.
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