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Abstract: Wireless sensor networks (WSNs) are implemented in many aspects of daily life, such
as Internet of Things applications, industrial automation, and intelligent agriculture. Sensors are
typically powered by batteries. Chargers can be used to supply power to sensor nodes and thus
extend the lifetime of WSNs. This special type of network is named a wireless rechargeable sensor
network (WRSN). However, due to the limited battery power and different deployment locations of
the sensors, efficiently moving the chargers from the current sensor nodes to the next sensor nodes is
a challenge. In this study, we propose an unmanned aerial vehicle (UAV)-based charging scheme
in an urban bus system, involving the coordination between UAVs and bus schedules. The UAVs
can be recharged by urban buses and then supply the power to sensor nodes. We implemented three
charging strategies: naïve, shortest path, and max power. In the naïve strategy, the UAVs fly directly
to sensor nodes when the sensors are lacking power. In the shortest path strategy, the minimum
distance between the sensor node and bus location is calculated, and the UAVs fly the shortest path
to the sensor nodes. In the maximum power charging strategy, the UAV that has the highest battery
power is assigned to work. The experimental results show that the shortest path charging and max
power charging strategies perform better than naïve charging in different parameter settings. To
prolong the lifetime of the network system, adjusting the bus frequency according to the number of
nearby sensors around the bus route is favorable.

Keywords: wireless rechargeable sensor networks; unmanned aerial vehicles; bus system

1. Introduction

The wireless rechargeable sensor network (WRSN) [1,2], which has a mechanism
for self-charging or harvesting energy from the environment [3] (such as solar and wind
energy), has an important role in future smart cities. WRSN has wide applications in
many fields such as long-term environmental monitoring [4] and vehicle traffic control
monitoring [5].

In this regard, Eiskamp et al. [6] proposed a method for using wireless chargers embed-
ded in unmanned aerial vehicles (UAVs) to store energy in their batteries. Liao [7] proposed
the use of a dedicated charger carried to the sensor network by a drone whereby energy
could be transmitted to the sensor using wireless charging technology. The drone wireless
charging of WRSNs enables recharge sensors to be continuously deployed to inaccessible
outdoor environments without the need to maintain a wireless charging network.

However, as the battery capacity is limited, the drone must return to the ground
charging station to recharge, which reduces its charging efficiency. Similarly, a limited
battery capacity hinders the charging of sensors deployed in wide areas by UAVs. Thus,
the use of UAVs for efficient charging is an interesting and important problem. Trotta
et al. [8] proposed a network architecture with a supporting optimization framework to
allow UAVs to perform city-scale video monitoring of points of interest (POI). They defined
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a mathematical framework for selecting a UAV that can periodically recharge by landing
on public transportation buses and then “riding” the bus to the chosen POl. The UAV
scheduler can be modeled as an instance of a multicommodity flow problem and can
be mathematically solved using mixed-integer linear programming (MILP) techniques.
The centralized formulation identifies the UAV, the next bus, and the next POI, given the
information on energy thresholds, bus routes in the city, and the next arrival time, to ensure
persistent and reliable video coverage of all POIs in the city. Jin et al. [9] designed a new
electric vehicle charging system that utilizes a bus network by integrating an online electric
vehicle (OLEV) system [10] and a microwave power transfer system. By taking advantage
of the bus network, UAVs can refuel and also extend the range of charging services. At
the same time, the bus is equipped with a large-capacity battery that can sustainably draw
energy from the OLEV system or its combustion engine such that there is sufficient energy
to charge the UAVs. Buses offer ubiquitous charging opportunities for UAVs because of the
high penetration and wide coverage of bus networks in urban areas.

Caillouet et al. [7] proposed the wireless charging of UAVs for WRSN, and Trotta
et al. [8] proposed drone scheduling using buses to charge UAVs. The process requires
energy to be efficiently transferred between the WRSN, UAV, and bus to form a closed
wireless charging system. In this study, we propose a bus-network assisted UAV wire-
less charging system that uses a bus network to supplement the energy of the UAV and
minimizes the flight energy consumption of the UAV in charging the WRSN.

The bus has its own fixed schedule, and the UAV can be charged while on the bus.
When the bus is near the sensor, the UAV can fly to the sensor and charge it. The sensors,
landing points of the bus sections and flight segments between the sensor landing points
form a comprehensive network. The UAV rides the bus through the landing point closest
to the charging sensor, replenishes its energy from the bus, and leaves the bus when the
energy is sufficient to charge the next sensor at the landing point.

The sustainability of the WRSN largely depends on the charging efficiency and schedul-
ing of the UAVs. The arrangement of the bus-network assisted drones for sustainable
charging of WRSN is a very challenging problem. The traveling salesman path problem
cannot be directly solved on a comprehensive network that integrates the WRSN and bus
network to obtain the travel path of the UAV, as the goal is only to schedule the UAV to
access sensors. In addition, determining the energy-constrained shortest path for a UAV to
travel from one sensor to the next in a comprehensive network is difficult. This is because
the UAV can undergo a hybrid process of discharging and charging between any two
sensors. In addition, the scheduling of the UAV must ensure that each road segment meets
the energy constraint of the UAV such that the remaining energy of the UAV at the starting
point of the road segment is not less than the energy consumed on the segment. However,
the remaining energy of the UAV depends on the previously selected road/ flight segment.
This paper makes the following contributions:

• We proposed a UAV-based charging scheme in an urban bus system, involving the
coordination between UAVs and bus schedules;

• We use real maps and bus information to design charging algorithms. The UAVs can
be recharged by urban buses and then supply the power to sensor nodes;

• We implemented three charging strategies: naïve, shortest path, and max power. The
proposed charging strategy can be easily applied to practical fields.

2. Related Works

Recently, studies have indicated that UAVs can be charged using wireless energy
transfer and serve as mobile chargers. The adoption of wireless energy transfer to charge
UAVs has been proposed in [1], showing that the wireless charging power is sufficient
to restore their battery. The UAVs can also charge Internet of Things (IoT) devices using
wireless power transfer [2]. Although the concept of charging UAVs and UAVs charging
IoT devices has been implemented [3], the design of an efficient UAV-specific wireless
charging scheme in WRSNs still poses challenges. Previous studies have proposed efficient



Electronics 2022, 11, 1464 3 of 12

deployment strategies of UAVs to replenish energy, maximize the coverage of the selected
region, and ensure service sustainability [4]. Chen et al. presented a rechargeable UAV
paradigm for WRSNs [5], which employed a scheduling heuristic for finding the shortest
path using the multi-hop method.

Previously, studies on WRSN mainly focused on solving the problems of the de-
ployment of mobile wireless chargers [6,7], energy conservation [8,9], and routing and
scheduling [10]. Several studies have been conducted on the deployment of wireless
chargers as the adoption of wireless energy transfer has made it an important issue. Chiu
et al. designed a charger deployment strategy for mobility-aware WRSNs and used the
trajectories of mobile sensors to design wireless charger placement strategies [11]. The
proposed method partitioned the region into grids and assigned wireless chargers at the
grid connection positions. Liao et al. proposed a sleep schedule for wireless chargers
to reduce the battery power attenuation and used cones to fill the area [12]. The design
approach devised by He et al. [13] is based on placing the wireless chargers in the regions
of interest and using the traditional triangular approach to detect the area. Horster and
Lienhart studied the arrangement of optical sensors with the constraints of the device
angles [14]. They used integer linear programming (ILP) to resolve the problem of optimal
coverage, with each grid intersection representing a potential placing position [14]. In [15],
the arrangement of wireless chargers was expressed as a nonlinear programming problem,
and the deployment problem belonged to the NP-hard set. Thus, solving the wireless
charger deployment problem is challenging. Mo et al. proposed MILP to formulate the
coordination problem among multiple mobile chargers and provided a decomposition ap-
proach to solve the problem [15]. Tang et al. addressed charging and routing together and
suggested an optimization method to improve the network lifetime [16]. Aiming to balance
the energy distribution of the network, they divided the battery charging time according
to the energy consumption, thereby dynamically balancing the charging efficiency. Lin
et al. proposed a power balance aware deployment (PBAD) strategy to solve the problem
of unbalanced battery power distribution in WRSNs. The comparison between PBAD and
random position random orientation was presented in [6]. The charger arrangement was
formulated as a minimum dominating set problem, and the aim was to find the minimal
number of chargers needed to overlay the WRSNs. Lin et al. leveraged a greedy heuristic
to compute the coverage set [6]. They presented a two-step approach. In the beginning,
the selected area was divided into several sub-regions, and each sub-region could obtain a
continued source of charging power. Then, each sub-region was further checked, and the
minimum dominating set was calculated. Later, an approximate optimal set was selected.
A comparison between the surveyed studies is organized in Table 1.

Table 1. Related deployment literature.

Research Charger
Mobility

Bus Route and
Schedule Awareness UAV Based Simulation

Environment
Hardware

Experiment

He et al. (2012) [13] Fixed No Energy Provision No WISP platform Yes

Chiu et al. (2012) [11] Fixed No Mobility Aware No
Manhattan grid-based

map and Random
Walk Mobility Model

No

Liao et al. (2013) [12] Fixed No 3D beamforming No C++ No
Lin et al. (2016) [6] Fixed No Power Balance Aware No C++ No

Mo et al. (2019) [15] Mobile No Energy Aware No Matlab No

Tang et al. (2020) [16] Mobile No Routing and Energy
Aware No Matlab No

Chen et al. (2020) [5] Mobile No Travel Distance
Aware Yes Visual Studio C# No

Jin et al. (2021) [3] Mobile Yes Energy Aware Yes Google Map and
Inspire 2 Parameter Yes

Ours Mobile Yes Travel Distance and
Energy Bound Aware Yes Google Map and

Python No
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Compared with previous related work, we conceived a UAV-based WRSN charging
system that can operate on a city bus network. The bus route and schedule are considered
in the WRSN charging system. The system is aware of the UAV flight distance limit and the
influence of the upper and lower energy bound on the WRSN lifetime. The Google map is
used in the simulation environment to construct the bus route. Since most research did not
consider bus routes and schedules, the closest environment setting would be the research
from Jin et al. [3]. However, the study by Jin et al. assumes that UAVs have fixed landing
points so that UAVs take off and land buses at the fixed landing points [3]. Due to the
limitation of the fixed landing points, the flight distance of the UAVs may increase and thus
cause more power consumption. In particular, if there is a sensor near the bus route but not
near any landing point, the UAV will take more time to fly to the sensor, thus increasing
the UAV’s energy consumption. This study assumes that the UAV can fly directly from
the bus to the sensors, then fly back to the bus from the sensors after charging. Based on
this concept, the shortest path of the UAV flight can be calculated, thereby reducing the
UAV flight distance compared to the study by Jin et al. [3]. Because the landing point of the
flight in this study is not fixed, it is not possible to plan the path based on the fixed landing
points as in the previous study. In addition, this study decides whether to charge or not
based on the current remaining battery power of the sensors. This concept is also different
from the previous research, which considers the deadlines of the sensors to maximize the
number of rechargeable sensors [3].

3. Method
3.1. Problem Definition

In a wireless sensor network (WSN), sensors run throughout the network lifetime.
Sensors simultaneously receive and send data. Thus, the network cannot receive and
send data properly if the sensors shutdown. In a WRSN, chargers can supply power to
the sensors on-demand to prolong the lifetime of the network. Sensors may be deployed
everywhere in the urban areas. Hence, developing an approach to move chargers to supply
the demand for power of sensors in WRSN is an interesting research problem. This study
proposes a novel UAV charging scheme for WRSN using the urban bus system. In this
study, UAVs are used as chargers for a WRSN. The UAVs can avoid traffic congestion and
fly to the charging point of sensors directly. The UAVs are charged by the buses in the
urban bus system. At the same time, they are transported using the buses to supply power
to the sensors that are around the urban area. The UAVs pass by the sensors every few
minutes, and the sensors can be frequently charged by the UAVs. When sensors lack power,
a UAV can fly to the charging point of the sensor from the bus to supply power if the UAV
has sufficient power. The efficiency of charging will be influenced by the charging scheme.
This study implements a UAV charging scheme based on the urban bus system to simulate
three types of strategies for charging.

3.2. Algorithms

In this study, three charging schemes were analyzed: naïve charging, shortest path
charging, and max power charging. The naïve charging is intuitive. In this charging scheme,
a UAV checks the location of the bus every 30 s. When the bus is near the sensor that lacks
power, a UAV that has sufficient power flies from the bus to the charging point of the sensor.
Once the sensors are charged, the UAV flies back to the bus if the bus is within the flight
distance limit and is recharged by the bus. In naïve charging, the flight path of the UAV
may not be the shortest because it directly flies to the sensors lacking power. It does not
consider the distance between the location of the bus and the sensor. Table 2 explains the
symbols used in this study. The flow chart of the charging process is shown in Figure 1. It
will be adjusted according to the charging schemes. The operation of the naïve charging
strategy is presented in Algorithm 1.
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Algorithm 1: Charging Strategy with Naïve Charging

Input: all the sensors S, UAVs U, and Buses B
Output: Which UAV ui charges which sensor si and Which UAV ui flies to which bus bi
Step 1. Randomly select the sensor position around bus route within flight distance limit of UAV
Step 2. Initialize the locations of UAV to each bus
Step 3. Update locations of all buses bli every 30 seconds
foreach bi do
Update_Location(bli);

End foreach

Step 4. Check the power of all sensors spi, if the power of sensor spi is not enough, search the location of UAVs
uli, and check the UAV supplementary battery upi, if upi, is enough, ui flies to sli
foreach si do

if (spi < lpc ) then
foreach ui do
if (upi > lpc && distance(uli − sli) < d ) then
UAV_ f lies_to_sensor(si , ui);
End if
End foreach

End if
End foreach

Step 5. If the power of sensors is enough, UAV flies to bus from the sensor
foreach si do
if (spi > upc && si is been charging ) then
foreach bi do
if (distance(bli − uli) < d && bi has enough space to deliver ui ) then
UAV_ f lies_to_bus(bi , ui);
End if
End foreach

End if
End foreach

Step 6. Supplement and consumption of power of all sensors spi and UAVs upi
foreach si do

consumption(spi);
if (si is charged ) then

consumption(upi);
supplement(spi);

End if
End foreach
foreach ui do

if (ui is on bus ) then
supplement(upi);

End if
End foreach

Table 2. Symbols used in this research.

Parameters The Description of Parameters

si, ui, bi Sensor, UAV, and Bus

n The number of sensors and UAVs

sli, uli, bli The locations of sensors, UAVs, and buses

spi, upi The power of sensors and UAVs

lpc The lower bound threshold of the power of sensors and UAVs

upc The upper bound threshold of the power of sensors and UAVs

d UAV flight distance range
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The strategy of shortest path charging is an extension of naïve charging. In this strategy,
the distances between the sensor and all UAVs are calculated. The closest UAV that is
within the flight distance limit is chosen. Then, the shortest path between the bus route
in which the closest UAV is and where the sensor is obtained. The UAV is continuously
charged until the bus arrives at the point of the shortest path. Therefore, the UAV has
more time to be charged by the bus using the shortest path strategy, and more energy is
maintained in the network. If there are no UAVs that have sufficient power to charge the
sensor, the algorithm will continue the search for a suitable UAV until the sensor is charged
or depleted of all charges. The steps of the shortest path charging strategy are presented in
Algorithm 2.
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Algorithm 2: Shortest Path Charging

Input: all the sensors S, UAVs U, and Buses B
Output: the shortest path between bus bi route and sensor si
From the step 4 in Algorithm 1: find the shortest path between bus route and location of sensor si
foreach si do

if (spi < lpc ) then
foreach ui do
if (distance(uli − sli) < d && upi is enouth) then
record_the_closest_UAV(uli, sli);

End if
End foreach
if ( f ound the closest ui) then
f ind_min_distance(bi route that the closest ui is on, sli);
UAV_ f lies_to_sensor(si, ui);
End if

End if
End foreach

Max power charging can be combined with a different charging strategy. A bus can
transport multiple UAVs on the route, and several UAVs can be assigned to a sensor
simultaneously. The max power charging strategy ensures that only the UAV with the most
power is assigned to the sensor. The steps of the max power charging strategy combined
with the shortest path strategy are presented in Algorithm 3.

Algorithm 3: Max Power Charging (with Shortest Path Charging)

Input: all the sensors S, UAVs U, and Buses B
Output: the max power UAV ui
After finding the shortest path between bus bi and sensor si:
foreach (ui is on the bus bi) do

f ind_max_power(ui);
End foreach

UAV_ f lies_to_sensor(max powerui, si);

4. Experimental Results
4.1. Experimental Environment and Parameters

In this study, we used the bus routes and the bus timetables in Chiayi city and the
street map from Google Maps in the simulation experiment, as shown in Figure 2. Chiayi
city has three routes. We simplified the names of the routes to green, red, and orange
routes. The time intervals between each bus on the three routes are 30, 40, and 60 min, and
the running times are 53, 45, and 56 min, respectively. For convenience, we fixed the bus
speed and did not consider the basic consumption for running of UAV. We simulated these
algorithms via python. We updated the bus location and the status of sensors and UAVs
every 30 s and analyzed the performance of the sensors under each algorithm.

In the experiment, the number of both sensors and UAVs was denoted by n. First,
we set n equal to 30. Then, we evenly distributed the UAVs on each bus. In addition, we
limited the maximum number of UAVs transported on buses to three. The flight distance
limit d was set to 100 units. We randomly deployed the sensors within a distance of d × 0.8
to avoid sensors that are hard to charge in the experiment. The time of flight of the UAV
was calculated using a pattern: 1 min per 30 units. In this study, the maximum power of the
sensor is 100%. Initially, sensors were randomly assigned powers between 30% and 100%.
The power of the UAV was set to 100%. The threshold lpc of the lower bound of power
was set to 30%. The threshold upc for the end of charging was set to 85%. We expected
the power supplement from the bus to the UAV to be better than the power supplement
from the UAV to the sensor and the power supplement from the UAV to the sensor to be
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more than the power consumption of the sensor. Table 3 shows the parameters used in
the experiment.
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Table 3. The parameters in the experiment.

Parameters The Description of Parameters

n number of 30

d 100 units

Power maximum 100%

lpc 30%

upc 85%

Sensor Consumption 0.6%/min

UAV supplement Sensor 1%/min

Bus supplement UAV 2%/min

4.2. Experimental Results

In this study, we simulated the operation time of buses for 10 h in real life. We tested
several times for the results. First, we compared the survival rate of sensors with the
three algorithms. Figure 3 shows the impact of the different algorithms and the number of
UAVs on the survival rate of sensors. We set the number of sensors to 30 and varied the
number of UAVs. The results indicated that the shortest path charging and max power
charging are better than the naïve charging. The survival rates of sensors with the naïve
charging, shortest path charging, and max power charging were 82.33%, 87.55%, and
87.34%, respectively. The survival rate of sensors with the naïve charging strategy was
3.2% lower compared to those of the shortest path and max power charging. This could be
because the UAVs with the shortest path and max power charging schemes have higher
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energy and lower time of flight than those with the naïve charging scheme. As the UAVs
fly to the sensor directly (provided the distance between the UAV and the sensor is less
than the distance limit) in the naïve charging strategy, more time is necessary for the UAVs
to arrive at the charging point of the sensor. Furthermore, the supplement of energy that
the buses can provide to the UAV is decreased. Compared to the naïve charging strategy,
the shortest path and max power strategies provide more time to supply power for the
UAVs. Hence, the UAVs have higher power and lower time of flight.
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In addition, we changed the upper bound of the number of UAVs on the bus, which
influenced the survival rate of sensors, as shown in Figure 4. We fixed the number of
sensors to 30. The results indicated that compared to the upper bound of 3, the survival rate
of sensors was lower by 2–4% for the upper bounds of 4 and 5. As a bus passes by many
sensors, if the upper bound on a bus is higher, the buses on other routes may not have a
sufficient number of UAVs, which results in some sensors on that route not being charged.
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The average number of sensors on the green, red, and orange routes was 10.5, 8.0, and
11.5, respectively. We changed the interval of buses based on the average number of sensors
on each route. Moreover, we exchanged the intervals of buses on routes 2 and 3 because
there were more sensors on route 3. Figure 5 shows the effect of different bus intervals. The
results indicate that the exchange did not affect the survival rate of sensors.
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Finally, we increased the lower bound lpc of the power used by the UAV to charge the
sensor and found that it would have more impact on the sensor survival rate, as shown in
Figure 6. The results indicate that the survival rate of sensors with an lpc of 0.5 is higher
than that with an lpc of 0.3 by 3–5%. When the lpc is lower, it can result in sensors not being
charged even if buses pass by the sensor. If the arrival times of buses have wide intervals,
the sensor may not be charged by the UAV in a timely manner. If only one bus route
passes by the sensor, the lpc would have a higher influence on its survival rate. Therefore,
increasing the lpc value can increase the fault tolerance of the WRSN networks.
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5. Conclusions

In this study, we proposed a charging scheme that can operate on an urban bus system.
The charging scheme is implemented to coordinate UAVs with bus schedules. The UAVs
can be recharged while utilizing an urban bus system. Then, the UAV chargers supply
power to sensor nodes. We also compared three different charging strategies. The first
strategy is naïve charging. Under this scheme, the UAV directly flies to the sensor nodes
when the sensors lack power. In the shortest path strategy, the minimum distance between
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the sensor node and bus location is calculated, and the UAVs choose the shortest path to
the sensor nodes. In the max power charging strategy, the UAV that has the most battery
power is assigned to the sensor. Finally, this scheme adjusts a suitable bus frequency based
on the number of nearby sensors on the bus route to prolong the lifetime of the network
system. Experimental results indicated that the strategies of shortest path charging and max
power charging provide better sensor survival rates than the naïve charging strategy. The
sensor survival rate for naïve charging, shortest path charging, and max power charging
were 82.33%, 87.55%, and 87.34%, respectively. The survival rate of sensors in the naïve
charging strategy was 3.2% lower compared to those of the other two strategies. There are
regulations for the UAVs to provide a safe flight environment. In this study, we did not
investigate the effect of the regulatory constraints, such as physical collision avoidance.
The inter-UAV communication issue was also neglected. We also assumed fixed landing
points for the UAVs, which might undermine the flexibility of the UAVs and the charging
efficiency. The inter-UAV communication and mobile landing points can be explored in
the future.
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