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Abstract: The computational time of compressed sensing algorithms applied to supraharmonic needs
to be improved in online applications. In this paper, a simplified supraharmonic compressive sensing
model is proposed. The model first detects the supraharmonic raw spectral array to obtain the
estimated sparsity and the index of supraharmonic emissions, which simplifies the sensing matrix
in the iteration according to the index and then shortens the whole iteration time of compressed
sensing. The simulation verifies that the model can reduce the computation time to less than half of
the original compressed sensing model and does not affect the computation accuracy. Finally, the
online application effect of the algorithm is verified by experiments.
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1. Introduction

With the development of power systems, the distributed renewable energy sources
(RES) connected to the distribution network is increasing [1,2]. On the grid side, a large
number of inverters are connected to the grid, and high-frequency voltage and current
harmonics are injected into the grid, too. On the user side, rectifiers, and chopper devices,
such as switching the power supply and electric vehicle charging piles, are becoming
increasingly popular. The current harmonics generated by these devices in a range from
2 kHz to 150 kHz also affect the distribution network and adjacent devices [3]. The voltage
and current harmonics mentioned above in the range from 2 kHz to 150 kHz are collectively
referred to as supraharmonic [4].

Power electronics and other supraharmonic emission sources directly affect the normal
operation and service life of nearby equipment. In the papers [5,6], it was found through
practical measurements that the high-frequency voltage distortion caused by suprahar-
monics leads to faults and noise in household appliances. The device capacitors also heat
up due to excessive supraharmonic currents, which further affect the device’s life [7]. In
addition to this, supraharmonics affect the power quality of the distribution network and
power line communication [8]. The meter causes significant errors when subjected to
supraharmonic interference [9]. Supraharmonics affect the quality of power supply to
the grid. The literature [10,11] measured the supraharmonic emission generated by EV
charging to further investigate the effect of related devices on the supply voltage. The
paper [12] studied the effect of grid impedance on the propagation of supraharmonics, and
experimentally summarized some laws on the interaction between supraharmonics and
the grid.

For the above ongoing research, fast and accurate supraharmonic measurement meth-
ods are indispensable, but mature measurement methods for supraharmonic
identification and estimation are still lacking [13]. The measurement standards
IEC 61000-4-7 [14], IEC 61000-4-30 [15], and CISPR 16-2-1 [16] propose three suprahar-
monic detection methods. The literature [13,17] compared the existing standards, the
CISPR 16-2-1 method, and the IEC 61000-4-7 method, which have a frequency resolution
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of 200 Hz, and the detection amplitude is the same in most cases. However, the amount
of data processed by these two methods is more than 10 times that of the IEC 61000-4-30
method. The weakness of the IEC 61000-4-30 method is that the frequency resolution is
2 kHz and the method only analyses 8% of the measurement data.

The existing standard methods for supraharmonics meet the needs of different ap-
plication situations, but in order to have a standardized method for the online detection
of supraharmonics, it is necessary to improve the computational complexity, computa-
tional time, and computational accuracy. According to the standard CISPR 16-2-1, the
measurement bandwidth of the frequency band A (9–150 kHz) is 200 Hz, so it takes
1410 measurements in this band, and the measuring time is more than 2 min. To reduce
the computation time, the literature [18] was improved based on CISPR 16-2-1 by using
a cascaded phase-locked loop to obtain the higher energy supraharmonic components
instead of the swept frequency detection in the original standard. The detection time is
significantly reduced, but it still takes a few seconds to complete. In order to reduce the
computational burden of CISPR 16-2-1, a new digital quasi-peak detection method was
proposed in the literature [19], which indirectly reduced the computation time. Although
the methods of calculation based on CISPR 16-2-1 have been improved, the computing time
still takes over 200 ms, which is not suitable for online measurements of supraharmonics.

IEC 61000-4-30 and IEC 61000-4-7 use DFT for spectrum analysis. According to
IEC 61000-4-30, power quality analysis requires 200 ms time series data collection. Har-
monics below 2 kHz are typically sampled using a sampling rate of 10 kSP/s, so the amount
of data for harmonic analysis is approximately 2000. For a supraharmonic of 2-150 kHz,
a minimum sampling rate of 300 kSP/s is required, and the minimum amount of data to
be analyzed is 60,000, which is 30 times higher than that of the harmonics. The increased
data processing requirements put a higher demand on the computational resources of
the power-quality instruments used for online measurements in the field. Faced with a
large amount of data, IEC 61000-4-7 performed spectrum analysis on all the data, and
IEC 61000-4-30 retained only 8% of the data for spectrum analysis. Therefore, the frequency
resolution and signal coverage of the IEC 61000-4-30 supraharmonic measurement method
is lower than that of other standard methods.

In order to balance the computation time and frequency resolution, a supraharmonic
compression sensing model was proposed in the literature [20,21] to detect supraharmonics
using the CS-OMP algorithm to recover the detection results with a 200 Hz frequency
resolution from the 0.5 ms duration data. The literature [20] further proposed the MCS
for supraharmonics, which reduces the number of calculations from N to 1 for N sets
of measurements using the combined sparsity of high-resolution spectral arrays. This
method can calculate all signals in the IEC 61000-4-30 method. After that, the literature [22]
achieved adaptive sparsity by comparing iterative residuals, which reduced the compu-
tational error but significantly increased the computation time. The literature [23] used
the Bayesian algorithm CS-BCS instead of the CS-OMP greedy algorithm to optimize the
detection performance and frequency detection error of intermittent supraharmonic emis-
sions yet increased the overall reporting delay. The literature [24] uses CS-OMP to select
the supraharmonic emission frequencies and compute TFT expansion at the fundamental
frequency and at these frequencies to achieve the more accurate detection of time-varying
signals. The above study further extends the application prospects of the compression
sensing algorithm in the online measurement of supraharmonics. However, the existing
compressed sensing model needs to determine the number of iterations according to the
sparsity (or residuals) and then calculate the matrix index of the supraharmonic vectors
based on the sensing matrix. In the iterative process, the inner product of any column of
the sensing matrix with the current residual needs to be computed, and the computation
time grows linearly with increasing sparsity. Therefore, this paper proposes a method to
estimate the sparsity based on the probability density model and, in the process, obtains the
supraharmonic spectrum index, simplifies the sensing matrix based on the spectrum index,
and then simplifies the compressed sensing model. The model only needs to calculate the
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inner product of any column in the simplified sensing matrix with the current residuals
in a single iteration, thus reducing the iteration time and resulting in a reduction of the
computational complexity of the supraharmonic compressed sensing algorithm.

This paper is organized as follows. Section 2 introduces the principle and compu-
tational process of the simplified supraharmonic compression sensing model; Section 3
investigates the computational complexity and computational accuracy of the algorithm;
Section 4 verifies the computational time and accuracy of the algorithm through experi-
ments, and finally reviews the contributions of this paper and makes conclusions.

2. Algorithm Theory
2.1. Compressed Sensing Models for Supraharmonic

The sampled data of 200 ms power signals containing supraharmonics are filtered by a
2–150 kHz bandpass filter, and the data are evenly divided into 400 groups of ∆T = 0.5ms
small data blocks, among which the supraharmonic components contained in the time-
domain data of any small data block can be expressed as:

s(n) =
N
∑

k=1
Ak cos(2π fknTs + ϕk) n ∈ (0, · · · , N − 1)

=
N
∑

k=1

(
Ak
2 ej(ϕk+2π fknTs) + Ak

2 e−j(ϕk+2π fknTs)
) (1)

where Ak, fk, and ϕk are the amplitude, frequency, and initial phase of each frequency
component, respectively. Assuming that the parameters are stable, Ts is the sampling
interval, fs is the reciprocal of the sampling frequency, and the length of the sequence
is N = fs∆T.

After s(n) processing with DFT, it can be expressed as:

x(k) =
1
N

N−1

∑
n=0

s(n)e−j2πkn/N (2)

where 1 ≤ k ≤ N, the frequency resolution ∆ f = fs/N is 2 kHz, neglecting the ef-
fect of the negative frequency points in Equation (1). Substituting Equation (1) into
Equation (2) yields:

x(k) =
1
2

N

∑
k=1

(
Akejϕk

1
N

N−1

∑
n=0

e−j2πn(k/N− fkTs)

)
(3)

where the sum of the equiprobable series 1
N ∑N−1

n=0 e−j2πn(k/N− fkTs) is calculated as:

1
N

1−e−j2πN(k/N− fk Ts)

1−e−j2π(k/N− fk Ts)

= sin πN(k/N− fkTs)
N sin π(k/N− fkTs)

e−jπ(N−1)(k/N− fkTs)

= DN

(
k
N − fkTs

) (4)

The final expression of the original spectral array can be obtained as:

x(k) =
1
2

Akejϕk
N

∑
k=1

DN

(
k
N
− fkTs

)
(5)

To improve the frequency resolution, an interpolation factor F is introduced. Thus,
the frequency resolution can be refined to ∆′ f = ∆ f /F, and the total spectral lines are
N′ = NF. Thus:

fkTs ≈
r

N′ (6)
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where r is the r spectral line in the new frequency resolution. The new original spectral
array is:

x(k) ' 1
2

N′
∑
r=1

DN

(
k
N
− r

N′

)
Arejθr (7)

The matrix form of Equation (7) is expressed as:

xk '
1
2

DA (8)

that is 

x(1)
...

x(k)
...

x(N)

 '
1
2



DN (1,1) · · · DN (1,r) · · · DN (1,N′)
...

. . .
...

...
...

DN (k,1) · · · DN (k,r) · · · DN (k,N′)
...

...
...

. . .
...

DN (N,1) · · · DN (N,r) · · · DN (N,N′)





A1ejϕ1

...
Arejϕr

...
AN′ ejϕN′

 (9)

where the elements of the observation matrix D are DN(k,r) = DN(k/N − r/N′). From
Equation (9), the interpolated estimation matrix A can be solved when the original spectral
array xk and the sensing matrix D have been obtained, but the huge amount of data and the
inverse of the observation matrix are difficult to achieve and the error rate is not low, so the
direct solution rarely occurs in online applications, and the compressed sensing algorithm
is needed to further identify the supraharmonic in the estimation matrix.

2.2. Simplified Compressed Sensing Model and its Calculation

Existing supraharmonic compression sensing algorithms require a given sparsity to
control the number of supraharmonic spectra detected by the algorithm before calculation,
or the maximum calculation residual is set to control the calculation accuracy and indirectly
control the detection results; these methods are more suitable for detecting known supra-
harmonic emissions. However, if an unknown signal is actually measured, the sparsity of
the algorithm needs to be estimated based on the test signal so that the calculation result is
closer to the supraharmonic emission of the unknown signal.

2.2.1. The Prediction of Sparsity S

It is most convenient to estimate sparsity S directly from the original spectral array
xk, provided that the original spectral array xk is known and no additional computational
effort is added. The current supraharmonic test results contain a large number of noise
spectra in addition to supraharmonic emissions, while the original spectral array contains
only amplitude and phase information, and the phase information cannot discriminate the
supraharmonic and noise in the original spectral array and can only be used to discriminate
the supraharmonic emission by setting the amplitude threshold.

The ideal amplitude threshold should be slightly higher than the noise amplitude in
order to detect all the supraharmonic emissions as much as possible. While the arbitrary raw
spectral array amplitude information can be divided into normal and skewed distributions
according to the probability density distribution, where the normal distribution usually
uses the mean to represent the average level of the data while adjusting the amplitude
threshold with the standard deviation based on the mean in order to be close to the ideal
threshold, the skewed distribution uses the median and median deviation to calculate
the amplitude threshold. First, calculate the skewness entropy of the original spectral
array data [25]:

β1 =
1
N

N

∑
k=1

(xk − x)3/

(
1
N

N

∑
k=1

(xk − x)2

)3/2

, (10)
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where xk represents the spectral value of the original spectral array, x = 1
N ∑N

k=1 xk and then
calculate the raw spectral array data kurtosis entropy:

β2 =
1
N

N

∑
k=1

(xk − x)4/

(
1
N

N

∑
k=1

(xk − x)2

)2

, (11)

before finally using the Jarque-Bera test:

JB =
N
6

[
β2

1 +
(β2 − 3)2

4

]
, (12)

to determine whether the original spectral array belongs to normal or skewed distribu-
tion [26]. For the normal distribution model, the amplitude threshold of the original spectral
array xTh is set to [27,28]:

xTh = x + β1 × σ(xk) (13)

where σ(xk) =
√

1
N ∑N

k=1(xk − x)2; for skewed distributions:

xTh = x (14)

Comparing the original spectral array and the amplitude threshold, a matrix consisting
of the number of spectral lines greater than the amplitude threshold and the corresponding
matrix index can be obtained:

I = {k1, k2, · · · , kS} (15)

where k represents the index of the supraharmonic emission band selected from k in
Equation (7). The size of the matrix I represent the number of supraharmonic emissions in
the original spectral array, so it is regarded as the sparsity in the proposed algorithm.

2.2.2. Simplified Compressed Sensing Model

After estimating the sparsity and the matrix index, it is already possible to predict
the supraharmonic emission bands, and only a more accurate emission band needs to be
calculated by the compressed sensing algorithm. The computational complexity of the
compressed sensing algorithm mainly comes from the N × N′ dimensional observation
matrix D in Equation (8), and the observation matrix D can be simplified accordingly after
obtaining the matrix index I. The observation matrix D consists of the N′ column vector,
and the column vector that can predict the supraharmonic emission has the following
relationship with the matrix index I:

DI =
(

DN(k,i1×F) DN(k,i2×F) · · · DN(k,iS×F)
)

(16)

However, the index I represent the 2 kHz bandwidth and the column vector in the
2 kHz/F bandwidth, so we need to extend the range of DI :

DI =
(
· · · DN(k,i×F−F+1) · · · DN(k,i×F) · · ·

)
(17)

The expanded DI is a N × (F · S) dimensional matrix, and since F · S � N′, the
solution complexity of the compressed perceptual model using DI should be lower than
that of the model containing the N × N′ dimensional matrix D.

Therefore, Equation (8) can be simplified to a new compressed perceptual model:

xk '
1
2

DIAI (18)

where AI is the estimated result in the supraharmonic emission band. In order to make AI
directly the result of spectrum analysis, the size of AI cannot be changed. Therefore, the
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column vectors in DI remain unchanged, the other columns were filled with zeros, and the
size of the matrix DI remained as N × N′.

2.2.3. Compression Sensing Estimation of Spectrum

The supraharmonic spectral array represented by Equation (18) is further filtered
using the OMP algorithm, and the algorithm iteration process is as follows.

Algorithm input parameters: N× 1 dimensional original spectrum array xk; N× (F · S)
dimensional observation matrix DI ; sparsity (number of cycles) S.

Algorithm parameter initialization. The set residuals are r0 = xk, the index set is
Λ0 = Φ, and the sub-matrix of DI is DΛ = [], number of iterations: t = 1.

Algorithm iteration process: Calculate the inner product of the current residual rt−1
and the column vector of the observation matrix DI . Solve for the position index λt of the
column vector when the inner product is at a maximum.

λt = argmax
∣∣〈DrTh , rt−1

〉∣∣i = 1, · · · , FKTh (19)

Expanding the index set: Λt = Λt−1 ∪ {λt} and sub-matrix DΛ = [DΛ Dλt ]. Set to
zero the λt column vector of DI :D(:, λt) = 0. Calculate a new estimate vector:

^
ut = argmin‖v−DΛut‖2

2 =
(

DH
ΛDΛ

)−1
DH

Λv (20)

Update the residuals rt = xk −DΛut. If t > K and stop the loop; otherwise, if t = t+ 1,
continue iterating.

The output of the algorithm: the index support set is Λ = Λt and the perceptual
sub-matrix DΛ. After recovering the support set Λ and sub-matrix DΛ, the high-resolution
spectrum array can be recovered using least squares:

^
AI = argmin‖xk-DΛAI‖2

2 =
(

DH
ΛDΛ

)−1
DH

Λxk (21)

where
^
AI includes all the screened high-resolution spectra. Each line corresponds to the

phase volume of each frequency component at different times. The frequency, amplitude,
and phase matrix of the main supraharmonic emissions can be obtained by:

f = (Λ− 1)× ∆′ f (22)

A = abs
(

^
AI

)
(23)

θ = angle
(

^
AI

)
(24)

2.3. Discussion of Relevant Parameters
2.3.1. Original Spectral Array of Multi-measurement Vectors

The original spectral array of multi-measurement vectors has joint sparsity [20], so the
original spectral array of M for the single-measurement vectors is combined as:

S = [xk,1, · · · , xk,m, · · · , xk,M] (25)

Calculate the autocorrelation matrix RS of S:

RS = E[SSH ] (26)

where the superscript H indicates the transpose and complex conjugate. Then, decompose
the RS eigenvalue:

RS = VSΛSVH
S (27)
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where ΛS and VS are the eigenvalue matrix and eigenvector matrix, respectively, so that
dK =

√
diag(ΛS).

The eigenvector matrix VS is multiplied by dK to obtain the joint raw spectral array of
the multi-measurement vectors v:

v = VSdK (28)

Instead of the original spectral array xk, the multi-measurement vectors array v can be
filtered to recover the support set Λ and the perceptual submatrix DY of the supraharmonic
emission, and then the spectrum is recovered by the least squares method.

2.3.2. The Relationship between the Interpolation Factor F and the Sparsity S

From the literature, it is known that the interpolation factor F and the sparsity S have
the following relationship:

F ≤ 1
N

exp(N/mS) (29)

where m ∈ (0, 1] in the application m = 1, therefore, F ≤ 1
N exp(N/S). The interpolation

factor F is too small to achieve the effect of improving the frequency resolution, and when
F becomes large, the calculation complexity and algorithm recovery difficulty also increase.
Therefore, F finally takes the value of 10, at which time the frequency resolution is 200 Hz
for the frequency resolution of the supraharmonic measurement proposed in IEC61000-4-7,
S ≤ N/ln(10× N).

3. Algorithm Simulation Analysis

In this section, the performance of the proposed algorithm is verified by MATLAB.
The orthogonal matching tracking algorithm (CS-OMP), Bayesian algorithm (CS-BCS),
and CS-TFM algorithms are selected for comparison. The performance of the proposed
algorithms was evaluated by analyzing the computation time and estimation accuracy
of each algorithm comprehensively. The simulation program of each algorithm was run
on MATLAB R2018b with a computer configuration of a 3.20 GHz AMD Ryzen 7 5800H
processor, 16-GB memory, and a Windows 11 64-bit operating system. In this paper, two
metrics of frequency error (FE) and magnitude relative error (ME) are introduced to evaluate
the algorithm detection effectiveness [17].

FE =
∣∣∣ ftest − fre f

∣∣∣ (30)

ME =
∣∣∣Mtest/Mre f − 1

∣∣∣ ∗ 100 (31)

Mtest and ftest indicate the test signal amplitude and frequency, respectively, and Mre f and
fre f indicate the reference signal amplitude and frequency.

3.1. Simulation Model

In order to verify the performance of the algorithm, this paper tested using a single-
frequency signal and the Class D test signal proposed in the literature [16]. The signal
model of the test signal is shown below:

s(n) =
N

∑
k=1

Ak cos(2π fknTs + ϕk) (32)

where Ak, fk, and ϕk are the amplitude, frequency, and initial phase of the frequency
component of the test signal. The specific parameters of the frequency and amplitude of
the single-frequency signal are shown in Table 1. The constant amplitude single-frequency
signal was used to evaluate the amplitude accuracy of a specific frequency and also to
simulate the supraharmonic emission of some LEDs. The Class D test signal proposed in
the literature [17] uses a supraharmonic distortion with a frequency representative of the
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actual grid, containing narrowband supraharmonic, broadband supraharmonic, power
line communication supraharmonic, and environmental noise, which can more realistically
represent the supraharmonic distortion in the grid. Some of the frequencies and amplitudes
in the Class D test signal are adjusted in this paper; the final test signal spectrum used is
shown in Figure 1, and the peak narrowband supraharmonic emissions are summarized
in Table 2 for the convenience of comparing the test results. The phase of the test signal is
set to a certain value in the range. Both the single-frequency signal and the Class D test
signal simulate a data length of 200 ms sampled at a sampling rate of 500 KSP/s, i.e., the
data from 100 k sampling points with a time interval of 2µs were analyzed.

Table 1. Frequency and amplitude of single frequency test signals.

No. Frequency (kHz) Amplitude (mV)

1 49.8 500
2 50.2 750
3 99.8 800
4 100.2 1000
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Figure 1. Class D test signal spectrum.

Table 2. Class D test signal main emission spectrum.

No. Frequency (kHz) Amplitude (mV)

1 12.2 271.09
2 38.8 97.83
3 63.4 57.33
4 88.8 83.09
5 101.4 66.82
6 135.8 57.09

3.2. Algorithm Complexity and Computation Time

The computational burden of the original compressed sensing model mainly comes
from calculating the current residuals and the inner product of the column vectors of the
sensing matrix during the iterative process, while the simplified compressed sensing model
(Equation (18)) proposed in this paper mainly reduces the computational complexity and
shortens the computation time by decreasing the dimension of the sensing matrix. In
order to demonstrate the simplification effect more intuitively, the CS-OMP algorithm is
used as an example to compare the differences in computational complexity between the
two models. In order to make the calculation time of the simulation more valuable, the
calculation time in the following table is the average of 200 simulation times.

Under the simulation condition of a 500 KSa/s sampling rate, the length N of the
timing signal is 250, and the original spectral array also contains 250 spectral components.
When the interpolation factor F is 10, the number of spectral components N’ recovered
by compression Sensing should be 2500. Therefore, when the sparsity is S, the number of
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times the original compressed Sensing model uses the OMP method to calculate the current
residuals and the inner product of the column vectors of the Sensing matrix should be
2500 × S. The number of calculations after simplification is 10× S2, and the supraharmonic
recovery spectral array satisfies the requirement of algorithm sparsity, i.e., 10× S < 2500,
so the number of times the simplified compressed sensing matrix calculates the current
residuals and the inner product of the column vectors of the sensing matrix should be
smaller than the original compressed Sensing matrix model. Figure 2 shows the relationship
between the number of times the two models calculate the current residuals, the inner
product of the column vectors of the perceptual matrix, and the sparsity S. As the sparsity
S increases, the difference between the number of times the two models correspond to
the technique increases, and the ratio between the number of times the original model
calculates and the number of times the simplified model calculates decreases, but even
when the sparsity S is taken as 50, the number of times the simplified model calculates is
still 1/5 of the original model.
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Then, the effect of the simplified model on the computation time of the algorithms
was verified, and the computation time of each algorithm is shown in Table 3 for a single
frequency test signal. The computation time of the MCS-OMP algorithm depends on
the size of the sparsity, but the simulations and experiments in the literature [20] were
performed using a given sparsity with a known number of major supraharmonic emissions
of the signal so that the CS-TFM algorithm used a time of 12–13 ms for a given sparsity
of two. While the MCS-OMP algorithm uses a multi-measurement vector model, so the
computation time increases, the MCS-BCS has a longer computation time of 14–15 ms
than the MCS-OMP. The sparsity estimated by the proposed algorithm also takes the value
of two, and the maximum computation time is 6 ms, which has a shorter computation
time with the same value of sparsity as the MCS-OMP algorithm. Based on the sparsity
of spectrum estimation, the proposed algorithm simplifies the sensing matrix to obtain
Equation (18). For single-frequency test signals with small sparsity, the time reduction is
not yet obvious, so the effect of the compressed sensing model obtained by Equation (18)
on reducing the computation time was further verified by the class D test signals.

Table 3. Single frequency test signal calculation time.

Algorithm Time (ms)

new proposal 5.7
MCS-OMP 13.4
MCS-BCS 14.2
CS-TFM 12.1

Figure 3 compares the computation time of the simplified compressed sensing model
proposed in this paper and the MCS-OMP model in the literature for Class D test signals
using a given sparsity without using the probability density distribution model to estimate
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the sparsity, and the computation time is taken as the average of 10 simulations. At the
minimum sparsity of two, the computation time was the same as that in Table 3, while
the difference in computation time became more obvious as the sparsity increased. At
the sparsity of 50, the computation time of the proposed algorithm was 59 ms, and the
computation times of MCS-OMP, MCS-BCS, and CS-TFM were 178.4 ms, 212.296 ms, and
188.752 ms, respectively, and the proposed algorithm reduced the computation time of the
MCS-OMP algorithm by 2/3. In the supraharmonic bandwidth, with a 200 Hz frequency
resolution used by the proposed algorithm, 740 spectral bins were obtained, which corre-
sponded to a sparsity range of 1480. It is only necessary to calculate all 740 spectrums if
there are supraharmonic emissions in all bands. However, the number of actually measured
supraharmonic emissions obtained in the current study was much smaller than 740 [10,11].
Therefore, the simplified compressed perceptual model represented by Equation 18 can
effectively reduce the computation time of the MCS-OMP model, and the larger the value
of sparsity taken, the more obvious the computation time reduction effect is.

Electronics 2022, 11, x FOR PEER REVIEW 10 of 17 
 

 

Then, the effect of the simplified model on the computation time of the algorithms 

was verified, and the computation time of each algorithm is shown in Table 3 for a single 

frequency test signal. The computation time of the MCS-OMP algorithm depends on the 

size of the sparsity, but the simulations and experiments in the literature [20] were per-

formed using a given sparsity with a known number of major supraharmonic emissions 

of the signal so that the CS-TFM algorithm used a time of 12–13 ms for a given sparsity of 

two. While the MCS-OMP algorithm uses a multi-measurement vector model, so the com-

putation time increases, the MCS-BCS has a longer computation time of 14–15 ms than the 

MCS-OMP. The sparsity estimated by the proposed algorithm also takes the value of two, 

and the maximum computation time is 6 ms, which has a shorter computation time with 

the same value of sparsity as the MCS-OMP algorithm. Based on the sparsity of spectrum 

estimation, the proposed algorithm simplifies the sensing matrix to obtain Equation (18). 

For single-frequency test signals with small sparsity, the time reduction is not yet obvious, 

so the effect of the compressed sensing model obtained by Equation (18) on reducing the 

computation time was further verified by the class D test signals.  

Table 3. Single frequency test signal calculation time. 

Algorithm Time (ms) 

new proposal 5.7 

MCS-OMP 13.4 

MCS-BCS 14.2 

CS-TFM 12.1 

Figure 3 compares the computation time of the simplified compressed sensing model 

proposed in this paper and the MCS-OMP model in the literature for Class D test signals 

using a given sparsity without using the probability density distribution model to esti-

mate the sparsity, and the computation time is taken as the average of 10 simulations. At 

the minimum sparsity of two, the computation time was the same as that in Table 3, while 

the difference in computation time became more obvious as the sparsity increased. At the 

sparsity of 50, the computation time of the proposed algorithm was 59 ms, and the com-

putation times of MCS-OMP, MCS-BCS, and CS-TFM were 178.4 ms, 212.296 ms, and 

188.752 ms, respectively, and the proposed algorithm reduced the computation time of 

the MCS-OMP algorithm by 2/3. In the supraharmonic bandwidth, with a 200 Hz fre-

quency resolution used by the proposed algorithm, 740 spectral bins were obtained, which 

corresponded to a sparsity range of 1480. It is only necessary to calculate all 740 spectrums 

if there are supraharmonic emissions in all bands. However, the number of actually meas-

ured supraharmonic emissions obtained in the current study was much smaller than 740 

[10,11]. Therefore, the simplified compressed perceptual model represented by Equation 

18 can effectively reduce the computation time of the MCS-OMP model, and the larger 

the value of sparsity taken, the more obvious the computation time reduction effect is. 

Sparsity

C
o
m

p
u
ti

n
g
 t

im
e
 (

m
s)

0 10 20 30 40 50

40

80

120

160

200
 
 
  CS-TFM

MCS-OMP
MCS-BCS

New proposal

 

Figure 3. Comparison of calculation time of different algorithms for Class D test signals. Figure 3. Comparison of calculation time of different algorithms for Class D test signals.

The computation time trend of the same compressed sensing model in Figure 3 is
basically the same as the trend of the number of inner product calculations in Figure 2,
which indicates that the number of inner product calculations is the main influence on the
computation time.

The estimated sparsity of the Class D test signal using the probability density distribu-
tion model is 40, and the total computation time is 43 ms. Comparing the computation time
of the directly given sparsity in Figure 2, the estimated sparsity increases the computation
time by 5 ms, but the computation time of the MCS-OMP algorithm is 141 ms at the given
sparsity of 40. Even if the time of the estimated sparsity is added, the computation time
of the algorithm in this paper is still within half of the time of the MCS-OMP algorithm.
Although the estimated sparsity increases the computation time, the overall computation
time can be reduced more by simplifying the compressed perceptual model.

3.3. Calculation Accuracy

The results of the frequency and amplitude estimation for single-frequency test signals
and Class D test signals are shown in Tables 4 and 5. From the two tables, it can be seen that
the frequency estimation error FE for all algorithms at the main supraharmonic emission is
0. The amplitude estimation accuracy of the proposed algorithms is basically the same as
that of CS-OMP, with the relative error ME within 0.2. The estimation accuracy of CS-BCS
and CS-TFM is relatively higher, with the relative error of ME within 0.1, but there are still
errors with the actual values.
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Table 4. Single frequency test signal amplitude test.

No.
New Proposal CS-OMP CS-BCS CS-TFM

FE ME FE ME FE ME FE ME

1 0 0.15 0 0.13 0 0.07 0 0.04
2 0 0.13 0 0.14 0 0.09 0 0.06
3 0 0.17 0 0.18 0 0.1 0 0.07
4 0 0.19 0 0.2 0 0.1 0 0.09
5 0 0.15 0 0.13 0 0.07 0 0.04
6 0 0.13 0 0.14 0 0.09 0 0.06

Table 5. Class D test signal amplitude test.

No.
New Proposal CS-OMP CS-BCS CS-TFM

FE ME FE ME FE ME FE ME

1 0 0.12 0 0.13 0 0.07 0 0.03
2 0 0.13 0 0.14 0 0.08 0 0.05
3 0 0.13 0 0.14 0 0.09 0 0.06
4 0 0.15 0 0.15 0 0.09 0 0.07
5 0 0.16 0 0.17 0 0.09 0 0.08
6 0 0.17 0 0.17 0 0.1 0 0.09

To further verify the robustness of the algorithm and the application effect under
the MMV model, Class D test signals are still used to make the estimation results of the
amplitude and frequency of the algorithm in this paper at different times. Figure 4 gives
the amplitude variation in the main supraharmonic emission of the Class D test signal
within 200 ms.
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4. Experimental Test

In this section, the proposed algorithm is tested experimentally. The voltage probe
used for the experiment is RIGOL RP1025D; the current probe used is RIGOL RP1004. The
signals acquired by the voltage and current probes are passed through the third-order
elliptic high-pass filter proposed in the literature [29], and then the data acquisition and
processing are realized through the NI 9223 voltage acquisition module and the NI 9057
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control box. The sampling frequency is set to 500 kHz and the sampling time is 200 ms. In
the following, the computation time and computation accuracy of the algorithm of this
paper in NI 9057 is examined using LED lights and Class D test signals, respectively, and
the computation time of the MCS-OMP algorithm is added for comparison.

4.1. Class D Test Signal Experiment

As in Figure 5, the waveform of the Class D test signal is stored in a signal generator
for continuous output and is then amplified by a power amplifier with a supraharmonic
emission source with a 20-ohm power resistor as the load. The voltage probe is connected
to both ends of the load. The experimental voltage waveform is shown in Figure 6.
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The voltage sparsity predictions are 40, and a total of 20 supraharmonic emissions
were detected in the supraharmonic band, containing the six major emissions in Table 2.
The test results are shown in Figure 7. The detected six main supraharmonic emissions
have the same frequency as the set frequency, the amplitude shows periodic fluctuations,
and the relative error between the average value and the setting amplitude is within 0.2%.

4.2. LED Supraharmonic Emission Test

This test measures an LED lamp with a switching frequency of approximately 100 kHz
and a power of 30 watts, using an AC laboratory power supply to power it. As shown
in Figure 8, a voltage probe and a current probe are connected at the connection point
between the power supply and the LED lamp. The voltage and current waveforms of the
LED lamp obtained from the test are shown in Figure 9.
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Figure 10. (a) LED voltage time and frequency diagram; (b) LED current time frequency diagram. 
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A simplified compressed sensing model with multiple measurement vectors is used
for data processing, while 400 sets of data of a 200 ms test duration are calculated, the
algorithm interpolation factor is set to 10, and the sparsity is predicted using a probability
density distribution model. The sparsity of the voltage spectrum was predicted to be
eight. The voltage detection results are shown in Figure 10a, and the supraharmonic
emission is concentrated in the 2–10 kHz band and the switching frequency, where the
instantaneous amplitude of the detection results at 2–10 kHz is large but not regular, while
the amplitude detection results at the switching frequency have obvious periodicity, and
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the period is related to the fundamental frequency. The sparsity of the current spectrum
was predicted to be six, and the current detection results are shown in Figure 10b, where
the current amplitude period variation at the switching frequency is still correlated with
the fundamental frequency period.
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4.3. Experimental Time Comparison

After conducting the experiments for LED and Class D test signals, the computa-
tion time is summarized in Table 6. The calculated times in the table are the average of
200 experimental times. The sparsity of the MCS-OMP algorithm is set to the sparsity
predicted by the probabilistic model in the table to compare the computation time of the
simplified compressed sensing model. In the LED lamp experiments, the voltage spectrum
computation time of the algorithm in this paper was 36 ms, and the current spectrum com-
putation time was 34 ms, while the voltage spectrum computation time of the MCS-OMP
algorithm was 155 ms, and the current spectrum computation time was 132 ms.

Table 6. Calculation time comparison.

Algorithm Time(ms)
LED Voltage LED Current Class D

New proposal 35.7 34.2 106.3
MCS-OMP 155.1 132.3 387.4

In the Class D signal experiment, the voltage spectrum calculation time was 106 ms,
and the voltage spectrum calculation time of the MCS-OMP algorithm was 386 ms. There-
fore, if the sparsity estimation in online applications is large, the calculation time of the MCS-
OMP algorithm may exceed 200 ms, and the algorithm in this paper can shorten the time on
the basis of MCS-OMP, further improving the online detection of supraharmonic feasibility.

5. Conclusions

In this paper, a new measurement method for identifying and estimating the supra-
harmonic components is introduced and validated. The method first estimates the sparsity
of the original spectral array and the index of the main supraharmonic emission, which
is used to further simplify the existing MMV measurement model, and, finally, recovers
the high-resolution spectral array based on CS-OMP. In Section 3, two simulation models
were used to verify the performance of the algorithm. Compared with existing compressed
sensing algorithms, the algorithm in this paper achieves significant time reduction with
guaranteed computational accuracy, followed by the further verification of the algorithm’s
effectiveness in estimating the sparsity of practical applications with the measurement data
in Section 4 and the computational results using the MMV model are shown.
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The simulation and experimental results confirm that the method effectively reduces
computational complexity while maintaining the accuracy of the compressive sensing
estimation. Meanwhile, the method in this paper can be further applied to other existing
compression-aware algorithms to shorten the computation time in order to reduce the
online measurement time. The future steps of this study are to shorten the computation
time based on improving the frequency resolution of the supraharmonic test.
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