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Abstract: The recent pandemic of SARS-CoV-2 virus has made evident critical issues relating to
virus sensing and the need for deployable tools for adequate, rapid, effective viral recognition on
a large-scale. Although many conventional molecular and immuno-based techniques are widely
used for these purposes, they still have some drawbacks concerning sensitivity, safety, laboriousness,
long-term collection and data analysis. Therefore, new rapidly emerging approaches have been
introduced such as terahertz (THz)-based technologies. In this contribution, we summarize the
emerging THz radiation technology, its solutions and applications for high-sensitivity viral detection.

Keywords: THz radiation; THz spectroscopy; THz technology; virus sensing; metamaterials;
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1. Introduction

Pandemic crises, caused by infections due to Zika, Ebola, and the recent severe acute
respiratory syndrome coronaviruses such as SARS-CoV-2, are burdening the healthcare sys-
tems, seriously threating societal and economic stability [1]. Furthermore, the extent of the
recent SARS-CoV-2 pandemic, its rapid large-scale spreading, the challenging management
in many countries and the low reliability of early screening protocols have seriously im-
pacted the healthcare systems. It is needless to say that effective virus diagnostic methods,
based on rapid, reliable and accurate monitoring, can contribute toward controlling and
preventing future pandemic events. Nowadays, the most widely used methods for viral
diagnosis are mainly based on biomolecular techniques and immunoassays [2–8], namely,
CRISPR–Cas12- [9] and CRISPR–Cas13-based SHERLOCK systems [10,11], real-time quanti-
tative polymerase chain reaction (RT-PCR) [12–15], nucleic acid amplification tests (NAATs),
immunofluorescence [16], enzymatic immunosorbent assays (ELISAs) [17,18] and side
treatment point flow immunological assays (POCs) [19,20]. These molecular methods
are considered the standard approaches for detecting the presence of viral components
(genetic and/or protein material) in potentially infected individuals. However, in some
cases, they may give rise to false negative results if the viral RNA charge at the time of
detection is insufficient. For example, hemagglutination inhibition assays [21] exhibit low
specificity under a certain agglutination level and when the samples contain non-specific
hemagglutination factors [22]. Immunoassays may provide information on the status of
ongoing viral infections and early exposure. Despite this, the main disadvantage of the
aforementioned methods is the inability to identify the infection at a low viral charge, e.g.,
in the initial stage of the disease. This condition hardly depends on the immune response,
which is detectable only several days after direct contact with the virus. In addition, most of
the above-mentioned diagnosis processes have limitations, such as being time-consuming,
labor-intensive and not reagent-free, as well as possessing poor sensitive and a slow de-
tection process. These methods need sophisticated equipment and well-trained personnel
to handle the tests. Therefore, complementary, reliable, fast, sensitive, easy-to-use and

Electronics 2023, 12, 135. https://doi.org/10.3390/electronics12010135 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12010135
https://doi.org/10.3390/electronics12010135
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4399-3869
https://orcid.org/0000-0002-8138-7547
https://orcid.org/0000-0001-7990-5117
https://doi.org/10.3390/electronics12010135
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12010135?type=check_update&version=1


Electronics 2023, 12, 135 2 of 19

cost-effective point-of-care diagnostics methods are highly desirable. In such circumstances,
various bio-sensor platforms, based on electrical, mechanical [23], optical [24] and plas-
monic [24–28] approaches, have shown promising and appealing applications ranging
from laboratory to clinical/medical investigations, with a high potential in miniaturized,
real-time and label-free sensing [28–31]. All biosensor-based approaches have a common
schematic layout, as reported in Figure 1. A specific bioreceptor surface selectively ad-
sorbs/captures the analyte of interest and then generates a signal (in the form of light,
voltage, current, charge or mass change, variation of refractive index, etc.) as a result of the
interaction between the bioreceptor and the analyte. The bio-recognition event results in
constituting highly sensitive detection and discrimination signals. These data are converted
by a transducer into another form of energy, and then amplified and processed in order to
record a direct, measurable and readable signal, generally proportional to the amount of
interaction between the analyte–bioreceptor. Biosensor-based approaches exploit different
intrinsic chemical, electrical or energetic properties of bio-macromolecules constituting
virus structure. For example, concerning the electrical-based approach, viral biological
molecules capacitance or impedance have been studied and considered as significant dis-
criminative quantities. For instance, as Al Ahmad and co-workers showed in their work,
the electrical properties of viral suspensions depend upon protein, lipidic and envelope
structures of the considered species; therefore, measurements of capacitance constitute a
unique discrimination quantity. However, it has to be pointed out that only electrically
polarizable virions can be detected and recognized with this method [32,33]. An innovative
application of this electrical approach is reported in the study by MacCuspie et al. [34],
who first exploited AC capacitance scanning probe microscopy to investigate biological
samples, proving that different viruses have specific capacitance values. This is due to
different capsid proteins and glycoproteins, which highly influence the dielectric properties
defining the viral strain.
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Figure 1. A schematic representation of biosensor structure. The biorecognition element is chosen to
effectively catch the analyte of interest. The transducer reveals the presence of the analyte thanks to
the variation of a physical quantity, depending on the approach exploited. The achieved signal is
amplified, digitalized, processed and read on a display.

In this plethora of different techniques, another advantageous approach is represented
by optical biosensors, which are essentially based on exploiting the different virus optical
responses to an incident electromagnetic field. Different bio-macromolecular structures and
compositions result in different refractive indexes and optical properties. Optical platforms
have gained considerable attention for their potential in remote diagnosis schemes and
their compatibility with physiological and serological solutions. Furthermore, within the
optical-based sensor, a fundamental and essential role is played by the plasmonic approach,
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which instead is based on specific materials resonances (e.g., the surface plasmons), whose
properties, and, in particular, their characteristic frequencies, are modified when a virus is
present on their surfaces.

In Figure 2, we report a graphical summary of the main detection approaches for virus
sensing which are currently in use.
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Figure 2. Graphical illustration of the main consolidate processes for the detection of pathogens,
currently in use.

In this rich scenario, the emerging Terahertz (THz) technology is an ideal candidate
for virus monitoring and detection purposes, offering various advantages which can be
explored. The aim of this manuscript is to present the recent advances in THz biosensing
for virus and viral particles. We summarize the pioneering studies that has paved the way
for the application of THz radiation in this research field. Underlining the advantages and
drawbacks of THz radiation and the related technologies, we highlight recent efforts and
opportunities in virus sensing.

2. THz Technology for Virus Sensing

Despite the extensive attention given to microwave, infrared and visible regions, there
is a small gap between microwave and infrared (0.1–10 THz, 3–330 cm−1), called the THz
spectral range. This region of the electromagnetic spectrum has been often ignored because
of the technological difficulties in THz generation and detection. In recent years, THz
technology has grown, driven by improvements in sources, detector responses [35–42] and
the availability of new materials with a strong THz response [43,44]. This has promoted
the diffusion of THz research into various areas, e.g., air-quality and gas sensing [45–50],
material sciences [42,44,51–54], microelectronics and security [55,56], agri-food quality [57],
cultural heritage [58], in addition to biomedicine and bio-imaging [59–63]. For biomedi-
cal and biochemical issues, THz radiation is really appealing because of its low photon
energy (around few meV, 4 meV @ 1 THz), and too low to heat materials and/or induce
atom/molecule ionization; therefore, it enables non-destructive and non-ionizing sens-
ing [64]. This is in contrast with other spectroscopic techniques, including ultraviolet
or X-rays, where high-energy photons (>>eV) induce damage to the bio-sample [64]. In
addition, THz radiation, characterized by low photon energy, is associated with energy
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levels matching low-frequency vibrational modes, including the collective vibrations of
intermolecular and intramolecular interactions, such as hydrogen bonds [65], the phonon
modes of crystalline molecular solids and vibrations of many macromolecules. In these cir-
cumstances, THz spectroscopy has been employed to investigate low-frequency vibrational
modes of amino acids and proteins, due to its sensitivity to intermolecular interactions,
such as hydrogen bonds, which in turn are dependent on molecular conformations and
surrounding environments [66,67]. Therefore, THz radiation directly identifies a material’s
spectral properties constituting its molecular fingerprint, offering, in this way, a chemi-
cal specificity to imaging and spectroscopy experiments, in a label-free, non-contact and
non-invasive mode [59,68,69]. Moreover, it is worth to point out that non-polar materials
(such as paper, cloths and plastic) are usually transparent in the THz range [55,70,71].
In contrast, the high sensitivity to polar molecules, such as water (absorption coefficient
around 220 cm−1 for pure water @ 1 THz), and the low spatial resolution are the main
drawbacks of THz radiation [72,73]. In fact, the extreme absorption, shown by THz radia-
tion for polar molecules, specifically water, restricts the penetrability of THz waves from
tens to hundreds of microns in hydrated samples. The diagnostic capability, especially
in the case of biomedical applications in vivo or on fresh tissues, is then reduced. Never-
theless, the high sensitivity of water content can be used like an endogenous marker for
the differentiation between fresh healthy and pathological tissues and preventing a wider
range of applications in biology [69,74]. Referring to THz spectroscopy, many layouts and
materials are used for THz signal collection [75–77], showing high performance in terms of
the signal-to-noise ratio (SNR) and coherent detection mode. Because THz spectroscopy is
insensitive to the thermal background, it has a high SNR, not requiring the use of cooled
detectors [78]. Concerning the coherent detection mode, the temporal profile of THz electric
field is directly recorded. Therefore, both amplitude and phase of the THz pulse electric
field can be simultaneously measured, and the optical parameters, including the sample
absorption coefficient and refractive index, can be estimated without using Kramers–Kronig
relations [79]. In Table 1, major THz technology features are reported; the advantages and
disadvantages are summarized and listed to have an overall view on its potential in terms
of detection and discrimination.

Table 1. Summary of THz spectroscopy. Advantages and disadvantages as a detection tool.

Advantages Disadvantages

Low-energy photon Low spatial resolution (hundreds µm)
No-inflammable Strong water absorption (220 cm−1 @ 1 THz)

No-ionizing radiation Limited penetration inf fresh tissue
Sensitive to polar molecules

Coherent detection
No sample pre-treatment

In spite of the constraints listed above, several findings have been carried out on
biological materials [69,79,80]. Concerning the low spatial resolution, THz radiation suffers
from poor spatial resolution due to its large wavelength (λ = 300 µm @ 1 THz) [69,81].
The lateral dimensions of the typical viral pathogens range between 20–300 nm, thus their
detection is very challenging because of their sub-wavelength dimensions [82]. The main
obstacles for pathogenic monitoring are underlined by the work of Lee and co-workers [83].

They exploited THz spectroscopy to evaluate the optical parameters of H9N2 virus
samples in the frequency range 0.2–2.0 THz. The authors did not show any identifiable
spectral features between the absorbance of the freeze-dried virus pellet or the substrate
(Figure 3). The weak sensitivity, low detectability and poor chemical selectivity due to
the super-position of many biological vibration modes, essentially related to the protein
content, prevented the use of THz for virus sensing. However, when a direct assessment
fails, indirect virus detection is still possible. Indeed, the probing for antibody–antigen
binding properties through THz spectroscopy is more sensitive compared to the standard
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ELISA [84,85]. One example is the extensive work by Sun et al. [86] on the H9 HA glyco-
protein of avian influenza and its binding properties for specific (F10) and non-specific
antibodies.
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Although direct detection is preferable, indirect methods may be favorably to over-
come THz limitations and make THz technologies available for pathogenic sensing and
biomolecular applications, e.g., in efficient graphene-based sensors, in micro-fluidic chips
or in novel meta- and nano-materials [83]. Zhou et al. reported fascinating optoelectri-
cal properties for graphene and predicted the possibility to raise the limit of detection
(LOD) of biomolecules using graphene plasmons [82,85]. On the other hand, one of the
challenges for biosensing is to perform measurements on minimal amounts. In this context,
micro-fluidic chips are suitable for investigation in different physiological and serolog-
ical environments [87]. They are able to select extremely small amounts of liquid and
trap the molecules in the micro-fluidic channel, thus limiting the strong THz water ab-
sorption and providing very concentrated measurements. Devices based on meta- and
nano-materials [85,88–94] have gained popularity as promising protein and DNA detec-
tion platforms [24,95–98] because of their operational simplicity, compactness and their
attractive electromagnetic properties, such as the excitation of surface plasmon polaritons
(SPPs) [99–102] and the localization and enhancement of the electric field associated with
the incoming radiation. Firstly, O’Hara et al. [103] demonstrated that a THz metamaterial,
structured with a double split ring on a Si substrate, provides a high sensing capability and
a significant enhancement of the sensitivity for THz metamaterials fabricated on thin and
low-permittivity substrates [104,105]. Meta- and nano-platforms are artificially structured
devices, made up of several unit cells or individual elements with sub-wavelength sizes.
Some examples of these selected geometries for metamaterial unit cells are reported in
Figure 4. In the THz field, these materials may have single- or multi-resonance frequencies
f n
0 , strictly depending on the geometrical properties [106–108], orientation and arrange-

ment of the unit cells. Sample deposition on meta- and nano-structured devices induce a
variation in their dielectric properties [106–108], including the shifting of their resonance
frequencies. Being proportionally sensitive to the frequency shift, an appropriate design of
the unit cell area is crucial to enhance the detection capability [109–111].

Thus, the local dielectric changes generated by biological samples, such as viruses,
may be successfully detected. In addition, since very thin water layers are required (a few
tenths of a µm), these layouts easily overcome the limitation imposed by the strong THz
water absorption [109]. The sensor specificity or biological selectivity may be increased
with functionalization, e.g., anchoring the bio-analytes and/or bio-components of interest
onto the meta- or nano-material platforms. Various approaches have been proposed: func-
tionalization with alkanethiol molecules of well-ordered covalently bonded monolayers,
the generation of hydroxyl groups by oxygen plasma or the surface chemical modifications
using silane and silanol chemistries, the COx-H modification, the anchoring and/or the
decoration with antigens [110–113].
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Figure 4. Examples of different geometries adopted for metamaterial unit cells. (a) split-ring res-
onator [82], (b) rectangular slot [83], (c) double-split ring [114], (d) H-shaped resonator [115], (e) planar
Jerusalem cross [100] and (f) asymmetric split-ring resonator. (original figure).

3. Recent Advances in THz-Based Sensing and Detection for Viral Pathogens

One of the earliest pioneering studies focused on THz virus sensing was carried out by
Park et al. [82]. They combined THz-TDS with a fabricated THz split-ring resonator, shown
in Figure 5a. Metamaterial platforms for virus sensing at low densities were prepared by
e-beam lithography on a 1 mm thick quartz substrate. Subsequently, Cr (3 nm) and Au
(97 nm) metal films were deposited by e-beam evaporation, defining the electrical split-ring
resonators with a line width of 4 µm, outer dimensions of 36 µm × 36 µm and various gap
sizes with an array periodicity of 50 µm.

Tests were performed to detect two types of viruses, with sizes ranging from 60 nm
(PRD1) to 30 nm (MS2), deposited at low densities on the metamaterial surface. The
presence of the viral pathogen within the capacitor gap changed the resonance frequency
and optical parameters. For a 40 µm thick layer, the dielectric constants for both viruses
were assessed. Successively, the authors demonstrated the relation between the resonance
frequency shifts and the virus surface density, observing an increasing frequency shift in
surface density until saturation. Actually, the sensitivity increased by about 13 times as
the gap width in the metamaterial decreased from 3 µm to 200 nm. Promising results were
achieved by the proposed by Cheng and coworkers for protein detection with a metasurface
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with an asymmetric split-ring resonator pattern and sensitivities around 160 GHz/RIU
and 240 GHz/RIU [116]. Although, this approach is aimed to detect proteins, an extension
based on the interaction of receptors with membrane proteins is feasible for applications
detecting viral pathogens.
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Figure 5. (a) The layout of dielectric constant measurements using a THz metamaterial sensor. THz
transmission vs. frequency, with and without the deposition of the layer of (b) PRD1 and (c) MS2
viruses. The dielectric constants of 3.48 and 3.83 are estimated from the resonant frequency shift, for
PRD1 and MS2, respectively. Frequency-dependent complex dielectric constants vs. frequency are
reported for (d) PRD1 and (e) MS2 layers. The thicknesses of the PRD1 and MS2 layers were 300 µm
and 150 µm, respectively. Reprinted with permission from [82] © The Optical Society.

Hong et al. [109] fabricated hybrid slot antennas on a quartz substrate garnishing them
with silver nanowires (20 nm in diameter and 1–5 µm in length) and tested them on PRD1
virus droplets. They observed that the presence of nanowires enhanced the sensitivity.
In particular, the hybrid chip exhibited a 2.5-fold increase in sensitivity compared to the
bare chip (33 GHz·µm2/particle instead of about 13 GHz·µm2/particle). Various groups
performed finite-difference simulation of the optical parameters in the time domain using
different metamaterials and unit cell geometries. In particular, Lee’s team explored the
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possibility of THz virus sensing for AI virus subtypes, such as H1N1, H5N2 and H9N2.
They tested a device comprising rectangular nano-antennas (see Figure 4b) on a silicon
wafer patterned with gold (150 nm) fabricated by e-beam lithography. Each virus sample
produced different changes in dielectric properties and resonance frequency shifts with
respect to the substrate, suggesting a method for discrimination. In addition, observing the
H9N2 THz transmittance by varying the virus concentration, the authors found a linear
decrease in intensity at the resonance frequency as the concentration increased, as reported
in Figure 6a.
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Figure 6. H9N2 transmittance vs. frequency by varying the viral pathogen concentration. (a) Buffer
(0 mg mL−1), (b) 0.10 mg mL−1, (c) 0.14 mg mL−1, and (d) 0.28 mg mL−1. (e) Variation in the
maximum values of the normalized transmittances (∆T, magenta closed circle) and shifted resonance
frequency (∆f, green closed triangle) for the H9N2 virus in different concentrations. The red bar
indicates the errors bar due to the buffer solution and the black line is the linear fitting of the
transmittance change vs. concentration. (f) Results of the numerical simulations using the finite-
difference time-domain (FDTD) method of transmittances for three different model samples with
various compositions of dielectric constants (n and κ). Reprinted from [83].

Lee and co-workers found good agreement among the experimental results and the
simulated behavior of the sensing platform varying the complex refractive indexes (see
Figure 6f). The same results were confirmed by Cheng and co-authors [100,101], that used
a planar Jerusalem cross structure (see Figure 4e). They modeled a sensor with 5 µm
thick samples by varying the optical properties associated with the viruses, looking at the
resonance frequency shifts and absorption changes.

The extraordinary properties of graphene in the THz regime inspired various sensor
designs. Taking advantage of the ease of tunability of its operating frequencies by varying
the electromagnetic field and/or chemical doping, some narrow and multi-band absorbers
can be designed to operate with high sensitivity in the THz spectral window. A smart and
compact graphene-based absorber with a dual absorption peak for biosensing applications
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was recently proposed by Karthikeyan et al. [92]. The absorber, schematically reported
in Figure 7, works in dual operating bands at 5.1 THz and 11.7 THz. It may change the
resonance wavelength to drive the absorption frequencies tuning the graphene chemical
potential. Due to the confinement of the graphene surface plasmon it exhibits an extremely
precise and condensed absorption peak.
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Figure 7. Absorber unit cell structure is depicted with a single sheet of graphene and four small
sized gold bars. (a) 3D view: the absorber consists of a gold meta-array at the top. Gold bars with
height hg and width w are placed in the form of a 2 × 2 array. Beneath the gold bars and above the
substrate is a graphene layer growing on a silicon dioxide (SiO2) substrate with thickness hs and
εr = 2.25. To reduce the transmission, an additional gold layer with thickness hg is used. (b) 2D top
view. Reprinted from [92].

Using the sensing medium with various refractive indexes, the authors first sim-
ulated the absorber working for glucose detection achieving a maximum sensitivity of
2.08 THz/RIU and 4.72 THz/RIU in sensing water with 25% glucose at the resonant peaks
I and II, respectively. Extending the simulation to malaria identification (with refractive
indexes 1.383 and 1.373 in trophozoite and schizont phases) and setting to 2 µm analyte
thickness to enhance the sensing capability, performances of the graphene-based sensor
reached the sensitivity values of 1.76 THz/RIU and 3.72 THz/RIU at the resonant peaks I
and II, respectively. Its good responsiveness and the standard fabrication make it a suitable
candidate for biomedical applications.

A different approach was proposed by Amin and colleagues [117,118]. They employed
a graphene-based plasmonic metasurface and exploited the reflected light polarization
as the detection signal and the tunability of the resonance frequency. The unit cell had a
split-ring structure, where the perpendicular graphene slices had slightly different sizes,
and the substrate was made from quartz, designed to generate chiral or helicoidal plasmon
(reported in Figure 8). Chiral and helicoidal plasmons result in producing elliptically polar-
ized electric fields in the THz domain. Reflection coefficient matrix elements |Rxx| and
|Ryx| of the metasurface changed as the analytes refractive index changes, determining
an elliptical polarization of reflected light whose ellipticity depends on the virus species.
The system response was proven with three different influenza viral strains, H1N1, H5N2
and H9N2. They numerically simulated its response considering a viral sample layer of
5 µm and the viral optical properties reported in the literature. Viral sample concentrations
and refractive indexes are listed in Table 2.

Table 2. Synthetic summery of THz technology characteristics. Advantages and disadvantages as a
detection tool.

Strain Name Protein Concentration Complex Refractive Index

H1N1 0.54 (mg/mL) n + 1.4 ik
H5N2 0.2 (mg/mL) n + ik
H9N2 0.28 (mg/mL) 1.2 n + 1.4 ik
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Figure 8. Metasurface sensor based on chiral-localized surface current. A monochromatic linearly
polarized light impinges on the pattered surface. This is properly functionalized with antibody
or bioreceptor protein able to catch the virus of interest. Depending on the refractive index of the
considered analyte–antibody system, the ellipticity of the circularly polarized reflected field changes,
providing the detection signal.

Two resonant detection frequencies were considered, 1.364 and 1.717 THz. H9N2
reflected light polarization differs the most from the other viral strains, H1N1 and H5N2,
which instead showed similar spectral responses, having a similar refractive index, apart
for a small difference in the imaginary part value (extinction coefficient). Despite this, their
polarization states at both resonance frequencies were clearly distinguishable, suggesting
this technique could efficiently discriminate similar viral strains.

Moreover, the use of gold nanoparticles (AuNPs) has been introduced into the THz
spectral range in combination with metamaterial biosensors [82,119]. In fact, as a conse-
quence of the integration of a THz plasmonic metasurface and AuNPs, the sensor LODs
can be increased achieving large resonance figures. Ahmadivand et al. designed a toroidal
metamaterial [119–122] biosensor to detect the envelope protein of the ZIKA virus, by
measuring the spectral shift of the toroidal resonance [119,120]. They exploited the effect
induced by the addition of AuNPs, observing at low concentrations an increase of 100-fold
in the sensor response. The same authors used hybrid 2D microstructures of Fe and Ti to
design a set of asymmetric split resonators supporting ultra-strong and narrow magnetic
toroidal moments in the THz spectral region. They achieved a LOD around 24.2 pg/mL
with a sensitivity of 6.47 GHz/log(pg/mL).

In addition, to overcome the typical drawbacks of conventional metasensors, they
investigated the possibility of low molecular weight biomolecule detection at low den-
sities [121,122]. They adopted a miniaturized plasmonic immunosensor, based on the
concept of toroidal electrodynamics confining plasmonic modes with ultra-narrow line
shapes in the THz spectral region. Instead, toroidal dipole-resonant metasurfaces exhib-
ited unconventional spectral properties, such as high sensitivity to the refractive index
variations, low-radiative losses, and low mode volumes through the robust confinement
of electromagnetic fields. Ahmadivand’s group proved and verified the proof-of-concept
THz toroidal metasensors for the detection of heavy hormones, drugs, organisms, enzymes,
envelope proteins of specific viruses (Zika virus envelope protein with a molecular weight
of ~13 kDa) and antibiotic molecules (Kantrex, C18H36N4O11 × H2SO4, with the molecular
weight of ~600 Da) at very low concentrations [119,120,123]. To improve the binding proper-
ties of the targeted biomolecules to the device’s metasurface, they developed functionalized
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colloidal AuNPs conjugated with associated bioreceptors to bind respective analytes [124].
Specifically, they combined the toroidal dipole mode, using a quasi-infinite metasurface
and a protocol based on functionalized AuNPs conjugated with monoclonal antibodies
specific to the SARS-CoV-2 spike glycoprotein subunit 1 (S1). They measured resonance
shifts for different protein concentrations. In particular, this sensor was able to detect the
presence of SARS-CoV-2 viral proteins with a significantly low LOD, around ~4.2 fM.

Moreover, Shi et al. [125] considered an all dielectric metasurface with a split half-
cylinder array configuration with dual resonant bands. They combined this with AuNPs
conjugated with a specific antibody, Anti-HA, in solution and dispersed onto the surface.
This procedure formed an immunobinding with the HA antigen of human influenza. Re-
sults for polarized incident THz radiation showed that, in particular the highest resonance
frequency undergoes an overall shift of 87.5 GHz as the concentration of HA antigen
increased (from 20 to 50 µg/mL). This value was around two times the frequency shift
resonance peak if AuNPs were not employed in the functionalization, measured to be
43.75 GHz. Therefore, the sensitivity of the system was calculated for both resonance
frequencies, both polarizations and with or without AuNPs. All in all, the highest value
of sensitivity was obtained for the y-polarization and the highest resonance frequency
(S = 2.96 GHz mL/nmol) when AuNPs were used. In addition, the use of gold magnetic
nanoparticles (GMNPs) has been explored. They not only possess the advantage of super-
paramagnetic particles to enable the isolation and/or extraction of target nucleic acids [114],
but also the outstanding property to enhance the capture of targets in the surrounding
medium of the THz metamaterials and improve the sensor LODs. A recent application was
proposed by Li et al. [114]. They fabricated a flexible THz metamaterial-based biosensor
for the highly sensitive and selective detection of hepatitis B virus (HBV) DNA in clinical
serum samples, using a gold magnetic nanoparticle-mediated rolling circle amplification
(GMNPs@RCA) sandwich assay under isothermal conditions. This THz biosensing strategy
is reported in Figure 9.

Exploiting the high amplification efficiency induced by the RCA under isothermal
conditions, as well as the intrinsic high sensitivity of the gold-mediated nanoparticles in
association with the THz metasurfaces, HBV DNA serum as low as 1.27 × 102 IU/mL was
detected by THz spectroscopy [114].

High sensitivity and quantitative detection were proposed by Niu et al. [126] for the
SARS-CoV-2 S1 subunit. Their approach was different compared to the work of Ahmadi-
vand and co-workers [124], where a combination of toroidal dipole mode and AuNPs
conjugated to functionalized monoclonal antibodies was used to drive the LOD to the fM
domain. For high-accuracy detection of the SARS-CoV-2 S1 they integrated THz-TDS, THz
metamaterials and biological functionalization within a THz metamaterial biosensor made
with a three-split-ring (TSR) resonator, as shown in the layout of Figure 10. In their experi-
ments authors reached a LOD of less than 5 ng and observed that the resonance frequency
shifts and the variation of FWHM were proportional to the S1 concentration in the solution.
In detail, Figure 11A shows the measured transmittances of the S1 protein samples at
different concentrations in the spectral region between 0.55–0.85 THz. The frequency shifts
are observed vs. concentration. They fit linearly with concentrations ranging from 1 to
30 µg/mL, and can be described by ∆f = 5.563 + 1.084·x, as displayed in Figure 11B. The
increase in the concentration results in the increase in the filling fraction k and the effective
dielectric constant εeff. Meanwhile, with increasing S1 protein concentration, the FWHM
significantly increased due to the absorption of the analyte (see Figure 11C).
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Figure 9. A visual summary of the THz biosensing strategy, adopted by Li et al. for HBV DNA
sensing. (A) Graphical description of the THz biosensor chip for HBV DNA detection based on the
GMNPs-RCA-AuNPs sandwich assay. To increase the LOD, the metamaterial metal split-ring (SR)
resonators are composed of double asymmetric splits fabricated on an ultra-thin PET substrate with
low intrinsic loss. The DSR sensor features strong sensing characteristics due to the resonance shift
loaded with the dielectric material. (B) Characterization of the DSR cell. Reprinted from [114].
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Numerical simulations were performed varying the sensor and analyte parameters
(thickness, quantity, position and refractive index of the analyte aggregates) with the aim to
confirm the sensing characteristics experimentally observed and provide further insight into
the sensing mechanisms. Recently, triggered by great efforts in computer sciences, various
groups have performed computer simulations of the sensor behavior to predict and/or
explain the experimental results. As mentioned in the text, the accessibility to calculation
and simulation systems has allowed exploration of the performance of sensors vs. the
geometric parameters, reducing and limiting the time and effort required in the preparation
and costs. High responsiveness and LODs can now be predicted. Recent works, in fact, have
explored and addressed new sensor designs starting from numerical simulations [92,127].
Several groups [83,100,115] adopted finite-difference time-domain simulation modelling
the virus samples. In particular, three samples of avian influenza virus (H1N1, H5N2 and
H9N2) were modeled as ∼µm thick layers, composed by homogeneous dielectric clads.
For each of them, the complex refractive index N was estimated, in addition to the two
coefficients, α and β, relative to the real and imaginary parts, respectively, characteristic of
viral properties, such as different virus types and concentrations [83,100].

4. Future Trends and Conclusions

The substantial need for deployable technologies for quick and effective viral detection
on a large scale has grown and it is continuously increasing, not only because of the recent
pandemic events. Although various molecular (RT-PCR, bDNA, RTLAMP, etc.) and
immuno-based techniques are currently available and successfully used, they still remain
complex and difficult to apply on a large scale and are not rapid enough to ensure high-
precision diagnostic tests at low concentrations.

In this framework, since these methods are equitably limited, there is a need for
new, accurate and highly sensitive alternative solutions. In such circumstances, various
biosensor platforms have been proposed, based on electrical, mechanical [24], optical [23]
and plasmonic [23–27] approaches. All are promising applications suitable for laboratory
and clinical/medical investigations, with a high potential for compact, portable, real-time
and label-free sensing [26–30]. Among these different genres of approaches, biosensor
platforms based on optical detection have gained considerable attention, such as THz
spectroscopy, also in combination with THz nano- and metamaterials. The recent progress
in THz technology and the advantages offered by this non-ionizing radiation, discussed in
this review, make this electromagnetic domain ideal for biosensing applications, such as
virus detection, complementing or enhancing existing solutions. This contribution outlines
existing THz-based virus sensing platforms and emphasizes the possibility to detect and
identify viruses with THz waves. We briefly focused on the advantages of THz technology
and sensing, such as THz-TDS, outlining also its drawbacks, such as limited sensitivity
to monitor and/or identify viral pathogens. Although THz spectroscopy has been used
for the study of the optical properties, such as refractive index and absorption coefficient,
of different genres of pathogens, the THz wavelength are much larger than the viruses
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and viral particle sizes. This results in very low spatial resolution and reduced sensitiv-
ity. However, the incredible advancements in optics, make it possible to maximize the
interaction between radiation–biomaterial utilizing plasmonic and metamaterial-based
biosensors. Here, we thoroughly dealt with the existing THz techniques adopted for THz
virus sensing, including the advantages provided by meta- and nano-THz sensors. Meta-
and nanomaterials, operating in the THz frequency region, are an appealing alternative
and guarantee a great potential for high-speed, on-site and label-free point-of-care virus
detection. Some previously reviewed plasmonic platforms, such as planar metal-dielectric
biosensors, need simple and smart fabrication techniques to reach low LODs. We explored
pioneering studies in THz virus sensing and reported the technological efforts in THz
metamaterial optical biosensors, highlighting the flexibility of a variety of geometric struc-
tures, their sensitivity and LODs for various viruses. However, the strong potential of
THz-based virus detection is still in its initial development steps and far from clinical use.
Nevertheless, recent technological improvements in manufacturing and miniaturizing THz
layouts promise to enhance the performances of meta- and nano-sensors, achieving sensi-
tivities higher than traditional/conventional devices and even to permit remote location
and control. Finally, recent machine learning applications have garnered great acclaim in
several scientific fields, including sensor design, where the behavior of integrated metama-
terial systems has been explored [127]. Deep learning methods have also been successfully
used to predict potential correlations among plasmonic geometric structures, their optical
parameters and the resulting resonance spectra [128]. Research based on new photonic
materials, such as topological insulators and quantum photonics devices, offer promising
ideas for THz biosensing.

In this framework of continuous evolution, we believe that THz-sensing technologies,
although still in their infancy, will continue to grow achieving a relevant position in the
biosensing area in the future.
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