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Abstract: Analog IC design is characterized by non-systematic re-design iterations, often requiring
partial or complete layout re-design. The layout task usually starts with device placement, where the
several performance figures and constraints to be met escalate its complexity immensely, and, due to
the inherent tradeoffs, an “optimal” floorplan solution does not usually exist. Deep learning models
are now establishing for the automation of the placement task of analog integrated circuit layout
design, promising to bypass the limitations of existing approaches based on: time-consuming opti-
mization processes with several constraints; or placement retargeting from legacy designs/templates,
which rely heavily on legacy layout data. However, as the complexity of analog design cases tackled
by these methodologies increases, a broader set of topological constraints must be supported to cover
the different layout styles and circuit classes. Here, model-independent differentiable encodings for
regularity, boundary, proximity, and symmetry island constraints are formulated for the first time
in the literature, and an unsupervised loss function is used for the artificial neural network model
to learn how to generate placements that follow them. The use of a deep learning model makes
push-button speed placement generation possible, additionally, as only sizing data are required for
its training, it discards the need to acquire legacy layouts containing insights into this vast set of,
often neglected, constraints. The model is ultimately used to produce floorplans from scratch at
push-button speed for real state-of-the-art analog structures, including technology nodes not used
for training. A case-study comparison with a floorplan design made by a human-expert presents
improvements in the fulfillment of every constraint, reaching an overall improvement of around 70%,
demonstrating the approach’s value in placement design.

Keywords: automatic placement; deep learning; electronic design automation; physical synthesis;
topological constraints

1. Introduction

A vast number of techniques for automatic analog integrated circuit (IC) layout syn-
thesis have been proposed in the past decades, which are mostly based on: (1) optimization
processes with several topological constraints [1,2] or (2) placement retargeting from legacy de-
signs [3,4] or templates [5,6]. In the first, every solution is generated from scratch in a,
generally, time-consuming optimization process where several metrics (e.g., area, wiring
topology estimates) are minimized while fulfilling the constraints. Still, even though this
process moves toward a global optimum solution, it does not necessarily mean that a
meaningful layout solution has been found for the circuit designer. In the second, the
solution being generated matches its structure with those found on a library (or more
frequently, a single instance) of legacy layouts/templates. While the solution is quickly
produced from the guidelines of validated data, these methodologies struggle to generalize
beyond the legacy data available, which is often scarce and may not necessarily correspond
to the exact topology being generated. Nonetheless, the limitations of these approaches
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have been identified for long, which have hampered their widespread propagation across
established commercial computer-aided design tools for analog IC design.

However, tremendous advances in machine learning (ML), and more specifically,
deep learning (DL), in the past decade, are offering new alternatives to the electronic
design automation (EDA) of electronic circuits [7,8]. Similarly, for analog IC placement,
DL-based approaches were recently proposed [9–12], attempting to match the fast gener-
ation abilities of placement retargeting with the flexibility of optimization. Nonetheless,
as the complexity of real-world analog design cases tackled by these methodologies
increases, a wider set of topological constraints must be supported to cover multiple
layout styles and circuit classes, e.g., device symmetry or SIs, proximity, preplaced,
regularity, boundary, separation, current/signal-flows, among others [13]. Therefore, the
research described in this manuscript follows the most recent trials on analog placement
automation by using a non-linear unsupervised artificial neural network (ANN) model,
trained with thousands of sizing solutions which can be generated via established auto-
matic methods such as [14,15], where innovative differentiable encodings for regularity,
boundary, proximity, and symmetry island (SI) are introduced for the first time in the
literature. Ultimately, the model supports different circuit topologies on its input layer
and outputs at push-button speed the placement coordinates of each device for any
given sizing and constraints, as shown in Figure 1.
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Figure 1. ANN architecture used to solve the map from the physical dimensions and topological 
constraints to the placement coordinates. 𝑁 represents the maximum number of circuit devices 
supported by the model. 
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eration of wells during layout design that imitate human-designer choices [17], or even 
assistance/guidance for traditional path-finding routing algorithms [18]. In the particular 
case of analog IC placement, a straightforward fully supervised ANN that reproduces the 
layout patterns of a dataset of legacy placement solutions was proposed [10]. In [11], it 
was enhanced, providing a multi-circuit model that distinguishes between topologies by 
describing the topological constraints at the ANN’s input layer. Still, both models are 
highly dependent on the description of the circuits’ traits on the model’s input layer, pre-
venting them from scaling for circuits with a larger number of devices than those found 

Figure 1. ANN architecture used to solve the map from the physical dimensions and topological
constraints to the placement coordinates. N represents the maximum number of circuit devices
supported by the model.

This document is organized as follows. Section 2 provides the related work and
contributions. Section 3 details the input vector features, constraints’ encodings, and loss
function. Finally, Sections 4 and 5 address the results and conclusions.

2. Related Work and Contributions

Some of the recent ML applications for analog IC layout include building block
recognition from circuit netlists in order to build the circuit’s hierarchy automatically [16],
generation of wells during layout design that imitate human-designer choices [17], or even
assistance/guidance for traditional path-finding routing algorithms [18]. In the particular
case of analog IC placement, a straightforward fully supervised ANN that reproduces
the layout patterns of a dataset of legacy placement solutions was proposed [10]. In [11],
it was enhanced, providing a multi-circuit model that distinguishes between topologies
by describing the topological constraints at the ANN’s input layer. Still, both models
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are highly dependent on the description of the circuits’ traits on the model’s input layer,
preventing them from scaling for circuits with a larger number of devices than those
found in the dataset. Therefore, an attention-based graph-to-sequence model was recently
proposed, where the encoder-decoder architecture is scalable and invariant to the order
in which the devices are provided at the input layer. These unsupervised placement
techniques have proved to compete or outperform those generated by state-of-the-art
optimization-based placement approaches in [12]. Note that the DL models produced
these results in milliseconds, while the optimization techniques took from several seconds
up to several minutes, thus, establishing the DL approach as a competitive alternative to
the more traditional methods. Nonetheless, due to the intricate formulations required for
efficient training of a DL model, only fundamental topological constraints were effectively
supported, i.e., symmetry, proximity, and current-flows.

Supporting a broader set of topological constraints is mandatory to tackle a more
comprehensive set of industry-standard analog IC design cases and produce aesthetic-wise
solutions for the circuit designer. However, their implementation in DL-based tools is not
trivial. Therefore, the major contributions of this work are:

• In this paper, differentiable implementations of boundary, regularity, and SI con-
straints are formulated for the first time in the literature. These are inherently model-
independent, i.e., they can be used to train simple models, such as the multilayer
perceptron [11], or even complex encoder-decoder architectures [12];

• Existent automatic approaches for analog IC placement that focus on retargeting from
legacy designs/templates [3,4], or even ML-based approaches [10], use previously de-
signed placement solutions (layouts) that comprise expert design knowledge. These
examples are used as a surrogate for the explicit definition of the constraints to be met.
However, legacy layouts containing robust implementations of the abovementioned
constraints are scarce and expensive to obtain, and thus, here, the model’s training
requires only sizing data, which is way easier to produce, and the model is focused on
complying with the explicitly and efficiently described topological constraints. When
compared with optimization processes with several topological constraints [1,2], which also
explore the possibility of explicitly defining the constraints to be met, the inherent
time-consuming optimization cycles are bypassed by the use of deep models. This is,
once the model is fully trained, it can produce several valid solutions for a singular
problem at push-button speed through its generative characteristics;

• The novel formulations for the boundary, regularity, proximity, and SI constraints
are used to train a model that produces placement solutions from scratch at push-
button speed for several state-of-the-art block-level analog IC structures, including
circuit topologies and technology nodes not used for training, ultimately proving its
generalization capabilities.

3. Unsupervised ANN Model with a Broader Topological Constraints Coverage

The general architecture of the proposed ANN model was previously illustrated in Figure 1.

3.1. Notation

Table 1 introduces the notation used through this document.

Table 1. Notation.

Notation Definition

N Number of devices in the model

Ar×c An r× c matrix

Ar×c×l An r× c× l matrix

vr An r× 1 column vector

Ai,j Entry i, j of matrix A
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Table 1. Cont.

Notation Definition

vi ith entry of vector v

In n× n identity matrix

1n×m n×m matrix filled with ones

diag(vr) Diagonal matrix Dr×r where each entry in the diagonal is Di,i = vi ∀i∈{1,r} and zero otherwise

diag(Ar×r)
Column vector dr obtained from the entries on

the main diagonal of the square matrix Ar×r, di = Ai,i ∀i∈1...,r}

AT

Transpose of a two-dimensional matrix Ar×c.

AT =

 A1,1 · · · Ar,1
...

. . .
...

A1,c · · · Ar,c


c×r

∆u(A)
Upper triangular matrix Tr×r obtained from the entries on and above the main diagonal of

the square matrix Ar×r, Ti,j = Ai,j ∀i≤j; i,j∈{1,...,r} and zero otherwise

Σn(A)
Matrix obtained from summing the values of the multi-dimensional matrix A

(dimensionality greater or equal to 2) along dimension n.

Σn,m(A)
Matrix obtained from summing the values of the multi-dimensional matrix A

(dimensionality greater or equal to 3) first along dimension n then m.

Σ(A) Sum of all elements of A

Mn(A) Compute the maximum of the multi-dimensional matrix A over dimension n

mn(A) Compute the minimum of the multi-dimensional matrix A over dimension n

m(k, A), M(k, A)
Compute a multi-dimensional matrix with the dimension of A whose entries are respectively,

the minimum or maximum of each value of A and k.

m(A, B), M(A, B)
A multi-dimensional matrix with the dimension of A and B whose entries are the respectively,

the minimum or maximum of each value of A and B.

A ◦ B

Hadamard (or Schur) product of two multi-dimensional matrices with the same dimension.

Example for two dimensional matrices: Ar×c ◦ Br×c =

 A1,1B1,1 · · · A1,cB1,c
...

. . .
...

Ar,1Br,1 · · · Ar,cBr,c


r×c

aT , b Inner product of two vectors. 〈(ar×1)
T , br×1

〉
= Σ1(a ◦ b)

A⊗ B

Kronecker product of two multi-dimensional matrices with the same number of dimensions.

Example for two-dimensional matrices: Ar×c ⊗ Bs×d =

 A1,1B · · · A1,cB
...

. . .
...

Ar,1B · · · Ar,cB


rs×cd

3.2. Input Vector Features

As in its baseline implementation, the model inputs the scaled width/height of
the physical implementation (bounding box dimensions) of each device composing the
circuit, i.e., a vector of size 2N, where N is the number of devices within that circuit
topology, resulting from flattening the device size dimension matrix DN×2. Additionally,
as thoroughly described in [11], symmetry (that restricts two devices to a mirrored
placement along a symmetry axis (SA)), proximity (that describes groups of devices that
should be placed closely), and current-flow (that force a monotonic path between the
different devices composing the ‘current-flow’) requirements are passed to the ANN
by three N × N unweighted adjacency matrices: Sr, P, and C respectively. This work
proposes the use of five more matrices to encode the boundary (Bx

N×N , By
N×N), regularity

(Rx
N×N , Ry

N×N), and SI constraints (Sg
N×N). While the sets of topological constraints used

for the circuit topologies under study in this work were specified by experienced analog
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designers, these can be obtained directly by using works that automate their extraction
process. These works can be either based on deterministic approaches [19,20], or, as
developed recently, by using graph-based ML techniques [16,21,22]. Given the circuit’s
sizing and the different constraint graphs, the model is trained to output a placement
that fulfills the specified constraints. The placement is output as a 2N long vector, which
can be interpreted as an N × 2 matrix L, whose columns correspond to each devices’
coordinates in the x and y axis respectively.

3.3. Boundary

This constraint leads to easier routing access to the interfaces and fewer parasitic
interactions, as shown in Figure 2b. A device with a boundary constraint must be placed
between the remaining devices of the circuit and the “virtual” enclosing shape that contains
all the devices, and, since this verification must be made in one of the four directions, the
boundary error is divided into two axes, x and y. The matrices Bx

N×N and By
N×N encode

the boundary constraint graphs for the x and y axis respectively. Figure 3a,b show the
Bx and By matrix respectively for the circuit shown in Figure 2.
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Figure 2. Three symmetric placements of the generic circuit: (a) Devices connected to the input/output
ports are placed inside the circuit layout; (b) devices are placed within the circuit boundary and three
horizontal regularity constraints are implemented; (c) two symmetry islands are formed.

In practice, the Bx and By matrices encode an ordering along each axis, where Bx
i,j = 1

encodes that device i’s maximum x coordinate should be greater than j’s maximum x coordi-
nate, and an analogous meaning is given to By

i,j. On the other hand, Bx
i,j = −1 encodes that

device i’s minimum x coordinate should be lesser than j’s minimum x coordinate, and an
analogous meaning is given to By

i,j. Thus, if device i should be on the top boundary, then

By
i,k = 1, ∀k ∈ [1, N]. Or if device i should be on the left boundary, then Bx

i,k = −1, ∀k ∈ [1, N].
Thus, to estimate the boundary error relative to the y axis, the TopTop and BottomBottom

errors between each device pair must be considered, each respectively represented by Btt
N×N

and Bbb
N×N , calculated through:

Btt/bb = M
(

0, M(By, 0) ◦
[

1N×1 ⊗
(

y+/−
)T
− 11×N ⊗ y+/−

])
(1)

where y−N corresponds to the vector containing the minimum y coordinate of each device
in the evaluated placement, defined as yi = Li,2, ∀i ∈ [1, N], and y+

N corresponds to the
maximum y coordinate vector defined a y+i = Li,2 + Di,2, ∀i ∈ [1, N].
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12  0 0 0 0 0 0 0 0 0 0 1 1 1 1  0 0 0 0 0 0 0 0 0 0 1 0 0 0 

13  0 0 0 0 0 0 0 0 0 0 1 1 1 1  0 0 0 0 0 0 0 0 0 0 0 0 0 1 

14  0 0 0 0 0 0 0 0 0 0 1 1 1 1  0 0 0 0 0 0 0 0 0 0 0 0 1 0 
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Figure 3. One-hot encoded matrices used to provide: (a) boundary constraints in the x axis (Figure 2b);
(b) boundary constraints in the y axis (Figure 2b); (c) row regularity constraints (Figure 2b);
(d) symmetry relations (Figure 2c); and (e) symmetry island grouping (Figure 2c) to the deep model.



Electronics 2023, 12, 110 7 of 18

Similarly, for the x axis, the RightRight and LeftLeft errors between each device pair,
represented by Brr

N×N and Bll
N×N respectively, are given by:

Brr/ll = M
(

0, M(Bx, 0) ◦
[

1N×1 ⊗
(

x+/−
)T
− 11×N ⊗ x+/−

])
(2)

where x−N corresponds to the vector containing the minimum x coordinate of each device
in the evaluated placement, defined as xi = Li,1, ∀i ∈ [1, N], and x+N corresponds to the
maximum x coordinate vector defined as x+i = Li,1 + Di,1, ∀i ∈ [1, N].

Finally, another factor must be considered to maximize the boundary constraint’s
effectiveness: whether a device is located between a boundary-constrained device and its
objective (the placement’s boundary). This can be estimated by measuring the overlap
between the devices’ projections in the axis perpendicular to the corresponding boundary
axis for every device pair with an ordering error greater than zero (i.e., Btt

i,j > 0 or Bbb
i,j > 0

or Brr
i,j > 0 or Bll

i,j > 0, since this means that device j is closer to the objective boundary than
i, and it must be checked whether it is blocking device i’s path).

To measure the overlap between each device pair’s projections, consider the distance
that separates the opposing faces of the two rectangles. For example, matrix dX+−

N×N
measures, for every pair of devices i and j, the distance between device i’s maximum
x coordinate face and device j’s minimum x coordinate face. Resulting in four N × N
matrices, two for each axis: dX+−, dX−+, dY+− and dY−+:

dX+−/−+ =

∣∣∣∣11×N ⊗ x+/− − 1N×1 ⊗
(

x−/+
)T
∣∣∣∣ (3)

dY+−/−+ =

∣∣∣∣11×N ⊗ y+/− − 1N×1 ⊗
(

y−/+
)T
∣∣∣∣ (4)

The matrices dXo
N×N and dYo

N×N that define the measured distance to solve the
overlap in each axis are given through:

dXo =
1

1N×1 ⊗wT

(
Sx+−dX+− + Sx−+dX−+

)
(5)

dYo =
1

1N×1 ⊗ hT

(
Sy+−dY+− + Sy−+dY−+

)
(6)

where hN is the column vector containing the devices’ heights given by hi = Di,2, i ∈ [1, N],
wN is the column vector containing the devices’ widths given by wi = Di,1, i ∈ [1, N] and
the four N × N matrices Sx+−, Sx−+, Sy+−, and Sy−+ are scaling weights that function as
a soft minimum for the distance between the devices’ opposing faces in each direction, and
are defined by:

Sx+− =
dX−+

dX−+ + dX+− (7)

Sx−+ = 1N×N − Sx+− (8)

Sy+− =
dY−+

dY−+ + dY+− (9)

Sy−+ = 1N×N − Sy+− (10)

The use of these scaling weights was introduced in [11], where it is explained in detail,
and results in an output with a value between the minimum term and the maximum
term, but, proportionally closer to the minimum term, such that when the minimum term
approaches 0, its weight approaches 1.
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Thus, given dXo and dYo, the two matrices, Bh
N×N and Bv

N×N that evaluate how much
devices stand in the way of the boundary constrained devices are given by:

Bh = M

0,
Btt + Bbb∣∣∣Btt + Bbb

∣∣∣
 ◦ dXo (11)

Bv = M

0,
Brr + Bll∣∣∣Brr + Bll

∣∣∣
 ◦ dYo (12)

The inclusion of these two errors results from a gradient-aware approach since the
objective of the boundary error is not only to identify situations where the constraint is
fulfilled but also to, given two distinct placements, rank them faithfully to a designer’s
preferences. Locally, this results in defining the function’s gradients and information
regarding how to update a placement to correct its errors intelligently. In particular, this
added overlap error results in a gradient that pushes devices away from the path of
the boundary-constrained devices, resulting in cooperative behavior. Figure 4 shows an
example placement where the device D1 should be placed in the top boundary, resulting
in three distinct errors Btt

1,2, Btt
1,3, and Bh

1,2. Note that no error exists between D1 and D4

despite the existing horizontal overlap between them since there is no Btt
1,4 error, thus the

max function from Equation (11) returns 0 and Bh
1,4 = 0. Intuitively, D4 does not stand

between D1 and its objective (the top boundary), thus, it should not be pushed away.
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Figure 4. Example placement where device D1 should be placed in the top boundary, resulting in
three distinct errors Btt

1,2, Btt
1,3, and Bh

1,2. Note that no error exists between D1 and D4 despite the
existing horizontal overlap between them since D4 is not closer to the top boundary than D1.

The pairwise boundary error
..
BN×N is calculated via:

..
B = Btt + Bbb + Brr + Bll + Bh + Bv (13)

Finally, this pairwise error could then be properly normalized and pooled through the
methods discussed in [12], resulting in a final error B.

3.4. Regularity

This constraint arranges the devices into regular layout structures such as rows and
columns, often resulting in a compact and meaningful layout, as shown in Figure 2b. The
regularity constraint is split into two constraints, one for each axis, x and y. The regularity
constraint applied to the x axis constrains device pairs to be vertically aligned, i.e., their
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centroids should have the same x coordinate. Whereas the y regularity constrains the pair’s
centroids to have the same y coordinate. For a given axis, the regularity axis between every
pair of devices can be determined by calculating the pair’s centroid’s x and y position

through
^
XN×N and

^
YN×N :

^
X =

1
2

((
x− +

w
2

)T
⊗ 1N×1 +

(
x− +

w
2

)
⊗ 11×N

)
(14)

^
Y =

1
2

((
y− +

h
2

)T
⊗ 1N×1 +

(
y− +

h
2

)
⊗ 11×N

)
(15)

where wN and hN each respectively contain each device’s width and height and are defined
as wi = Di,1, hi = Di,2, ∀i ∈ [1, N].

After calculating each regularity column and row axis between each pair of devices,

given by
^
X and

^
Y respectively, the errors dRx

N×N and dRy
N×N that measure the deviation

between each device to its correspondent column and row axis per pair is calculated, using:

dRx = Rx ◦
((

x− +
w
2

)T
⊗ 1N×1 −

^
X
)2

(16)

dRy = Ry ◦
((

y− +
h
2

)T
⊗ 1N×1 −

^
Y

)2

(17)

where Rx
N×N and Ry

N×N are the adjacency matrices of the graphs that encode the column and
row regularity constraints respectively. These graphs encode, for a pair of devices i and j,
whether they should be aligned over a vertical or horizontal axis, respectively. Figure 3c
shows the row regularity constraint graph’s adjacency matrix for the placement in Figure 2b.

Note how the regularity errors calculated in (16) and (17) measure, for each de-

vice pair i and j, their distance to the pair’s centroid given by
ˆ
Xi,j or

ˆ
Yi,j. The alterna-

tive would be to directly calculate the distance between each device’s centroid through(
x−i + wi

2 − x−j −
wj
2

)2
. However, experimentally, the used errors proved to be more stable.

For the same placement, the alternative errors will measure a higher value than the centroid
error proposed. Thus, considering the use of momentum-based optimization algorithms
(e.g., Adam), the devices will build more momentum and are more likely to overshoot
their target and oscillate around the minimum. Whereas the centroid approach presents a
common goal for both devices, a “compromise”. That way, the devices will not build as
much momentum and are more likely to stabilize around the minimum.

Given the constraint’s pairwise x and y errors, the final pairwise regularity error
..
RN×N is given by:

..
R = dRx + dRy (18)

Finally, this pairwise error can then be normalized appropriately and pooled through
the methods proposed in [12], resulting in the final constraint error R.

3.5. Relative Proximity

In the boundary error, the overlap error components from Equations (5) and (6) were
proposed to make unconstrained devices aware of the constrained devices’ objectives,
inducing a collaborative behavior. Similarly, in order to encourage the model to group
devices in the same symmetry group in an island (i.e., there is a contiguous shape that can
contain all devices in the same symmetry group while not containing any device outside
of the group), the implementation of the proximity constraint proposed in [11,12] was
updated to behave in the same cooperative manner and used in the SI error to promote
island formation. Additionally, note how in past works [12], all of the symmetry, current-
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flow, and overlap constraints can be satisfied, i.e., their error can be 0. The same, however,
is unlikely to happen to the proximity error since the pairwise proximity error is only zero
if the two devices are touching each other. This is an unnecessarily strict constraint that
actively promotes overlap. A possible approach to turn this constraint satisfiable is to
define a maximum threshold distance, under which the proximity error is zero, however,
the size of this threshold would be, in practice, a hyperparameter to be optimized, and
consequently, subject to overfitting.

Instead, a different approach was taken: the definition of proximity group was changed
to a relative sense instead of an absolute one. In this implementation, the devices that form
a proximity group (symmetry groups share proximity constraints as well, meaning that all
symmetry groups are a proximity group) should be closer to each other than they are to
all other devices. Thus, the measured error estimates how close, on average, device i is to
all devices that do not belong to its proximity group compared to devices that do belong
to the same symmetry group. To estimate the error associated to this constraint, first it is
necessary to estimate the effective minimum distance (EMD) between every pair of devices,
as defined in [12]. The distance measured by this metric corresponds to the minimum
distance between any two points belonging to each rectangle (device). The pairwise EMD
is represented by the matrix EN×N . Given this, the multi-dimensional matrix Er

N×N×N
measures, for a triplet of devices i, j, and k, how closer is device i to j than it is to k, through:

Er = (P ◦ E)⊗ 11×1×N − ((1N×N − P) ◦ E)⊗ 11×N×1 (19)

Note how the compared distances are those between devices in the same proximity
group (represented by the term (P ◦ E)⊗ 11×1×N) with those between devices not in the
same proximity group (represented by the term ((1N×N − P) ◦ E)⊗ 11×N×1). To measure
the pairwise island formation error, the relative distance matrix Er must be first filtered for
only occurrences where Ei,j > Ei,k, i.e., Er

i,j,k > 0, and then averaged over the number of
devices with which device i does not have a proximity constraint:

..
P = Σ3(M(Er, 0)) ◦ 1(

Σ2(1N×N − P)
)T ⊗ 1N×1

(20)

By considering a relative definition of proximity, not only does the constraint become
satisfiable, but also the devices start behaving cooperatively. Instead of only pushing
devices in the same proximity group close, the proximity error now pushes the devices not
proximity-bounded away, opening space for the proximity-bounded devices to get close
to one another. This is especially important because of the overlap error that often stops
other constraints from fulfilling themselves, resulting in a local minimum around which the
system oscillates. It should also be highlighted that this change comes at a computational
cost, increasing the constraint’s complexity from O

(
N2) to O

(
N3). Finally, and as before,

this pairwise error can then be adequately normalized and pooled through the methods
proposed in [12], resulting in the final constraint error P.

3.6. Symmetry Island

The SI groups symmetric devices are close to each other, minimizing their mismatch.
Therefore, multiple SA are considered, as well as hierarchical symmetry, as shown in
Figure 2c. The SI error is separated into two different calculations, the error related to
the intra-group interactions and the error related to the axes that separate two different
symmetry groups. Thus, this approach is limited to two hierarchical levels of symmetry,
but unlimited symmetry axes are supported.

To identify the SI constraints, two different matrices are used: one, the symmetry
relations matrix Sr

N×N , to identify pairs of devices that are symmetric to one another in
relation to any of the SA in the circuit; and a second, the symmetry group matrix Sg

N×N ,
that signals whether two devices share the same SA set, where the SA set of a device is the
set of SAs in relation to which the device is symmetric to another. For example, in Figure 2c,
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three Sas are marked in a dashed line, these can be denominated, from the left to the right:
S1, S2, and S3. For device M1, its SA distribution is the set {S1, S2} since it is symmetric to
itself in relation to S1 and symmetric to M4 in relation to S2. By defining the SA sets of each
device, it is possible to conclude that devices M1, M5, M6, M7 all share the same SA set and
thus, belong to the same symmetry group. Figure 3d,e show the two matrices Sr and Sg for
the circuit shown in Figure 2.

Since this implementation is limited to two hierarchical levels of symmetry, a device
can at most have two symmetry constraints, i.e., M

(
Σ2(Sr)

)
≤ 2. This makes it possible to

separate the constraints into two levels, intra-group constraints and inter-group constraints.
Intra-group constraints are identified for bounding two devices of the same symmetry
group, whereas inter-group constraints bound devices in different symmetry groups.

3.6.1. Intra-Group Axis

For each device, the x coordinate of its intra-group symmetry relation is defined in the
vector sintra,x

N , given by:

sintra,x =
(Sr ◦ Sg) + diag

(
Σ1(Sr ◦ Sg)

)
, x− + 0.5w

2
(21)

where (Sr ◦ Sg) identifies the intra-group relations. By adding the term diag
(

Σ1(Sr ◦ Sg)
)

,
a 1 is added to the main diagonal if the corresponding device has an intra-group symmetry
constraint. Then the dot product adds the x coordinates of the devices’ centroids, which
when halved gives the pair’s centroid.

It is possible to build a three-dimensional matrix Sintra,r
N×N×N that for a device i, the

matrix Sintra,r
i = sg

i ⊗ 11×N ◦ Sr. Thus, Sintra,r
N×N×N can be seen as a stack of N Sr

N×N matrices
where each layer i is filtered such that only the relations relative to the group to which
device i belongs to are considered (i.e., only consider edges to and from a device in the
group). It is important to define this matrix so that the number of symmetry constraints
associated to each SA can be accurately calculated. One naïve approach to defining the
number of constraints associated with each SA is through the Sg matrix, where for each
device, the number of elements in its group would be counted as the number of constraints.
For example, for device M1, its group is defined by the set {M1, M5, M6, M7} with car-
dinality 4, however, since devices M5 and M6 are symmetric to one another, then only
3 symmetry constraints are associated to this intra-group axis. This matrix is estimated via:

Sintra,r = (Sr ⊗ 1N×1×1) ◦ (Sg ⊗ 11×N×1) ◦ (Sg ⊗ 11×1×N) (22)

Now, a matrix Sintra, x
N×N×N whose values are 0 if Sintra,r

i,j,k = 0 and otherwise, its values are

the x coordinates of the symmetric pair’s centroid. The values of sintra,x and Sintra,r are used
to compute the matrix Sintra,x

N×N×N through:

Sintra,x = Sintra,r ◦
(

sintra,x ⊗ 1N×1×N

)
(23)

The reference symmetry axis for each device, represented by the vector
~
s

intra
N , is

computed through:

~
s

intra
= Σ3,2

(
∆u(1N×N)⊗ 1N×1×1 ◦ Sintra,x

)
◦ 1

Σ3,2
(

∆u(1N×N)⊗ 1N×1×1 ◦ Sintra,r
) (24)

where the term Σ3,2
(

∆u(1N×N)⊗ 1N×1×1 ◦ Sintra,x
)

adds, for each layer i in Sintra,x
N×N×N , all

values in the upper triangular region of the matrix, which corresponds to the different
x coordinates of the centroids of all devices that belong to the same symmetry group as
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device i. Then, the term Σ3,2
(

∆u(1N×N)⊗ 1N×1×1 ◦ Sintra,r
)

computes for each device i,
how many symmetry constraints are being considered to properly average out the group’s
centroid’s x coordinate.

The pairwise error associated with the deviation of a pair’s symmetry axis with its

reference, represented by
..
S

intra,x
N×N , can be thus estimated via:

..
S

intra,x
= 11×N ⊗

(
sintra,x − ~

s
intra

)2
◦ Sr ◦ Sg (25)

The pairwise error associated to the vertical misalignment between an intra-group

symmetric pair
..
S

intra,y
N×N is given by:

..
S

intra,y
=
((

y− ⊗ 11×N
)
−
((

y−
)T ⊗ 1N×1

))2
◦ Sr ◦ Sg (26)

3.6.2. Inter-Group Axis

Similarly, the inter-group pairwise error associated to the deviation of the symmetry
axis from the mean is calculated by first estimating, for each device, the x coordinate
of its symmetry axis with a device from another group sinter,x

N , then estimating, for each
device, the symmetry constraints between devices in its group with devices from another

group Sinter,r
N×N×N , then calculating Sinter,x

N×N×N and
~
s

inter
N the same way they calculated for the

intra-group constraints, and finally, calculating the error matrix
..
S

inter,x
N×N :

sinter,x =
[Sr ◦ (1− Sg)] + diag

(
Σ1[Sr ◦ (1− Sg)]

)
2

, x− + 0.5w (27)

Sinter,r = (Sr ⊗ 1N×1×1) ◦ ((1− Sg)⊗ 11×N×1) ◦ (Sg ⊗ 11×1×N)
+(Sg ⊗ 11×N×1) ◦ ((1− Sg)⊗ 11×1×N)

(28)

Sinter,x = Sinter,r ◦
(

sinter,x ⊗ 1N×1×N

)
(29)

~
s

inter
= Σ3,2

(
∆u(1N×N)⊗ 1N×1×1 ◦ Sinter,x

)
◦ 1

Σ3,2
(

∆u(1N×N)⊗ 1N×1×1 ◦ Sinter,r
) (30)

..
S

inter,x
= (Sr ◦ (1− Sg)) ◦ (((sinter,x − ~

s
inter

)
2
)

T

⊗ 1N×1)) (31)

where in Equation (28), the term ((1− Sg)⊗ 11×N×1) ◦ (Sg ⊗ 11×1×N) considers relations to
outer-group devices from group devices, and the term (Sg ⊗ 11×N×1) ◦ ((1− Sg)⊗ 11×1×N)
considers the opposite.

The pairwise error associated to the vertical misalignment between an inter-group

symmetric pair
..
S

inter,y
N×N is given by:

..
S

inter,y
=
((

y− ⊗ 11×N
)
−
((

y−
)T ⊗ 1N×1

))2
◦ Sr ◦ (1− Sg) (32)

The pairwise error associated to the symmetry island constraint
..
SN×N is given by:

..
S =

..
S

intra,x
+

..
S

intra,y
+

..
S

inter,x
+

..
S

inter,y
(33)

Finally, this pairwise error can then be normalized and pooled through the methods
proposed in [12], resulting in the final constraint error SI . It should be noted that devices
in the same symmetry group form a clique in the proximity constraint graph, thus, these
groups will tend to form islands.
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3.7. Loss Function

The deep model is ultimately trained to minimize a loss function whose inputs are
the placement of the devices (i.e., the model’s output), the circuits’ constraint graphs, and
respective sizing (i.e., the model’s inputs). This loss, shown in Equation (34), accounts for
the satisfiability topological constraints considered, i.e., proximity (P), symmetry/SI (SI),
current-flows (CF), boundary (B), and regularity (R). Still, two other metrics are also
utilized to regulate the quality of produced layouts, i.e., overlaps and wasted area
(WA and O, respectively). The total loss is then given by the weighted sum of each of
these constraint losses, where the wa,pg,si,cf,o,bou,reg variables in Equation (34) represent
said weights. Note that each of these constraint-specific losses is calculated in function
of the circuit’s sizing (matrix DN×2), its positional constraints (specified by the graphs
PN×N , Sr

N×N , Sg
N×N , CN×N , Bx

N×N , By
N×N , Rx

N×N , Ry
N×N) and the produced placement

(matrix LN×2). Moreover, by using this unsupervised formulation, the model can be
easily trained with unlabeled data, reinforcing its generalized application.

loss = waWA + wpgP + wsiSI + wc f CF + woO + wbouB + wregR (34)

4. Experimental Results

The methodology was coded in Python using PyTorch ML library, and demon-
strated with a dataset containing sizing solutions (split into training, validation, and
test) for different state-of-the-art amplifiers on two foundries/nodes: the voltage-combiners
(VC)-biased amplifier [23] (VCB, umc130), the folded VC-biased amplifier [24] (FVC,
umc130, and tsmc65), and the VC-biased single-stage operational transconductance am-
plifier [25] (VCOTA, umc130), as shown in Table 2. Note that FVC in tsmc65 node was
kept for validation and test only. The largest circuit is the VCOTA with 22 devices, whose
schematic is illustrated in Figure 5. For it, 11 symmetry pairs were set by an experienced
IC designer, 12 current-flows, 6 boundary constraints, 5 regularity constraints (row only),
and 15 proximity constraints, as detailed in Table 3. This procedure was performed for
the remaining amplifiers, with VCB being the only case study with SIs. Additionally, to
balance the dataset, the sizing solutions of FVC were augmented by shuffling the order
of the devices. To place larger analog circuit/system topologies, this work can be directly
applied to each of the sub-blocks of the system, which, when placed, would be assembled
at the top level given a set of topological constraints. As an alternative, the methodology
could be used to place the entire complete mixed-signal or system in one single step, the
major drawback being the deep model’s training which would escalate proportionally.

The model’s input vector has size 3916, and the weights of Equation (34) were empirically
chosen and set to: wa = 0.1, ws = 95, wcf = 80, wbou = 20, wreg = 2, wo = 90, and wpg = 25. The
ANN model comprises 5 hidden layers (with 5000/2500/1000/250/100 neurons each) and
1 output layer (44 nodes). The model was trained for 1000 epochs using Adam optimizer,
and its parameters were set to: α = 0.001, β1= 0.9, and β2 = 0.999. A batch size of 500 samples
was adopted, and dropout with a drop rate of 0.2 was used to prevent overfitting. The
activation function used was the exponential linear unit (ELU) and linear function in the
output layer. Table 4 fully details the train, validation, and test set errors. As observable, the
test set errors are similar to those obtained on validation, with only a significant difference
in the current-flow constraints on VCB and VCOTA. Moreover, its generalization ability is
observed on FVC (tsmc65), with errors even lower than validation circuits. Figure 6 shows
that the ANN is producing workable solutions.

Finally, to further demonstrate the value of this work, the proposed approach’s perfor-
mance was compared to a human expert designer. In this experiment, a human-designed
placement for the VCOTA architecture was compared to an automatically generated
placement using the approach here proposed. The ANN generated, for a single sizing,
500 different predictions, by shuffling the order of the devices in the input layer. Due to the
batch capabilities of the model, the time required for this process is in the order of millisec-
onds (push-button speed). The best prediction was selected as the final solution produced
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by the ANN. The two final placements are shown side-by-side in Figure 7. Table 5 compares
the numeric values for the compactness, proximity, current flow, regularity, and boundary
errors for both solutions. Since the post-processing fixes overlaps and symmetry errors,
these are zero and are not compared. Still, no major importance is given to the compactness
comparison, as the remaining common-mode feedback circuitry used to bias the original
circuit (and fill the empty spaces in the layout) were not included in this work. Nonetheless,
in every metric, the automatic approach improves upon the human-designed floorplan,
presenting decreases of up to 15-fold in the case of the current-flow error. Overall, the
automatic approach is capable of carefully balancing all the different constraints, resulting
in a placement with around 70% improvement over the human-designed solution.

Table 2. Dataset details.

Topology VCB [23] FVC [24] VCOTA [25]

Technology umc130 nm umc130 nm tsmc65 nm umc130 nm
Number of Devices 14 15 22

Number of Sizing Examples 5000 258 40 5979
Training Set 70% 70% 0% 70%

Validation Set 15% 15% 50% 15%
Number of Train and Validation Samples 4250 2213 * 1260 * 5082

Test Set/Number of Test Samples 15%/750 15%/391 * 50%/1260 * 15%/897

* Augmented data through shuffling and padding.
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Table 4. Train (TrE), validation (VaE), and test (TeE) errors.

Constraint
VCB [23]/umc130 nm FVC [24]/umc130 nm FVC [24]/tsmc65 nm VCOTA [25]/umc130 nm

TrE VaE TeE Comp.
(%) TrE VaE TeE Comp.

(%) TrE VaE TeE Comp.
(%) TrE VaE TeE Comp.

(%)
Wasted Area 0.90 0.86 0.85 −0.7 1.02 0.86 0.91 +5.2 - 0.67 0.59 −10.8 0.77 0.61 0.59 −3.6

Symmetry/SI (×10−2) 0.62 9.47 9.18 −3.1 0.87 12.9 13.3 +3.1 - 10.6 9.75 −8.0 10.7 11.0 10.6 −3.6

Current-Flow (×10−2) 0.14 2.13 2.60 +22.1 <0.1 1.78 1.90 +6.7 - 3.78 3.05 −19.3 <
0.1 4.93 5.88 +19.2

Boundary (×10−2) 0.92 2.71 2.91 +7.4 7.65 4.20 4.53 +7.9 - 3.89 2.11 −45.8 5.15 4.52 4.24 −6.2
Regularity (×10−7) 3.01 1.27 1.32 +3.9 2.79 4.56 3.85 −15.6 - 2.84 2.78 −2.1 23.4 16.3 15.0 −8.0

Proximity 0.47 0.61 0.61 −0.8 0.21 0.43 0.44 +3.5 - 0.36 0.30 −17.9 0.21 0.34 0.32 −3.9
Overlap (×10−2) 4.83 7.81 8.05 +3.1 6.13 12.7 12.1 −4.7 - 14.4 14.9 +3.5 7.85 15.1 15.4 +2.0

Table 5. Comparison of the automatically produced and human-designed floorplan solutions.

Placement Compactness Comp. Proximity Comp. Current-Flow Comp. Regularity Comp. Boundary Comp. Total Comp.

Human [25] 6.72 1.10× 8.33 2.19× 0.89 17.8× 0.54 4.50× 1.53 3.26× 18.01 1.70×

This Work 6.12 - 3.81 - 0.05 - 0.12 - 0.47 - 10.57 -
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5. Discussion

Reliable automatic placement tools must support a broad set of topological constraints
to tackle industry-standard analog IC design cases and produce aesthetic-wise solutions for
the circuit designer. This paper proposes different model-independent and differentiable
implementations of boundary, regularity, and SI constraints. The proposed constraints
not only enforce the correct placement of the devices but were also designed to maximize
the training of DL models. Their design was aware of the gradient produced and used
matrix representation for improved performance using hardware parallelization (GPUs).
The proof of concept was made with an ANN trained on sizing data of three different
state-of-the-art amplifiers, generating workable solutions at push-button speed.

Even though the methodology proposed in this manuscript is tested in a family
of state-of-the-art amplifiers, it can be applied to any real circuit class as long as there
are well-defined topological constraints (i.e., symmetry pairs, current-flows, proximity,
boundary, etc., constraints) for the circuit topologies within that class. If no topological
constraints are requested, the deep models will still attempt to minimize the layout’s wasted
area/compactness and the overlap among devices, and components of the placement loss
indicated in Equation (34). However, the resulting solution may not be meaningful for
the circuit designer, as no criteria to place the devices with respect to each other is being
set. The experiments carried intend to show that if the deep model is trained in a dataset
that shares some of the characteristics regarding topological constraints’ fulfillment of the
circuit topologies to be generated, the acquired knowledge can be reused and generalized.

Even if the placement of a relatively small analog integrated circuit block is not
extremely time-consuming, once several performance figures have to be considered its
complexity increases immensely, and an optimal floorplan solution may not exist due to
the inherent tradeoffs. Moreover, analog IC design is characterized by non-systematic
re-design iterations, most of which impact the layout design, requiring partial or complete
floorplan re-design. By using deep models, these floorplans can be generated instantly,
while the human-designed floorplan may take from dozens of minutes to a couple of hours.
These times are multiplied through every re-design iteration further conducted on a design.
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