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Abstract: The integrated DC–DC converter is appropriate for use in many domains, namely, display,
cellular, and portable applications. This paper presents an integrated control circuit for a monolithic
voltage mode DC–DC boost converter for display driver applications. The control circuits consist
of a transconductance amplifier, a comparator, and an oscillator. The boost converter consists of an
inductor, two MOSFET, and an output RC filter. The control circuits are designed for fast transient
response and low output ripple. The transconductance amplifier, comparator, and oscillator in the
control circuit are designed to operate at a supply voltage of 3.3 V and an operating frequency of
5.5 MHz. The transconductance amplifier consists of an operational amplifier and an RC filter in the
feedback path. The RC filter has a pole with a sufficient phase margin for high stability. The control
circuits are realized in a 0.35-µm CMOS process together with the DC–DC converter. The fabricated
DC–DC converter was evaluated by experiment and simulation. Testing of the proposed control
circuits shows that the output transient time can be controlled within 7 µs, and the output voltage is
accurately controlled with a ripple ratio of 3%.

Keywords: CMOS; DC–DC converter; control circuit; integration; voltage–mode; boost converter

1. Introduction

In this paper, we present a low-power system on a DC–DC boost converter for display
driver applications. There have been intensive research efforts on CMOS-integrated DC–DC
boost converters for low-power applications. Lai and co-workers have proposed a 0.18-um
CMOS device design of a 0.6–1.7 V boost converter using a 2.3-GHz oscillator and two
differential cross-coupled rectifiers [1]. Chang and co-workers have a single-inductor multi-
output (SIMO) DC–DC converter 0.18-um 1P6M CMOS process for converting 1.8 V to 1.5,
2.0, 2.2, 2.5 V [2]. They employed two comparator loops and two error amplifier loops. Jiang
and co-workers investigated a buck-boost converter with 0.22–2.4 V input and 0.85–1.2
V output employing an algorithmic voltage-feed-in topology [3]. Choi and co-workers
presented a soft-switching hybrid DC–DC converter realized in a 65-nm CMOS process [4].
They achieved 79.5% efficiency. Guierrez proposed a fully-integrated DC–DC converter for
IoT power supply applications [5]. He achieved 69% peak efficiency with 180-nm bipolar
CMOS-DMOS technology. Song and co-workers studied a switched-capacitor DC–DC
step-up converter for implantable neural interface applications [6]. They achieved 82.6%
efficiency with a 180 nm CMOS 1P6M process.

In DC–DC converters, the converter consists of a power stage and a control stage. The
control stage requires an op-amplifier [7–9] for low-power operation and high accuracy.
The op-amplifier accurately controls the drain-source voltage of the power transistor. This
control circuit [10–12] is a high-gain amplifier in a differential pair.

In this paper, we propose integrated control circuits for a high-performance DC–DC
boost converter for display applications. While current mode control [13,14] is much
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better than voltage mode control, there are a lot of difficulties in the implementation of
the current sensing circuit. In a voltage-mode DC–DC converter, the performance of the
voltage control circuit is crucial to the converter’s performance. The aim of this paper is to
develop fully integrated control circuits for high-performance DC–DC boost converters
for 3.3-V input and 5 to 7-V output voltage operation. The proposed control circuits work
on the pulse width modulation principles and consist of an operational transconductance
amplifier (OTA) or compensator, a comparator, a 5.5-MHz oscillator, and a gate driver. In
the design of the control circuits, the main focus is on a fast response to load change or a
short transient time and a low ripple in the output voltage. Each sub-circuit in the control
circuits is designed for the overall objectives of fast response and low ripple voltage based
on the 0.35-µm CMOS process.

The structure of the proposed voltage-mode boost converter consists of a power stage
and a control stage, as shown in Figure 1. A converter usually consists of a power switching
stage and a feedback control circuit. Among the variable circuit elements of voltage-mode
converters, a transconductance amplifier, a comparator, and an oscillator in the control
circuits are critical to the performance of the overall feedback operation, which requires fast
dynamic response and reduction in sub-harmonic oscillation. The feedback network is a
system-on-integrated circuit for voltage-mode gate driver control. By using the properties
of the CMOS transistor, a high-performance control circuit can be manufactured. It enables
accurate sensing of the inductor current at high frequency.
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Figure 1. Block diagram of the proposed voltage–mode boost DC–DC converter.

The power stage includes two MOS switches MN1, MP1 with an off-chip LC filter.
The voltage-mode DC–DC boost converter in a system-on-chip configuration is designed
with a 0.35-µm CMOS process for low-power operation and full integration of the circuitry.
The input voltage of the op-amplifier is scaled down by R2 and R3. The off-chip LC filter
is designed for inductance of 1–10 µH and capacitance of 0.1–1 µF. The control circuit
is designed for a supply voltage of 3.3 V and an operating frequency of 5.5 MHz. The
operation of the proposed control circuits with the voltage-mode DC–DC boost converter
was verified by simulation and by experiments.

2. Control Circuits
2.1. Operational Transconductance Amplifier (OTA) Circuit

The two-stage operational amplifier configuration is a popular structure for CMOS
op-amps, and it has reasonably good quality in addition to the simplicity of the circuit.
As seen in Figure 2, the two-stage operational amplifier configuration is composed of a
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differential amplifier input stage, current sources, and a feedback compensator, which
requires a fast-transient response with low-power consumption.
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Figure 2. Proposed OTA circuit: (a) two–stage CMOS op–amp configuration; (b) configuration used
to bias two–stage op–amp.

The OTA in Figure 2a consists of an input differential stage, a source follower, and
current mirrors. A compensator is included in the op-amp to increase the stability of the
frequency response and to achieve a fast response time. A differential amplifier is used
in the first stage since it is less sensitive to noise due to its high common mode rejection
ratio (CMRR). Although there is only one capacitor Cc, in the negative feedback path of
the second stage (frequency-compensated) in the OTA, a resistor Ra in series with CC is
used to improve the phase margin of the op-amp by placing zero in the negative axis. It
usually includes a compensation circuit to achieve stability of frequency response and fast
response time. The compensator is used to realize poles or zeros for a sufficient phase
margin for high stability. A drawback of this configuration is that it does not have a low
output resistance suitable for driving low input impedance loads. In order to implement
IREF current in Figure 2a, the bias circuit in Figure 2b needs to be capable of providing
current independent of the supply voltage and the MOSFET threshold voltage. A useful
and interesting property of the bias circuit is that the transconductances of the transistors
biased by this circuit are only dependent on Rb value and device dimensions. As seen in
Figure 2b, a resistor Rb is connected in series with the source of M6. This resistor Rb is
important in determining the bias current Ib and the transconductance of the transistor M6.

Figure 3a is an operational amplifier with a compensator. The transfer function of the
compensator with poles due to the RC filter [15,16] can be written in the following form by
applying Miller’s theorem. The resistors and capacitors are used to create poles or zeros in
the compensator, where Aop and Rout are the gain and output resistance of the op-amp, and
R1 and C1 are the resistance and capacitance of the compensator.

Vcontrol
Vout

=
k

(1 + sR1C1)
(1)

fC =
1

2πR1C1
(2)

AS =
AOP

(1 + S/ωP
) (3)

ωP = [RP·CP]
−1 (4)
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The stability and frequency response are determined directly by the pole. Whether
the converter circuit is stable or not can be determined by examining the loop gain as a
function of the frequency, where k, R1, and C1 are the gain, resistance, and capacitance in
the compensator. The fC is the compensating frequency determined by the resistance R1
and capacitance C1. Figure 3b shows the gain of the compensator versus the frequency,
where phase B with pole-zero optimization is shown together with that of case A without
pole-zero optimization. In case A, the phase margin (c) is almost 0◦ while the phase margin
(d) is 47◦. The frequency characteristic of the compensated op-amplifier is combined
into the control feedback loop characteristics of the DC–DC boost converter. The results
indicate that the compensator frequency should be higher than the initial unoptimized
frequency for increased phase margin and, thus, higher stability. Another factor affecting
phase margin and stability is the gain of the op-amplifier given in Equation (3). The op-
amplifier is designed to maintain a small quiescent current during normal operation and to
withstand large input signal fluctuations. The transconductance of the op-amplifier was
well controlled to maintain the stability of the converter.

2.2. Comparator Circuit

The comparator [17,18] in Figure 4a is for the pulse-width modulation (PWM) control.
It is composed of a bias circuit, an input differential stage, and a latch. The bias circuit
is almost the same as that of the op-amplifier. The input stage is a circuit for start-up
and bandgap reference. A start-up circuit is added to ensure that the bandgap reference
circuit turns on when the supply voltage is applied. The load circuit employs a current
mirror configuration and thus presents an amplifier with a high-resistance load. With this
approach, a gain larger than 20 is achievable. The inverter and latch are used for a clear
logic response and can act as a driver stage, so transistors in the current mirror can be made
smaller for reduced parasitic capacitance.

The operation of the comparator is a simple process. When the compensator op-
amplifier output voltage is less than that of the 5.5 MHz triangular waveform voltage, the
output voltage of the comparator is low. When the compensator output voltage is greater
than the triangle waveform voltage, the output of the comparator is high. Figure 4b shows
the output waveforms of the op-amplifier (A) and the comparator (B). This is obtained
from the Cadence simulation tool of the block diagram containing the power and control
stage circuits. The output of the op-amplifier (A) quickly settles down due to the high
conductance gm of the differential pair. The comparator repeats the digital high and low
logic until the op-amp signal (A) passes the transient response.
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2.3. Oscillator Circuit

An oscillator signal is used for PWM control and for PWM switching [12]. The switch
control signal is generated by comparing the compensator op-amp output voltage with a
triangular waveform obtained from the oscillator signal. The oscillator circuit is shown in
Figure 5a. The oscillator is a sawtooth waveform generator that employs current sources
and a Schmitt trigger. The MOSFETs M2 and M3 are used as switches. A Schmitt trigger
circuit with a NAND gate is employed to obtain a ramp signal and a clock signal. The
signal clock and ramp signal are generated from a trigger signal.
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Figure 5b shows the output waveforms of the compensator (A), oscillator (B), and
comparator (C). When the compensator output voltage is less than the triangle waveform
voltage, the output of the comparator is a low voltage. When the compensator output
voltage is greater than the triangle waveform voltage, the output of the comparator is a
high voltage.

2.4. Gate Driver Circuit

Figure 6a shows a gate driver circuit. The circuit is connected to power switches MN1
and MP1 mode of power MOSFETs. The driver circuit requires a careful design as it can
draw large currents and generate overshoot currents during switching transitions. The
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gate driver circuit consists of a NAND gate, two NOR gates, and two SR latches. The
signals of the ramp (A) and clock (B) are shown in Figure 6b. The duty ratio, frequency,
and amplitude can be changed by varying parameters of the oscillator.
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3. Results
3.1. Results of Simulation and Experiments

The voltage-mode DC–DC converter with an on-chip integrated PWM circuit operates
at 5.5 MHz with an input voltage of 3.3 V. The power MOSFET in the power stage is
isolated from the control stage to avoid noise. An LC filter is designed with an inductance
of 1–10 µH and capacitance of 0.1–1 µF. The simulation result of inductor current IL and
inductor voltage VL is shown in Figure 7a. It has been obtained with an input voltage
of 3.3 V, inductance of 10 µH, capacitance of 1 µF, and duty ratio of 0.7. The charge and
discharge times of the inductor current IL are accurately sensed. The ripple current depends
on the output voltage, inductance, and duty ratio. The discharge time is approximately
0.07 µs.
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Figure 8a shows the measured waveform of the input trigger signal and Figure 8b
shows the measured waveform of the inductor voltage VL, feedback voltage, and output
voltage. The measured output voltage is 5.6 V at a switching frequency of 5.5 MHz. The
voltage VL across the inductor shows a high ripple during on-off switching states. The
output power is approximately 300 mW. The glitches in the (A), (B), and (C) waveforms are
caused by a mismatch in the power switch of the MN1 and MP1 power MOSFETs. It was
obtained with an inductor of 10 µH, input voltage of 3.3 V, capacitor of 1 µF, and duty ratio
of 0.5.
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Figure 8. Experiments results: (a) input trigger signal; (b) inductor voltage VL after inductor (A),
feedback voltage (B), and output voltage (C). (Scale 0.1 µs/div and 2.0 V/div).

Figure 9a shows the output voltage and efficiency with a variation of the load current.
As the load current increases, the power efficiency is almost constant at 75%, and the output
voltage decreases. This indicates that the efficiency is almost independent of the load
current in the measured current range. However, when the load resistor becomes smaller
with high frequency, the dynamic power loss is relatively larger than the static power
loss, and the efficiency can be reduced because of the switching noise. The ripple voltage
with a variation of the load current is shown in Figure 9b. The result corresponds to the
dependency that can be obtained from Equation (5), and the ripple voltage is proportional
to the load current. The ripple voltage is under 80 mV at the load current of 200 mA.
Figure 9c shows the output voltage versus duty of the PWM signal. The output voltage
linearly depends on the duty cycle, as expected.
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Vripple =
Iout

f Cout
(5)
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Figure 9. Test results: (a) output voltage and power efficiency with variation of the load current;
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3.2. Designed Condition and Photo Die of the Proposed DC–DC Boost Converter

The performance of the proposed voltage-mode DC–DC converter is summarized
in Table 1. The proposed DC–DC converter achieves a high figure of merit with a small
chip area.

Table 1. Performance summary.

Type Boost Converter

Process 0.35 µm CMOS process
Input voltage (VIN) 3.3 V
Output voltage (VOUT) 5–7 V
Load current (IL) 15–200 mA
Switching frequency (fs) 5.5 MHz
Ripple voltage 10–100 mV
Efficiency ∼=75% (I mA)
Die area size 0.5 mm2

The proposed DC–DC boost converter is designed in 0.35 µm CMOS technology with
2-poly and 4-metal processes as shown in Figure 10.
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4. Conclusions

A voltage-mode DC–DC boost converter with full integration is presented in this
article. The proposed voltage-mode DC–DC boost converter is designed using 0.35-µm
CMOS technology with 2-poly and 4-metal processes. Measurements of the fabricated
converter have shown that the converter’s output voltage ranges from 5–7 V with an input
voltage of 3.3 V and a PWM switching frequency of 5.5 MHz. The feedback control circuit
is applied in order to obtain a small ripple voltage that is almost independent of the load
resistance. The feedback circuit operates with an OTA, amplifier, comparator, gate driver
circuit, and oscillator. The proposed converter can be used as a miniaturized low-power
LED driver IC. The power consumption has been found to be approximately 300 mW with
maximum efficiency of ∼=77%, which is applicable for high-performance LED display driver
circuits. The proposed voltage-mode DC–DC boost converter offers such advantages as
a simpler circuit structure than the current-mode converter and superior performance in
terms of output voltage and power consumption.

Author Contributions: Conceptualization, C.-S.L., S.-G.C. and B.-C.A.; methodology, M.G. and
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