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Abstract: Internet of Things (IoT) is bringing a revolution in today’s world where devices in our
surroundings become smart and perform daily-life activities and operations with more precision.
The architecture of IoT is heterogeneous, providing autonomy to nodes so that they can communicate
with other nodes and exchange information at any time. IoT and healthcare together provide notable
facilities for patient monitoring. However, one of the most critical challenges is the identification
of malicious and compromised nodes. In this article, we propose a machine learning-based trust
management approach for edge nodes to identify nodes with malicious behavior. The proposed
mechanism utilizes knowledge and experience components of trust, where knowledge is further
based on several parameters. To prevent the successful execution of good and bad-mouthing attacks,
the proposed approach utilizes edge clouds, i.e., local data centers, to collect recommendations to
evaluate indirect and aggregated trust. The trustworthiness of nodes is ranked between a certain
limit, and only those nodes that satisfy the threshold value can participate in the network. To validate
the performance of the proposed approach, we have performed extensive simulations in comparison
with existing approaches. The results show the effectiveness of the proposed approach against several
potential attacks.

Keywords: Internet of Things; trust management; healthcare; digital revolution; edge clouds; security;
privacy preservation

1. Introduction

Internet of Things (IoT) [1] consists of diverse standards of nodes in a heterogeneous
environment connected with the Internet to communicate and exchange information in
the network [2]. The classification of these nodes can be created based on their processing
power wherein edge devices, such as sensors, contain the least processing power causing
vulnerabilities [3]. The generic architecture of IoT consists of multiple layers, i.e., busi-
ness, application, middleware, and perception layers [4], which are illustrated in Figure 1.
The business layer contains system management solutions that may be varied according to
the requirements [5]. The middleware layer is the most critical layer that consists of infor-
mation processing [6], ubiquitous computing [7], services management [8], databases [9],
and decision units [10]. The network layer consists of transmission networks that provide a
source by which IoT participating nodes can transmit information among them [11]. These
transmission connections will be 4G, 5G, etc. [12]. The perception layer consists of edge
nodes that can be RFID [13], sensors [14], or any physical object [15]. In [4], a generic
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IoT trust architecture is proposed that integrates trust into all these layers as an integral
component to manage security. IoT faces several security challenges [16], e.g., authentica-
tion [17,18], access control [19], trust management in cross-domain along with smart edge
nodes [20], security management in IoT equipped with VANET nodes, policy enforcement,
secure middleware, and confidentiality.

Figure 1. IoT architecture with the integration of trust management.

Due to the heterogeneous environment of IoT, it is inevitable to implement robust
approaches that maintain a secure environment by eliminating malicious nodes and are also
robust enough to keep resilience towards several potential attacks [21–23]. The maintenance
of security is a significant challenge due to wireless technologies that have been extensively
deployed in the IoT environment [24]. Healthcare 4.0 [25] is the term used to describe the
next generation of healthcare technology, which is focused on harnessing data, and analytic
and digital tools to improve patient care and outcomes. The cost of healthcare is a major
issue for many people, and patients are looking for ways to obtain the care they need
without breaking the bank. The trend toward more affordable healthcare [26] has led to
an incredibly promising new technology, i.e., IoT, which allows us to connect devices with
sensors so that we can track our health in real-time [27]. With IoT, doctors can use AI [28]
to analyze your health data and make predictions about your future health prospects.
Healthcare monitoring contains patients’ electronic health records [29] that are transmitted
to doctors for monitoring. The transmitted data become vulnerable to potential IoT attacks.
The most prominent way to maintain a trustworthy environment is to identify and eliminate
such nodes. Trust is proposed as the most prominent lightweight mechanism that helps to
maintain a secure environment by utilizing parameters.

In this article, we have proposed a trust management approach (EdgeTrust) for those
nodes which are not capable to perform complex computations. The proposed approach
is a combination of centralized and distributed trust management architectures. The Ed-
geTrust working consists of two major components, i.e., distributed edge devices and
centralized data centers/edge clouds. The proposed mechanism utilizes the direct and
indirect trust evaluation mechanism where the pre-observations required to evaluate the
trust are provided by a central authority. The absolute direct trust evaluation consists of
observations provided by central authority along with the observations stored on nodes’
local storage. For indirect trust evaluation, nodes also do not require generating the re-
quest to neighboring nodes as the recommendation is to gather by a central authority.
The advantage of utilizing recommendations of the centralized authority reduces the time
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required to evaluate the trust. The trust is further compared with the threshold value
for decision-making.

The structure of the rest of the article is as follows: Section 2 discusses and elaborates
on the existing trust management approaches. Section 3 explains the working of the pro-
posed mechanism such as trust parameters, computations, trust aggregation, and threshold
comparison of trust. Section 4 elaborates and discusses the simulation outcomes and per-
formance comparison of EdgeTrust with existing approaches. Finally, Section 5 concludes
the paper.

2. Literature Review

There are several trust management approaches proposed for IoT-based Healthcare,
but significant research attention is required to address the computational challenges
associated with IoT edge devices that are not capable of performing complex computations.
This section will elaborate on the existing approaches along with their contribution and
limitation to identify the research gaps, also illustrated in Table 1.

A trust management mechanism is proposed for the Social IoT that maintains trust
by self-enforcing in a decentralized manner [30]. The proposed mechanism architecture
consists of multiple IoT devices owned by numerous users who interact with others
at particular time intervals. After the interaction, these nodes submit user ratings to
the IoT decentralized database shared among nodes. These ratings consist of feedback
and zero knowledge. The major contribution of the proposed mechanism is the integra-
tion of a database that contains the feedback of the nodes. However, the decentralized
database can cause data integrity challenges as it is shared and stored without utilizing any
central authority.

A game theory-based decentralized trust management mechanism is proposed for
IoT to maintain robustness among nodes [31]. The proposed mechanism applies the game
theory to identify nodes that are executing good or bad-mouthing attacks by sending
mendacious trust degrees. For updating the trust degrees of nodes, the proposed approach
utilizes the Dempster–Shafer theory that collects the scores for updating process by exclud-
ing disparate scores. To perform a trust computation, the approach utilizes Fuzzy theory to
classify trust into none, low, high, and definitely. The major contribution of the proposed
mechanism is the utilization of the Fuzzy rule to classify trust. However, the performance
of the proposed mechanism needs to be evaluated against potential IoT attacks such as
on-off, whitewashing, etc.

In 2017, a study was proposed to design an architecture and protocol for eHealth
monitoring with the integration of 5G [32]. The study focuses on the continuous monitoring
of patient’s health and concludes no notable difference between 4G and 5G. The architecture
of the proposed scheme consists of a user, a 5G network-enabled antenna, and a database
server on the hospital side. Users/patients are monitored using Bluetooth wearable sensors
and gadgets, whereas the monitored data are forwarded to the hospital using a 5G network.
The monitored data are received by the database server, which acts as the central authority
between the hospital and its users. The database also receives medical analytical data from
hospitals and forwards alarms to patients in case of emergency.

In 2020, a blockchain-based trust protocol was proposed for IoT, which maintains trust
in a decentralized manner [33]. The study stated that an IoT object can communicate and
exchange information, which makes the environment highly dynamic and raise security
challenges. The proposed mechanism is a hierarchical blockchain protocol that also sup-
ports mobility where the architecture of the proposed mechanism consists of a fog layer,
a private blockchain layer, and an IoT layer with different clusters/zones.

In 2018, an energy-efficient trust management mechanism (EET-IoT) [34] is proposed
to protect the IoT network and primarily focus on smart cities [35,36]. The proposed
mechanism utilizes the IEEE 802.14 protocol to perform computations. The purpose of
using the IEEE 802.14 protocol is to sustain the efficiency of the IEET-IoT. The proposed
mechanism further uses Jasang’s Subjective Logic (JSL) to examine the ambiguity of an
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entity. The EET-IoT uses a triple variable concept, i.e., b, d, and u. Variable b expresses the
belief, d represents the disbelief, and u denotes the uncertainty. The evaluation of EET-IoT
shows a significant decrease in energy utilization. The energy consumption evaluation
of the proposed algorithms shows that LT consumes maximum energy followed by LDE
and NDLF. However, optimization at the MAC Layer is required to overcome adequate
energy consumption.

A smart middle-ware mechanism (Smart-TM) [37] is proposed to detect on-off attacks
in IoT. The focus of the proposed mechanism is to automatically assess the resources of IoT
trust by evaluating the attributes of service providers. The Smart-TM utilizes an approach
of machine learning based on the One-Class Support Vector Machine (OneClass-SVM)
method. The degree of trust is estimated by examining the distance from a function of
the Hyper-plane model. Moreover, the middleware implements the decision function to
estimate the trust, and nodes with a higher degree of trust are listed as trusted nodes,
while nodes with a lower degree of trust are classified as untrusted ones or specified as
attackers. The performance evaluation of Smart-TM represents that the proposed approach
successfully distinguishes the behavior to recognize on-off attacks. However, the proposed
mechanism is unable to specify the framework of information gathering, trust dissemina-
tion, updating, and maintenance.

A scheme of trust management (Tm-SecPro) [38] is proposed that adopts two methods,
i.e., maximum ratios combining and selection combining. In Tm-SecPro, service providers
and seekers communicate with each other directly, and the mechanism preserves trust be-
tween them. The proposed mechanism estimates and concludes the results in three phases.
In the first phase, the information about trust control is transmitted to the lower layer. In the
second phase, the specified model is used to calculate the trust values. While in the last
phase, all relations related to these phases are extracted from each layer. The considerable
aspect of this scheme is a fusion of MRC and SC that will help to maintain the reliability
of Tm-SecPro.

Table 1. The comparative analysis of the existing approaches.

Ref. Contribution Limitation

[30] Integration of database that contains feedback of the nodes. Decentralized databases can cause integrity challenges.

[31] Utilization of Fuzzy rule to classify trustworthy and
malicious nodes.

Performance needed to be evaluated in the
IoT Environment.

[33] Hierarchical blockchain protocol that also supports mobility. Not suitable for nodes with less computational capabilities
due to complexity.

[34] The utilization of Jasang’s Subjective Logic (JSL) to examine
the ambiguity of an entity.

Optimization at MAC Layer is required to overcome
adequate energy consumption.

[37] Hyper-plane model along with middleware implements the
decision function. Unable to specify the framework of trust management.

[38] Fusion of MRC and SC that will help to maintain reliability. Transmission of trust computation between multiple layers
may raise integrity challenges.

3. Proposed EdgeTrust Approach

The identification of malicious and compromised is one of the important challenges
in Healthcare 4.0 that can affect the network security and privacy of users. In this arti-
cle, we have proposed EdgeTrust to address the challenges caused by these malicious
nodes. The architecture of the proposed approach consists of three major layers which
are data center/edge clouds, trust management, and edge nodes as illustrated in Figure 2.
The data center contains the data center and edge cloud that have the capability of Naive
Bayes [39,40] for the identification and classification and behavior prediction of malicious
and compromised nodes by utilizing the stored direct observation collected by the network
nodes. These observations are utilized further to formulate direct trust for edge nodes.
Indirect trust at the data center layer can be formulated with the help of recommendations
collected by the edge nodes. The trust management evaluation is a combination of events
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and time-driven under a different scenario. The direct trust degree is evaluated-based
on the knowledge and experience component, which also involves the trust aggregation,
threshold comparison, and decision-making phase. The edge nodes in IoT can be classified
concerning their computational power and internal capabilities.

Figure 2. The proposed EdgeTrust architecture.

In the proposed approach, these edge nodes are classified based on their categories, i.e.,
sensors, home appliances, and smart mobile devices among others. The training phase of
the proposed mechanism includes five distinct phases which are features selection, feature
scaling, classifier implementation, dataset training, and classification of malicious and
compromised nodes. The features of trust parameters used are reliability, cooperativeness
along with experience, and the computation depends on sessions created between nodes
which are denoted as friendliness. If the friendliness of nodes is higher, then the computa-
tions are computed in a time-driven manner while, in the case of low friendliness, trust
computation is performed based on events. The next phase is to scale the features in which
all the features involved in computations are scaled between 0.0–1, where 0.0 represents
the lowest trust and 1 represents a higher trust degree. The complete workflow of trust
computation and decision-making is illustrated by Algorithm 1.
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Algorithm 1 EdgeTrust trust computation process

1: procedure TRUST DEGREE EVALUATION(dob
t )

2: Central authority computation: ob
t = ∑

[
ob1

n−id + ob2
n−id + ob3

n−id + ... + obn
n−id

]
3: Recommendation-based evaluation: ritrust

c−id = ∑
[
rec

ei→ej
r1 + rec

ei→ej
r2 + ... + rec

ei→ej
rn

]
4: procedure EXPERIENCE GATHERING AND FORMULATION(abt→aggregate

ei→ej )

5: Previous computation: epnode−id
eabsolute

= ∑
[
epp1

ei→ej + epp2
ei→ej + ... + eppn

ei→ej

]
6: Aggregated trust: abt→aggregate

ei→ej = dob
t + epnode−id

eabsolute

7: procedure TRUST COMPUTATION
8: Friendliness computations: f rtr

nid

9: Reliability observation: obprt
ei→ej

= ob
t(ei→ej)1
n−id + ob

t(ei→ej)2
n−id + ... + ob

t(ei→ej)n
n−id

10: Reliability formulation: rtdt
ei→ej

11: Cooperativeness computation: obpcpt
ei→ej = obcpt1

n−id + obcpt2
n−id + obcpt3

n−id + ... + obcptn
n−id

12: procedure TRUST AGGREGATION( f t
dtexp
ei→ej )

13: Absolute computation: ctag
dei→ej

= rtdt
ei→ej

+ cptdt
ei→ej

14: Experience formulation: tpt
expei→ej

= ∑n
i=0

[
eto1

ei→ej + eto2
ei→ej + ... + eton

ei→ej

]
15: Absolute trust degree: f t

dtexp
ei→ej = ctag

dei→ej
+ tpt

expei→ej

16: procedure DECISION MAKING

17: Decision making: θ = tpt
expei→ej

18: Exit

To perform classification and prediction, we adopt the Naive Bayes classifier due to its
accuracy and low energy consumption for classification. After selecting the classifier, the
training phase begins, using a dataset of 120,766 trust values per feature for the classifier to
learn from. After training, the classifier calculates the error difference between computed
and actual trust values to increase precision.

3.1. Data Centers and Edge Clouds

In the proposed approach, the data center layer is responsible for performing three
major operations: machine learning-based prediction and direct and indirect trust observa-
tion evaluation. The data centers and edge clouds are able to make predictions based on
direct observations transmitted by the nodes. These transmitted values are first stored by
the central authorities and later used to predict the behavior of edge nodes by applying the
Naive Bayes Classifier. The direct trust evaluation at the data center layer is a time-driven
process, evaluated after 90 minutes. When an edge node requests data from the data center
layer, the central authorities share the already stored observations for further processing.
After receiving the request, the central authorities formulate the direct trust degree using
Equation (1), where dob

t represents the available direct trust observation and ob1
n−id is the

number of observations transmitted by a particular node.

dob
t = ∑

[
ob1

n−id + ob2
n−id + ob3

n−id + ... + obn
n−id

]
(1)

The coverage area of central authorities is larger compared to edge trust, so they
also provide recommendations that have been computed over a specific time interval.
These recommendations help nodes to compute indirect trust. The recommendation-based
indirect trust is formulated using Equation (2), where ritrust

c−id represents the recommendation-
based trust evaluation, and c-id represents the unique identity of a central authority that
computed indirect trust.
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ritrust
c−id = ∑

[
rec

ei→ej
r1 + rec

ei→ej
r2 + ... + rec

ei→ej
rn

]
(2)

3.2. IoT Edge Nodes

The edge nodes are those that cannot perform complex computations but are crucial
to lightening the burden from them to increase the scalability and security of a network. In
the proposed EdgeTrust approach, central authorities compute the direct trust and transmit
it to the requested node while the edge nodes just have to aggregate that value with the pre-
stored experience. The experience component of trust represents the previous experience
of a particular node regarding other nodes that provide services. To evaluate the aggregate
value, the edge nodes apply the summation function to the previous experience available
as represented by Equation (3), where epnode−id

eabsolute
shows the absolute experience formulation

of a node with a unique identity. The epp1
ei→ej represents the number of previous experiences

stored on the internal memory of edge nodes.

epnode−id
eabsolute

= ∑
[
epp1

ei→ej + epp2
ei→ej + ... + eppn

ei→ej

]
(3)

After the formulation of absolute experience, the edge node computes aggregate
trust by using the direct trust and experience trust degree computation as represented by
Equation (4), where abei→ej represents the absolute trust evaluation of edge node i towards
j, dob

t and epnode−id
eabsolute

represent the direct trust evaluated based on observation and experience
evaluation of a node with unique identifiers, respectively.

abt→aggregate
ei→ej = dob

t + epnode−id
eabsolute

(4)

3.3. Trust Management Computations

The trust computation in the proposed mechanism consists of multiple features that are
computed by the central authorities along with edges to formulate an absolute trust value
for decision-making. When edge nodes want to compute the trust value of a particular
node, the node transmits a trust computation request to the nearest central authority. The
request generated by a particular node consists of the trustee’s identification, the trustor’s
identification, and the previous experience trust degree computed by the edge nodes. The
trust computation process begins by first observing the friendliness of the nodes, which
represents the number of sessions created over a specific interval of time. If the friendliness
of the nodes is high, then trust is computed as time-driven, which reduces the energy
consumption of computation. The time-driven trust computation in the case of higher
friendliness is 60 min, which means that nodes are not required to compute trust based
on events and can use the same trust degree for a pre-defined time. The friendliness
is computed based on the sessions created between particular nodes, as represented in
Equation (5).

f rtr
nid

=


timedriven if f r ≥ 50
Eventdriven if f r ≤ 49
indirecttrust if pob = Yes

(5)

In Equation (5), fr, nid, and tr represent friendliness, nodes’ unique identify, and
trust degree, respectively. For direct trust, if f r ≥ 50, the trust is computed as time-
driven. When the number of sessions formulated between two nodes becomes event-
driven and f r ≤ 49, the trust is also computed using a time-driven approach. In case
of no previous observations pob, the trust is computed by gathering recommendations
from central authorities. After evaluating friendliness, the next phase is to compute the
trust parameters, i.e., knowledge and experience. TThe knowledge component of trust
consists of reliability and cooperativeness, which are computed by central authorities when
a particular node generates a request. In the knowledge parameters, the evaluation is
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initiated by evaluating the reliability by gathering the pre-stored observations received
by the central authorities for a while from network nodes. The process of observation
gathering is shown in Equation (6), where the reliability trust degree is formulated by
applying summation to these pre-available observations:

obprt
ei→ej

= ob
t(ei→ej)1
n−id + ob

t(ei→ej)2
n−id + ... + ob

t(ei→ej)n
n−id (6)

In Equation (6), obp represents previous observations, rt shows reliability trust evalua-

tion, and ei → ej is the trust evaluation of edge node i towards j, where ob
t(ei→ej)1
n−id represents

the pre-stored previous observations. After reliability observation gathering, the proposed
mechanism applies a limit to formulate the absolute trust value of the reliability parameter
as shown in Equation (7):

rtdt
ej
= ob

t(ei→ej)1
n−id + ob

t(ei→ej)2
n−id + ... + ob

t(ei→ej)n
n−id (7a)

rtdt
ei→ej

=
n

∑
i=0

[obprt
ei→ej

∗ rtdt
ej
] (7b)

In Equation (7), rtdt
ei→ej

represent the evaluation of reliability evaluation based on a

direct trust approach, where ∑1
0.0 is the summation function that applies on the previ-

ous trust observation to formulate absolute reliability trust degree with a limit of 0.0–1.
The completion of reliability evaluation leads the computation phase to cooperativeness
estimation. The cooperativeness evaluation is evaluated with the same process as reliability
computation and represented by Equation (8). In Equation (8a), obpcpt

ei→ej represents the

cooperativeness trust evaluation of edge node i towards j where ob
cpt(1...n)
n−id represents the

available observations utilized for the cooperativeness trust evaluation. In Equation (8b),
cptdt

ei→ej
represents the formulation of absolute cooperativeness trust degree, while dt shows

the direct trust evaluation. After the trust parameter estimation, the central authority will
proceed further for the trust formulation along with experience as explained in Section 3.4:

obpcpt
ei→ej = obcpt1

n−id + obcpt2
n−id + obcpt3

n−id + ... + obcptn
n−id (8a)

cptdt
ei→ej

=
n

∑
i=0

[
obpcpt

ei→ej(obcpt1
n−id + obcpt2

n−id + ... + obcptn
n−id)

]
(8b)

3.4. Trust Aggregation and Development

The trust aggregation process is the procedure in which the previous trust value has
been utilized with the current trust to develop an absolute trust value that is used during
the phase of decision-making. In the proposed approach, the aggregation and development
process is initiated by developing the trust degree of the parameter. Furthermore, it
uses that value to compute the aggregated value of trust with the previous experience
trust degree of a node. At that phase, the proposed mechanism formulates the absolute
trust degree of knowledge component that consists of reliability, and cooperativeness as
illustrated in Equation (9):

ctag
dei→ej

= rtdt
ei→ej

+ cptdt
ei→ej

(9)

In Equation (9), the ctag
dei→ej

represents the direct current trust evaluation of edge

node i towards j, where rtdt
ei→ej

and cptdt
ei→ej

illustrate the reliability and cooperativeness
trust evaluation. After developing the parameter trust evaluation, the central authorities
transmit the trust degree of a particular node towards the edge node for the aggregation of
experience with current trust. After receiving the parameter trust degree, the edge node
aggregates the experience with current trust by first formulating the previous experience
observations using Equation (10):
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tpt
expei→ej

=
n

∑
i=0

[
eto1

ei→ej + eto2
ei→ej + ... + eton

ei→ej

]
(10a)

f t
dtexp
ei→ej = ctag

dei→ej
+ tpt

expei→ej
(10b)

In Equation (10a), tpt
expei→ej

represents the absolute experience trust formulation process

of edge node i towards j, where eto1...n
ei→ej illustrates the number of previous experience

evaluation available at local storage of edge nodes. In Equation (10b), f t
dtexp
ei→ej represents

the formulation process of final trust degree, where ctag
dei→ej

is the current trust parameter

evaluation and tpt
expei→ej

illustrates the absolute experience trust evaluation. After the
formulation of the final trust degree, the edge node can compare it with the threshold value
for decision-making as discussed in Section 3.5.

3.5. Trust-Based Decision-Making

The decision-making phase is the final phase that utilizes the absolute final trust
degree to compare it with a threshold value to determine if the node is trustworthy or
malicious. In the proposed mechanism, the range of trust degree is 0.0 to 1. Newly joined
edge nodes have a default trust degree of 0.6. A trust degree of 0.7 to 1 is considered
trustworthy, while a trust degree of 0.0 to 0.6 is considered flunk/no trust for old edge
nodes, as illustrated in Equation (11).

θ = tpt
expei→ej

(11a)

θ =

{
FlunkTrust if θ ≤ 0.6
Trustworthy if θ ≥ 0.7

(11b)

If a node satisfies the threshold value, it is allowed to communicate and transmit
monitoring details to hospitals/doctors. If the trust degree of a particular node is less than
the minimum requirement, the node cannot communicate and is not allowed to exchange or
share information. Furthermore, at the end of communication, the edge node will evaluate
the friendliness to determine whether the process of trust degree evaluation should be
time-driven or event-driven in the future. This classification is evaluated in Section 3.3.

3.6. Recommendation-Based Indirect Trust

Recommendation-based trust evaluation is an important factor when a node wants
to communicate or take services. Furthermore, there are several nodes that do not have
previous observations or experience to evaluate trustworthiness. Recommendation-based
trust evaluation provides a way to evaluate trust degree by requesting input from neigh-
boring nodes.

EdgeTrust utilizes recommendations when no previous observations are available.
To gather recommendations, the node broadcasts requests to surrounding nodes with
the node’s unique ID to share stored observations. After receiving the recommendations,
EdgeTrust develops trust by applying a summation function and then comparing the result
with a threshold for decision-making. In the case of indirect trust, the threshold is different
from the threshold used for direct trust evaluation. In recommendation-based evaluation,
nodes are required to maintain a minimum trust degree of 0.9 to be considered trustworthy.
The conditions for decision-making are illustrated by Equation (12):

θ = trt
expei→ej

(12a)

θ =

{
FlunkTrust if θ ≤ 0.8
Trustworthy if θ ≥ 0.9

(12b)
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4. Results and Discussion

In this section, we elaborate on the performance evaluation of the proposed model
in comparison with existing schemes. We used an open-source library (Zetta [41,42]) to
create a central authority and the IoTivity library [43] to enable inter-object connectivity.
Wireless communication is performed using Zigbee (IEEE 802.15) [44]. The complete
simulation setup is given in Table 2. We performed comparative analysis using several
existing mechanisms: TMEI [45], RobustD [31], and SGSQ-TM [46].

The simulation was performed under different scenarios and attacks by varying the
number of network nodes. During the simulation, the number of varying nodes was 50 to
400, and the percentage of malicious and compromised nodes was 35 to 45. The simulation
time (t) was also varied between 600 to 1100 minutes (m), with time-based friendliness
being performed when the number of sessions created between nodes was 50 or more. For
newly joined nodes, the default trust degree was 0.6, while for old nodes, the flunk/no
trust was 0.0 to 0.6. A trust degree of 0.7 to 1 was considered trustworthy.

Table 2. Parameters and simulation setup.

Parameters Value

Area of Network 300 (m2)
No. of Nodes 400∼600

Simulation Time 600∼1100

Trust Degree 0.0-1

MAC IEEE 802.11

Transmission Rate 3∼5 Mbps

Size of Packet 20∼30

Peak Transmission Range 323 (m)
Node Placement Uniform

Maximum Connection 11

4.1. Aggregated Trust Evaluation

Trust aggregation is a process in which certain nodes evaluate the trust degree by
using the previous trust and current trust to formulate an absolute trust degree for decision-
making. In the proposed mechanism, nodes rank the performance of a particular node
after obtaining the services, known as experience, and use that for aggregation purposes
in future trust evaluation. We evaluated the impact of experience trust aggregation under
two different scenarios in which trust computation is performed by nodes with or without
experience aggregation, as illustrated in Figure 3. The figure shows the comparative analysis
of trustworthy TWP (Trust with Previous) and trustworthy TNP (Trust with no Previous)
observations. The trust evaluation of the trustworthy node with aggregation formulates
a stable result and enhances accuracy, while the trust without aggregation illustrates a
wavered trust degree over a time interval (t). In the second scenario, we performed an
identical evaluation on the trust degree of malicious or compromised nodes, and the result
showed similar outcomes in which Flunk TWP (Trust with Previous) represented a uniform
trust degree and Flunk TNO (Trust with no Previous) showed notable inconstancy in
the trust degree and also assigned a higher trust degree, highlighting the significance of
employing previous experience in the proposed approach.
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Figure 3. The impact of aggregated trust computation.

4.2. Honest and Dishonest Trust Accuracy

The accuracy of the honest and dishonest trust evaluation is determined by comparing
the outcomes of the actual and computed trust degree by the model after the training phase.
The simulation was performed to evaluate the trust degree of honest and dishonest nodes,
with the comparative analysis illustrated by Figures 4 and 5. The simulation time for the
honest and dishonest accuracy evaluation was 300 seconds, with the minimum trust being
0.0 and the maximum trust being 1. The comparative analysis of the computed and actual
trust degree of honesty is represented by Figure 4, which shows that the model took 147
seconds to evaluate the actual trust. During the evaluation of the dishonest trust degree, it
took 162.5 seconds to remove the difference between computed and actual trust for accurate
computations, as illustrated in Figure 5.

Figure 4. Honest node’s trust degree accuracy.
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Figure 5. Dishonest node’s trust degree accuracy.

4.3. On-Off Attack

The on-off attack is one of the most serious attacks in the IoT heterogeneous envi-
ronment, where good nodes may become malicious or compromised at any time. It is
important to distinguish such nodes that maintain a higher trust degree and whose neigh-
boring nodes also assign a higher rank as an experience, but become malicious after a
certain period of time. These nodes may also be compromised by different attacks, making
it crucial to recognize these nodes in order to maintain security and privacy. We evalu-
ated the performance of existing approaches under two distinct scenarios by varying the
percentage of malicious nodes and time (t).

In the first scenario of an on-off attack, the number of nodes varied from 50 to 400, with
a percentage of malicious and compromised nodes at 35%. The simulation time was 600
minutes. Figure 6 shows the simulation outcomes of on-off attack scenario-1, illustrating
the performance comparison in which the proposed mechanism successfully recognized
the execution and assigned a lower/flunk trust degree as the nodes became malicious after
a certain time interval. Initially, the proposed mechanism assigned the default trust degree
to nodes with no past experience, and assigned an increasing trust degree at different points
that reached 0.64 at point-5, before dropping to 0.55 and then to the lowest trust of 0.01.
In the second scenario (Figure 7), the number of nodes was the same as in the previous
scenario, and the percentage of malicious nodes increased to 45%. The simulation time
was 1100 minutes, with a threshold of 0.0 to 1, and trust was computed with aggregated
past experience. The increase in malicious and compromised nodes clearly had an impact
on the simulation, and the trust computation assigned to these nodes was lower from the
beginning and reached a minimum of 0.25 at the end. In both scenarios, the proposed
EdgeTrust mechanism assigned a lower trust degree, indicating the effectiveness of the
trust parameters along with the experience component of trust. Therefore, it successfully
recognized the on-off attack.
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Figure 6. On-off attacks (Scenario-1).

Figure 7. On-off attacks (Scenario-2).

4.4. Self Promoting Attack

It is a kind of attack in which nodes try to promote themselves either alone or in
groups to provide the services. The successful execution of a self-promoting attack can
have severe consequences that may compromise privacy by gaining access to private and
sensitive information. To evaluate the performance of the proposed approach with existing
approaches, we have considered two different scenarios in which nodes try to execute a
self-promoting attack in different ways. In the first scenario of a self-promoting attack,
nodes try to promote themselves alone with any support from the surrounding where the
number of nodes is 400 along with varying self-promoting nodes, and the simulation time
is 600 (m).

In the first scenario, the total number of nodes is 400 with the percentage of self-
promoting nodes being 35%. These nodes self-promote themselves alone and do not have
any supporting nodes, where the simulation time consists of 600 (m) with default trust
being 0.6 for new nodes, flunk trust is 0.0–0.6, and supreme trust is 0.7–1. Figure 8 illustrates
the simulation outcomes of the self-promoting attack in scenario 1, wherein the proposed
mechanism assigns the trust degree of 0.86, and the trust degree decreases to reach 0.2,
which shows the successful identification of self-promoting nodes. Furthermore, the SGSQ-
TM [46] also shows effective performance and assigns a low trust degree, i.e, 0.5. In the
second scenario, the total number of nodes is 400 with 45% self-promoting nodes where the
simulation time is 600 (m). In this scenario, the self-promoting attack executes in a group,
which means a bundle of nodes works in parallel to promote a particular node by assigning
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a higher fake trust degree. Figure 9 illustrates the simulation outcomes in comparison with
the existing approaches, and the results show that the proposed mechanism successfully
identifies the malicious nodes and assigns the flunk trust degree of 0.18. Whereas the
existing approaches also identify and assign low trust degrees, such as TMEI assigning a
lower trust degree of 0.6, RobustD and SGSQ-TM assign a lower trust degree of 0.4 and
0.23, respectively.

Figure 8. Self-promoting attacks (Scenario-1).

Figure 9. Self-promoting attacks (Scenario-2).

4.5. Good and Bad Mouthing Attacks

Good and Bad mouthing attacks are similar to self-promoting attacks, but in these
attacks, nodes do not work together to promote themselves. The good and bad-mouthing
attacks are executed by malicious nodes to assign a lower trust degree to the trustworthy
nodes called bad-mouthing, while they can assign a higher trust degree to malicious nodes
known as a good-mouthing attack. The chances of successful execution of this attack
increase when nodes rely on recommendation-based trust evaluation. In the proposed
mechanism, the utilization of recommendations is minimal, whereas the central authorities
provide the recommendation that has been evaluated based on direct observation. To eval-
uate the effectiveness of utilizing direct trust-based evaluation as a recommendation, we
have performed extensive simulations against good and bad-mouthing attacks under dif-
ferent scenarios. The performance of the proposed approach in comparison to the existing
ones is evaluated under two different scenarios for each good and bad-mouthing attack by
applying the variation to the number of trustworthy and malicious nodes.
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In Figures 10 and 11, the X-axis of the graph shows the simulation time, whereas the
Y-axis represents trust, which is computed and assigned at a particular time. In the first
scenario of the good mouthing attack, the number of nodes is 600 where the percentage of
malicious nodes is 35. Figure 10 illustrates the performance of the proposed mechanism,
which shows the trust degree to reach 0.9. After the identification of a good mouthing attack,
the trust degree declines to 0.7, and later on, the trust degree assigned by the EdgeTrust
declines to flunk trust of 0.4. In comparison, the TMEI and RobustD also show a notable
performance and assign a lower trust degree, i.e., 0.4, and 0.5, respectively. In the second
scenario of good mouthing evaluation, the number of nodes increases to 800 where the
percentage of malicious and compromised nodes is 45, and the simulation time is 600 (m).
Figure 11 illustrates the simulation outcomes of the second scenario. In comparison with the
first scenario, the result is more fluctuated than what happened due to the percentage ratio
of malicious or compromised nodes. When the number of nodes increases and numerous
nodes try to execute an attack, then the trust fluctuates between higher and lower degrees.
In the second scenario of good mouthing evaluation, the proposed mechanism initially
assigns a higher trust degree up to 3 points and then it falls to 0.2 at point 4. Looking at
both scenarios, the EdgeTrust assigns the lowest trust to malicious nodes and detects the
trustworthy nodes.

Figure 10. Good mouthing attacks with varying nodes (Scenario-1).

Figure 11. Good mouthing attacks with varying nodes (Scenario-2).

The bad-mouthing attack is also evaluated under two different scenarios by applying
variation to the number of total nodes along with the percentage ratio of malicious and
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compromised nodes. In the first scenario of a bad-mouthing attack, the number of nodes
is 400, where the percentage ratio of malicious nodes is 35%, and the simulation time
is 600 (m). Figure 12 shows the simulation outcome in which malicious nodes try bad-
mouthing trustworthy nodes by assigning a low trust degree while the increasing trust
graph of the proposed approach clearly shows that it successfully recognizes the attack
and assigns a higher trust degree to the nodes. The proposed EdgeTrust approach initially
assigns a lower degree of trust, i.e., 0.3, but later it reaches 0.9, which is the highest
trust degree. Furthermore, the existing approaches also show a notable performance
against the attack and assign a higher trust degree to the trustworthy nodes. In the second
scenario, the total number of nodes is 400, where the malicious and compromised nodes
that execute the attack are 45%, and the simulation time is 600 (m). Figure 13 illustrates
the comparative performance analysis of the proposed mechanism along with existing
approaches. The EdgeTrust approach begins by assigning a default trust degree that
increases with time and reaches 0.9, which is the highest trust degree. In comparison,
the SGSQ-TM approach also manifests an effective performance and keeps the trust degree
of trustworthiness higher, which is 0.4 in the beginning and reaches 0.7. The performance
of TMEI is stable and assigns a higher trust degree, whereas the performance of RobustD
assigns a lower trust degree, i.e., 0.2, but begins by assigning a higher trust degree after 450
(m) that reaches 0.5.

Figure 12. Bad mouthing attacks in Scenario-1.

Figure 13. Bad mouthing attacks in Scenario-2.
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4.6. Energy Consumption Evaluation

Communication and computation consume a notable amount of energy in IoT, and
it is important to propose such approaches that consume less energy to make the imple-
mentation of green IoT possible in a real-world scenario. We have evaluated the energy
consumption of proposed approaches with existing approaches by applying the variation
to the total number of nodes, and the energy consumption is measured in Joules (J). We
evaluated the energy consumption of the proposed mechanism with a fixed number of
nodes by applying variations to the total time (t). Figure 14 illustrates the simulation which
has been performed with 100, 200, up to 600 nodes, where the maximum energy consumed
by the proposed approach at 1100 (m) is 240 (J) with 400 nodes, 270 (J) with 500 nodes,
and 300 (J) with 600 nodes. The average energy consumption has also been evaluated
with varying total numbers of nodes where the simulation time is 1100 (m). Figure 15
illustrates the energy consumption of the approaches that show that the proposed approach
has utilized less energy to perform trust computation, whereas, in comparison, RobustD
and TMEI use average consumption while SGSQ-TM approaches use a higher amount of
energy to perform their computations. The maximum energy consumption of approaches
with 600 nodes at 1100 (m) is 360 (J) of EdgeTrust, 450 (J) of TMEI, 400 (J) of RobustD, and
520 (J) of SGSQ-TM. The simulation outcomes of average consumption make the proposed
approaches a better way to maintain security among IoT nodes.

Figure 14. Energy consumption with varying nodes.

Figure 15. Average energy consumption comparison.
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5. Conclusions

Internet of Things (IoT) provides diverse opportunities to the real world to improve
daily life by making autonomic devices, which are intelligent and can perform the required
operations and given tasks. Healthcare 4.0 and IoT can enhance the facilities provided to
patients in remote areas. The monitoring of patients may help to save them in a critical
situation. In healthcare 4.0, patients’ details are transmitted to the hospital needed to
maintain integrity and security. The proposed mechanism addresses the requirements of a
lightweight approach to maintain security among nodes. The proposed mechanism utilizes
trust parameters and central authority to manage and provide trust observations. The pro-
posed mechanism combines the concept of distributed and centralized trust management
along with time-driven and event-driven trust computations. We have also evaluated the
performance of the proposed approach with existing approaches among several potential
attacks. The extensive simulation outcomes show that EdgeTrust can recognize IoT’s pos-
sible attacks to maintain a robust environment. In comparison, the proposed approach
assigns a lower degree of trust, i.e., 0.25 and 0.18 in the self-promoting attack. Furthermore,
EdgeTrust also identifies the good-mouthing instantly and maintains the lower trust degree,
whereas, in the case of SGSQ-TM, malicious nodes regain the trustworthiness. Another
notable challenge addressed is the lightweight approach that requires less energy con-
sumption, which makes it suitable for the real-world scenario. In the future, the proposed
mechanism can be extended by evaluating the storage challenges that the edge nodes may
face and formulating a two-way approach to maintain hospital-side trust management.
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44. Gočal, P.; Macko, D. EEMIP: Energy-efficient communication using timing channels and prioritization in ZigBee. Sensors 2019,
19, 2246. [CrossRef]

45. Qureshi, K.N.; Iftikhar, A.; Bhatti, S.N.; Piccialli, F.; Giampaolo, F.; Jeon, G. Trust management and evaluation for edge intelligence
in the Internet of Things. Eng. Appl. Artif. Intell. 2020, 94, 103756. [CrossRef]

46. Das, R.; Singh, M.; Majumder, K. SGSQoT: A community-based trust management scheme in Internet of Things. In Proceedings
of the International Ethical Hacking Conference, Kolkata, India 31 March–1 April 2018; pp. 209–222.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11277-017-5120-4
http://dx.doi.org/10.1016/j.protcy.2012.05.017
http://dx.doi.org/10.1155/2018/5349894
http://dx.doi.org/10.3390/s19102246
http://dx.doi.org/10.1016/j.engappai.2020.103756

	Introduction
	Literature Review
	Proposed EdgeTrust Approach
	Data Centers and Edge Clouds
	IoT Edge Nodes
	Trust Management Computations
	Trust Aggregation and Development
	Trust-Based Decision-Making
	Recommendation-Based Indirect Trust

	Results and Discussion
	Aggregated Trust Evaluation
	Honest and Dishonest Trust Accuracy
	On-Off Attack
	Self Promoting Attack
	Good and Bad Mouthing Attacks
	Energy Consumption Evaluation

	Conclusions
	References

