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2 JSC Synhet, Biržų Str. 6, LT-44139 Kaunas, Lithuania; liudas@synhet.com
* Correspondence: mantas.vaskevicius@vdu.lt

Abstract: Crystallization is an important purification technique for solid products in a chemical
laboratory. However, the correct selection of a solvent is important for the success of the procedure.
In order to accelerate the solvent or solvent mixture search process, we offer an in silico alternative,
i.e., a never previously demonstrated approach that can model the reaction mixture crystallization
conditions which are invariant to the reaction type. The offered deep learning-based method is trained
to directly predict the solvent labels used in the crystallization steps of the synthetic procedure. Our
solvent label prediction task is a multi-label multi-class classification task during which the method
must correctly choose one or several solvents from 13 possible examples. During the experimental
investigation, we tested two multi-label classifiers (i.e., Feed-Forward and Long Short-Term Memory
neural networks) applied on top of vectors. For the vectorization, we used two methods (i.e.,
extended-connectivity fingerprints and autoencoders) with various parameters. Our optimized
technique was able to reach the accuracy of 0.870 ± 0.004 (which is 0.693 above the baseline) on the
testing dataset. This allows us to assume that the proposed approach can help to accelerate manual
R&D processes in chemical laboratories.

Keywords: deep learning; crystallization; machine learning; solvent prediction; organic synthesis;
purification; neural networks

1. Introduction

Crystallization is used as a purification technique for solids, and it is one of the
fundamental procedures based on the principles of solubility [1,2]. Crystallization as a
purification technique is mostly applicable not only in the laboratory but also in industry
as a tool to obtain pure components from various mixtures (organic–inorganic chemical
reactions, plant extracts, etc.) [3]. Solutions are cooled to a point where they become
suspensions, or anti-solvents are added to induce the process. The solid is removed from
the suspension, which hopefully results in a purer form of the solute. The developing
crystals ideally form with high purity, while impurities remain in the saturated solution
surrounding the solid [4]. The crystallized solid is then filtered away from the impurities [5].
This effect is achieved because the solvent can no longer hold all of the solute molecules,
and they begin to leave the solution and form solid crystals. Chemists use laboratory
techniques to purify solid compounds [6], and the focus of this paper is on how to help
them by transferring some of these processes from a real into an artificial environment.

An important feature of crystallization is the selection of an appropriate solvent. The
solubility of a compound depends on the solvent(s) and their ratios, the temperature, the
pH of the system, the presence of impurities, and the solid form in equilibrium with the
supernatant [7]. Synthetic crystallization process design often relies on the understanding
of solubility in order to isolate the compound as a solid with the polymorphic form of
interest at a high yield while limiting the presence of impurities within the isolate. The
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solvent used in a crystallization experiment is often critical to obtaining the best results.
The most common methods of selection are based on prior knowledge or the compound’s
similarity to a known appropriate solvent [8]. However, the selection of crystallization
solvents for novel compounds remains costly because it requires testing in the experimental
laboratory [9]. The high cost is usually due to the expensive expert labor and materials.

In practical terms, a methodology that would allow the approximation of the crystal-
lization solvents may allow scientists to predict what solvents they would need to use for
the purification step before even starting the synthesis. Thus, this paper aims to offer a
reasonable approach which is able to predict an appropriate solvent (or several solvents)
(from the pre-determined closed set of possible solvents) for the purification of synthesis
mixtures using crystallization. Most notably, modern Machine Learning (ML) algorithms,
in particular Deep Learning (DL), have demonstrated an unparalleled ability to model
various chemical properties [10]. In this research, we use a novel training dataset that was
prepared for this purpose and contains various organic syntheses, but does not bind to
a specific reaction type. The input data (containing reactants and products) is presented
in the SMILES (Simplified molecular-input line-entry system) notation. We test the two
most promising vectorization types (extended-connectivity fingerprints and autoencoders)
and two types of neural networks (i.e., a Feed-Forward Neural Network—FFNN and Long
Short-Term Memory—LSTM) as classifiers. In addition, we investigate whether the knowl-
edge of the solvent mixture before the crystallization step is necessary in order to achieve a
higher accuracy of prediction. This research assumes that the correctly chosen methodology
(vectorization type, classifier, hyper-parameters) can solve the solvent selection problem
in silico first, before transferring its outcomes to a real chemistry laboratory. This could
ease the scouting of appropriate crystallization solvents, leading to increased efficiency and
solvent savings.

2. Related Work

Purification by crystallization is one of the most popular operations in the laboratory
and industry [11–13]. Although methods for the selection of potential solvents for crys-
tallization and recrystallization have been researched [14], the process is still challenging,
especially when the solubility is not determined for novel compounds. Besides this, the
purification of laboratory chemicals using crystallization remains labor-intensive [15].

The selection of a suitable candidate for the crystallization step is accomplished by
several methods discussed in this paragraph. The most trivial is candidate selection
by looking up similar documented reaction procedures [16]. Computational screening
technologies have been developed to circumvent costly experimental screening and reduce
wastage in the development of crystallization processes. The more complicated methods are
computer-aided: they are based on a generic formulation for the design of a crystallization
solvent system. A framework is used to determine the optimal system of organic solvents
and a case study for ibuprofen is illustrated in [17]. Other methods employ a framework
for the design of crystallization solvents, and CAMD (single compound and mixture) is
used to design optimal solvents and their systems [18].

Supervised ML (SML) has been relied upon by scientists to solve various problems in
the field of chemistry. The important branch of SML, i.e., DL (deep learning), has become
one of the most prominent method groups that can deal with high-dimensional and com-
plex data. In contrast to simple computer programs, where calculations follow an explicit
set of instructions, SML-based systems rely on models trained on “gold” (i.e., manually pre-
pared, undisputed, correct) examples (i.e., inputs and related outputs). The learning process
produces a model that approximates the input–output relationships. Chemistry data are
notorious for complex relationships between the input (usually molecules) and the desired
output (which ranges from simple descriptors to synthetic routes). One of the critical issues
is the proper selection of the molecular representation, i.e., features. However, typically
a molecule is represented by a linear form or by a graph-like network of atoms, which is
called SMILES. Despite this, SML methods cannot be directly applied to SMILIES. Hence,
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a SMILES string has to be further converted into different formats such as molecular de-
scriptors, fingerprints, one-hot encoding, or word embedding. The molecule itself contains
diverse information, such as individual atoms, their connections, types of bonds between
atoms, spacial configurations, and so on. Probably the simplest molecular vectorization
solution is one-hot encoding [19]. Similarly, for every molecule, various descriptors can be
calculated, such as the molecular weight and Wiener index, etc. [20]. Descriptors have been
successfully used in artificial intelligence-aided drug design research [21]. A more sophisti-
cated vectorization approach—in particular, extended-connectivity fingerprints (ECFP) that
calculate features of molecules based on atom neighbors—has been used to predict reaction
outcomes [22,23]. However, state-of-the-art vectorization method types used with Artificial
Neural Networks (ANNs) have been implemented to represent structures in latent space
with the use of auto-encoders [24,25]. For example, a variational autoencoder (VAE) that
is trained solely on molecular representations is a good representative of it. While most
molecular representation-based models require prior curation and feature engineering, a
VAE can rapidly learn these representations from SMILES strings directly, without prior
manipulation. The VAE takes the form of a “bowtie”-shaped ANN. In the middle of this
network is a “bottleneck layer” or latent vector into which inputs are mapped, represented
as a vector of numbers (encoding) with a reverse process (decoding) seeking to return the
SMILES string presented as the input [26]. Conditional variational auto-encoders have been
used with an ANN for molecular design, to control molecular properties. However, in these
algorithms, the degrees of freedom are limited and property control is difficult to achieve.
In [27], a molecular generative model based on the conditional VAE is proposed, which has
degrees of freedom that enable the easy control of multiple properties simultaneously. As a
proof of concept, it can be used to generate drug-like molecules with five target properties:
Molecular Weight (MW), LogP, hydrogen bond donor (HBD), hydrogen bond acceptor
(HBA) numbers, and topological polar surface area (TPSA). Authors have demonstrated
how to generate drug-like molecules with specific values for the five target properties
within an error range of 10%.

Applications of ML in chemistry have become increasingly popular in recent years [28].
ML techniques have received great attention in the field of chemistry, especially in organic
chemistry. These techniques are used to predict drug targets and side effects, new molecular
structures, chemical reactions, and properties. However, the replacement of rule-based
algorithms with SML is not straightforward due to the enormous chemical space size
(1060 molecules) of synthetically feasible molecules (<500 Da) [29]. Data quantity has
always been one of the key issues over the last decade of ML and chemistry research.
Even including the ~60 million compounds produced over the last century, the coverage
would be microscopic compared to the entire chemical space [30]. However, more does
not necessarily mean better: different tasks often require only the most relevant data.
Besides this, even seemingly limited datasets did not hinder scientific progress in the field
of AI-driven chemistry. Tasks such as drug discovery [31–33], the prediction of chemical
properties [34,35], and the prediction of reaction yield have been successful at delivering
promising results [36]. It has been experimentally demonstrated that small datasets can be
used to produce meaningful results with the help of transfer learning, especially in areas
where the collection of data is challenging [37].

ANNs are a subset of ML methods with great potential to have an arbitrarily selected
network topology and to perform nonlinear transformations of their inputs. While inter-
mediate ANN layers can vary in numbers, forms, and connectivity, the input must always
be a numeric tensor. The group of ANNs covers a broad range of different ANN types,
topologies, and values of hyper-parameters. FFNNs have been successfully used to predict
drug-likeness for central nervous system drugs [38]. Another type of ANN is a Convolu-
tional Neural Network (CNN), which supports convolution operations that take advantage
of the spatial 2D structure of input data. In other words, a convolutional layer uses filters to
apply a dot product between its inputs and the filter’s weights. Molecules in drug discovery
tend to be small molecules; as such, they are represented as atomic-type descriptors. The
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research offers a method that extracts descriptors of the atomic type, distance, coordinate
position, and other information according to the molecular characteristics, and uses it
to construct a multi-channel grid-based CNN for toxicity prediction. The experimental
investigation proves that the offered method outperforms other convolution ML methods,
including DL [39]. Similar research also relies on the CNN with the SMILES linear notation
of compounds. The feature matrix was designed and applied to CNN in the way that the
convolution operation is performed only in one direction along the SMILES string. The
performance of the CNN based on the SMILES string was superior to the conventional
fingerprint method used for the virtual screening of chemical compounds [40]. However,
CNN methods are a rather rare option compared to other alternatives, such as Recurrent
Neural Networks (RNN). The prediction of physical properties is a widely studied area
for ML scientists [41–43]. In one of the studies, a trained LSTM model was used for se-
quence processing. Both the embedded channel attention and spatial attention modules
are identically critical factors for the prediction of properties from the SMILES sequence.
Experimental results showed that the trained model is capable of providing highly reliable
predictions for aqueous solubility [44]. Moreover, RNNs have also enabled researchers
to generate de novo molecules [45–47]. Research in [48] describes a methodology for the
de novo design of bioactive compounds employing RNNs trained on a large dataset of
bioactive molecules. This bidirectional (BIMODAL) network model can generate diverse
bioactive compounds with high chemical validity, which provide highly valuable scaffolds
for prospective drug discovery investigations. Few other ML studies have been undertaken
so far, even though the solvation mechanism for non-aqueous solutions plays an important
role in various chemical reactions. The ML-based QSPR (quantitative structure property
relationships) method, Delfos (DL model for solvation free energies in generic organic
solvents), can effectively predict solvation free energies for various organic solute and
solvent systems. Delfos was designed from two separate solvent and solute encoder net-
works that can quantify the structural features of given compounds via word embedding
and recurrent layers, augmented with an attention mechanism which extracts important
substructures from outputs of RNNs. This model offers a promising framework for the
accurate prediction of complex molecular interactions between chemical compounds in a
wide range of applications, including material development, drug design, and more [49].
As mentioned before, LSTM networks can cope with sequences, and have therefore been
used for drug discovery: DL is used to predict the binding of a molecule to a possible target
receptor [50]. Another novel approach [51], i.e., the Controlled Molecule Generation (CMG)
method, can optimize a molecule property by utilizing BiLSTM (Bidirectional LSTM). CMG
takes advantage of the self-attention-based molecule translation model and two constraint
networks, which are pre-trained separately. The two constraint networks can effectively
regulate the output molecules by regularizing the activations computed in the molecule
translation model. The offered approach also takes advantage of a BiLSTM which is capable
of processing the input sequence flow in both directions, i.e., forward and backward. It
helps to consider the context not only from the past but from the future.

General-purpose hybrid DL methods are another group of approaches that typically
consist of multiple interacting nonlinear elements, and each of these elements may be an
ANN, a linear discriminant, or an arbitrary model with no apparent connection to ANNs
or statistical discriminants. Hybrid methods have also proven to be effective. An example
of one is the trained DL model for drug side-effect prediction and description, consisting
of a graph CNN with Inception modules, and a BiLSTM word-embedding layer [52].
The GCNN is used to predict drug relationships by autoencoding drug names that are
converted into word vectors via the word-embedding layer. The CNN module extracts
drug molecular properties from the graphs, which are then fed into the BiLSTM to predict
drug side effects in the correct flow of interpretable descriptive language. Comparisons
with other baseline models show that the hybrid model achieves a superior AUC prediction
score and robustness.
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To summarize, the computational methods employed in the field of cheminformatics
vary widely based on the solving task; therefore, different methods have to be tested in
order to achieve optimal results. Based on the available research, we decided to test the
two most promising vectorization types (ECFP and ECFP autoencoders) and two types
of neural networks (FFNN and LSTM) as classifiers. We hypothesize that a method for
the prediction of a suitable solvent system for crystallization can be created directly from
information about the reactants and products. In practice, the resulting mixture of chemicals
right after the reaction has occurred might require an in-depth analysis with analytical
instruments. In this case, the trained neural network would be able to approximate the
most suitable solvent based on the reaction that occurs within the mixture, and could infer
the byproducts. This semi-automatic method allows us to predict the optimal solvent
compositions in advance, which may significantly reduce the number of assay experiments
and accelerate the discovery process. It may allow scientists to predict the most suitable
solvent system without the problematic analysis of the reaction mixture and the manual
modeling of compound systems. This, in turn, would facilitate R&D processes within the
laboratories, and would lead to the rapid development of novel compounds or an earlier
launch of successful drugs on the market.

Our major contribution in this paper is a novel method for the prediction of solvent
systems directly from the reactants and products for crystallization. The modeling of such
solvent systems that are invariant to the reaction type has not been previously demonstrated.
In addition, the approximation of solvent systems for the purification of chemical reaction
mixtures has not been thoroughly researched. The findings in our research open up new
horizons for more complex and universal models based on DL in the field of chemistry
and informatics. Furthermore, we publish two new datasets, used in our work, for further
research in this field.

3. Formal Definition of a Solving Task

In this research, we solve the solvent label prediction problem of the crystallization pro-
cedure. We denote the chemical reaction as di that belongs to a space of chemical reactions
di ∈ D. Each di can be converted into a p-dimensional feature vector Xi = (xi,1, xi,2, . . . , xi,p),
which serves as an input.

Let Y = {y1, y2, . . . yN} be an N-sized space of class labels (in our case, it is a closed-set
of possible solvents), which represent the output. Let η be a mapping function η(X)→ Y
which, for each input, can predict a subset of solvent labels.

Let Γ be an ML algorithm that could learn an approximation (denoted as η’) of function
η from the training dataset DL ⊂ D. The goal of Γ is to learn which model is able to predict,
as accurately as possible, the class labels from their inputs automatically on the testing
dataset DT, DT= D − DL. The DL and DT datasets are not overlapping (DL ∩ DT = ∅), and
both have enough diversity and are correctly distributed in the space. If both of these
conditions are met, the evaluation results will be considered reliable.

4. The Data

The subset from Daniel Mark Lowe’s and NextMove’s open-source collection of chem-
ical reactions extracted from the US patents issued from 1976–2016 was used to create the
dataset for our ML algorithms [53]. The original (full) dataset contains 3.7 million reactions
and synthesis procedures. Each reaction is represented by a unique action sequence (or
recipe) describing the steps taken in the laboratory to derive the final product. All of
the synthesis procedures are divided into separate actions taken in the laboratory; for
example, the addition of a reactant, the heating of the reaction mixture, filtration, extraction,
and crystallization, etc. From the original dataset, a custom-made script extracted only
our solving task-related samples, and later restructured them to become suitable for the
prediction of the solvent names used in the crystallization step of the syntheses. During
the dataset cleaning process, a few noticeable outliers were removed. Our created dataset
has two versions: the first one (noted as DS1) contains information about the chemical
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reactants, products, and the solvents used in crystallization; the second (DS2) is identical to
the first one but is complemented with the additional information about the solvents in the
mixture before crystallization.

Instances in both versions (DS1 and DS2) are chemical reactions represented as se-
quences of symbols describing reactants and products’ chemical structures. The SMILES
representation is used to denote the graph-like structure of each molecule [54]. Such a
form of molecule representation consists of alphanumeric characters without embedded
whitespace that encode the topology of the graph as well as any other atom properties.
Individual molecules are separated with the “.” dot symbol, while reactants, catalysts and
reactants are separated with “>>” symbols, in that order. Table 1 contains snippets from
DS1 and DS2, both containing a sequence of molecules in SMILES notation as inputs. The
snippets are presented in order to show the difference between DS1 and DS2, with the
former containing pre-crystallization solvent information as part of an input to the neural
networks along with the compounds. The table also presents the solvents used for the
crystallization procedure.

Table 1. Snippet from our dataset (compounds, solvents in the mixture before crystallization, and
solvents used for the crystallization procedure are shown).

Name Compounds Pre-Crystallization Solvents Solvent (Prediction)

DS1 OC=O.CC(C)N(C(CN)=O)c1ccccc1>>Cc1ccccc1>>
CC(C)N(C(CNC=O)=O)c1ccccc1 Toluene Hexane

DS2 Nc1cccc(O)c1.N#Cc1cccc
([N+]([O-])=O)c1C#N>>Nc1cccc(Oc(cc2)cc(C#N)c2C#N)c1 - Pyridine

Both the DS1 and DS2 datasets contain 180,145 shuffled instances (di) split into subsets
for training (90%, 162,131 instances) and testing (10%, 18,015 instances). Each instance
has a maximum of two labels, with ~1.28 labels on average per instance. The closed-
set contains 13 class labels in total that have been used as solvents or anti-solvents for
crystallization (Hexane, Ethyl acetate, Ethanol, Ether, Methanol, Acetonitrile, Isopropanol, Water,
Toluene, Acetone, DCM, Chloroform, DMF). The most covered are Hexane, Ethyl acetate, and
Ethanol. The classes were chosen from the original dataset if there were enough instances
to have sufficient representation of the class label. An extremely rare class label with a
low number of instances would not contribute to an overall increase of the accuracy and
practical value. Table 2 illustrates the distribution of instances over different labels.

Table 2. Distribution of instances over different class labels (DS1 and DS2).

Class Label Training Subset (Number of
Instances)

Testing Subset (Number of
Instances) Total (Number of Instances)

Hexane 42,421 4713 47,134
Ethyl acetate 41,983 4665 46,648

Ethanol 31,658 3518 35,175
Ether 21,975 2442 24,417

Methanol 18,796 2088 20,884
Acetonitrile 8398 933 9331
Isopropanol 7227 803 8030

Water 5612 624 6236
Toluene 4930 548 5478
Acetone 3874 430 4304

DCM 3704 412 4115
Chloroform 1815 202 2017

DMF 1765 196 1961

Total number of instances 162,131 18,015 180,145
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The trained models’ results will be compared to random (Equation (1)) and majority
(Equation (2)) baselines. A random baseline represents the boundary that the accuracy
must exceed for the method not to be considered as the random labeler. A majority baseline
represents the probability of the major class, i.e., the accuracy that would be achieved if
all instances would be automatically attached to the largest class. Thus, both random and
majority baselines must be exceeded in order for the method to be considered suitable for
our solving task.

Random baseline =
n

∑
i=1

(
P(yi)

2
)

(1)

n—number of classes, (P(yi))—the probability of yi class.

Majority baseline = max
(

P
(

ylargest

))
(2)

The calculated random and majority baselines for both datasets are equal to 0.096 and
0.177, respectively.

The only major difference between DS1 and DS2 is that DS2 has additional information
about which solvents (of the 31 possible) were in the reaction mixture before the crystalliza-
tion step. Their labels are THF, Water, DCM, DMF, Ethanol, Methanol, Toluene, Ethyl acetate,
Acetic acid, Acetonitrile, Pyridine, Dioxane, Chloroform, Acetone, Benzene, Ether, DMSO, Triethy-
lamine, Isopropanol, HCl, Hexane, NaOH, Dichloroethane, Dimethyl sulfoxide, Xylene, Carbon
tetrachloride, Trifluoroacetic acid, Sulfuric acid, 1,2-dimethoxyethane, N, N-dimethylacetamide,
Formic acid. Each sample has ~1.3 solvent labels on average.

All of the reactants and products of the reaction are combined into a sequence: reactant
1, reactant 2, reactant 3, etc. However, the ANN must be trained to ignore the positions of
reactants. Due to this, the datasets were augmented by permuting molecules randomly of
every given instance. However, the dataset augmentation process was restricted to avoid
the exponential growth of instances by limiting the maximum number of permutations to
8. This was done on purpose: too many “cloned” instances (that do not have variety in the
content) would negatively impact the training process by overflooding and prolonging it.

5. Materials and Methods
5.1. Vectorization

The symbol lines that represent chemical structures in SMILES notation are not suitable
for supervised machine-learning algorithms. The input data must be transformed into a
matrix of numeric values. We have selected two vectorization methods:

• Extended-connectivity fingerprints (ECFP) that can capture representations of molec-
ular structures [55]: ECFPs are based on the Morgan algorithm, and are commonly
used in such applications as virtual screening or ML [56]. ECFPs denote the absence
or existence of specific substructures by scanning atom neighbors. The vectorization
method works by transforming each molecule into a binary vector (containing zeros
and ones) of a chosen length. In our experiments, we tested 512 and 1024 lengths
of vectors. Because an instance in the dataset is multiple reactants, the vectors are
combined into a matrix.

• ECFP encoders (ECFP + E): Autoencoders can be effective in reducing dimensionality
for sparse matrices, such as ECFP. The main advantage of autoencoders is that they
are trained in an unsupervised manner (they do not require labeled data). Addition-
ally, autoencoders can learn the principal components, i.e., the created model can
capture important patterns while ignoring the noise. This technique is often utilized
in information retrieval, text analysis, and recommender systems. An autoencoder
is trained to take in ECFPs and reproduce identical ECFPs in the output layer. The
middle layer, the so-called bottleneck layer, is smaller than the input; therefore, the
network must learn to compress the input data in a meaningful way [57]. Encoder
weights are learned separately, but later can be used as the “starting point” of the
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deeper ANN architecture for different downstream tasks (e.g., solvent labeling, as in
our case). The main advantage is that encoders may learn how to map sparse inputs to
a denser latent space, which results in the detection of relevant parts, and often leads
to higher accuracy.

During this research, we have investigated different auto-encoder types (i.e, FFNN
and LSTM), topologies, and hyperparameters. Lengths of 512 and 1024 ECFP vectors were
tested; therefore, two auto-encoders were trained for each type of ANN. The main parameter
of auto-encoders is the latent dimension size, which was set to 512 and 1024, with 512 and
1024 vectors, respectively. These values were not chosen accidentally: they produced
the most accurate reproductions and compressed the input data by 15 times (because the
input matrix is 512 × 15 or 1024 × 15). Besides this, different latent dimension sizes were
tested by stacking multiple neural network layers containing 64, 128, 256, 512, 1024, and
2048 neurons; however, shallow auto-encoders performed better, and were selected for
the final testing. Figure 1 illustrates the topologies and sizes of the layers of FFNN- and
LSTM-based auto-encoders. The encoders were later combined with an FFNN classifier.
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5.2. Supervised Machine-Learning Approach

DL is a group of state-of-the-art ML approaches which are able to approximate the
relationships between input and output data. In recent years, DL has been effectively
applied to a variety of research fields, including computer vision, natural language pro-
cessing, and drug discovery. The ability of DL to identify complex patterns in datasets has
been a major driving force behind the growth of this field. However, the performance of
DL models significantly depends on the solving task, type/completeness/diversity of the
dataset, and other important factors. Modeling the relationship between chemicals and the
corresponding crystallization solvent system is difficult, due to the large variety of possible
molecules and the complex interactions between them.

Different types of ANNs have been developed; however, we focused only on the most
suitable ones for our solving task:

• A Feed-Forward Neural Network (FFNN) is an ANN in which the information flows
through different layers, but only in one direction, i.e., forward. In its feed-forward,
non-recurrent structure, the input is passed through the layers of nonlinearities or neu-
rons (Logistic Sigmoid or Hyperbolic Tangent) until it reaches the output. The number
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of nodes in the input layer corresponds to the number of predictors (independent
variables) from the dataset, and the number of nodes in the output layer corresponds
to the number of response classes. FFNN is a simple network that can be trained faster
than other networks; besides this, it usually serves as a baseline approach.

• Long Short-Term Memory (LSTM) is an ANN that can learn long-term dependencies
between time steps of sequence data. LSTMs work well even when the input or output
sequences are long (e.g., hundreds or thousands of time steps long), and can capture
both long-term and short-term trends in the input sequence. The sigmoid function is
used to control how much of each input or output is kept or forgotten across different
time steps. The forget gate controls which information has to be removed from this
layer’s state. Meanwhile, the input and output gates determine what information
from the current time step and carryover information from previous time steps has to
be combined to produce this layer’s output at the current time step. Considering the
nature of the chemical molecules with significant parts in the structure, it is important
to notice that, from the theoretical perspective, LSTMs should be the most suitable
option for our solving task.

Hyper-parameters play an important role in the model training process as well; there-
fore, we have investigated them together with the large variety of values:

• Activation functions: Activation functions in ANN are important because they intro-
duce non-linearity into the network. Without activation functions, ANNs would be
limited to representing only linear models of data. They also determine whether a
neuron should be activated or not by calculating the “weighted sum” and later adding
bias to it. In this research, we tested several activation functions: GELU [58], SELU [59],
ReLU, ELU, and tanH. The ReLU activation function is commonly chosen because it
can be quickly computed, and therefore the model converges quickly, which is useful
if training multiple models, and in optimization. GELU, SELU, and ELU are nonlinear
modifications of ReLU. The last ANN’s layer’s activation function depends on the
type of the solving task. We chose the sigmoid activation function because it is the
only compatible function with the binary cross-entropy loss function used for loss
calculation. The output vector contains multiple independent binary variables, and
the sigmoid function returns the corresponding values in the range (0–1).

• The optimizer is also an important hyper-parameter that controls the training process.
The Adam optimizer is probably the most popular choice due to its ability to effectively
control the learning rate, and due to its high speed compared to other methods, such
as Stochastic Gradient descent (SGD). The classic gradient descent algorithm is an
iterative method of finding the minimum of a function. Starting from a random
point on the function, the gradient descent algorithm follows the slope down towards
the minimum value of that function. At each step, the gradient descent algorithm
updates its current position based on the learning rate and loss of a given point plus
momentum [60]. Nadam and Adamax optimizers that are modifications of the Adam
algorithm were also tested.

• The batch size and the number of training epochs are both important hyperparameters.
The batch size determines how many samples can be sent to the network for a single
update iteration. The number of training epochs determines how many times the entire
dataset is passed to the network. It is important to evaluate your results after each
epoch in order to determine whether the model is overfitting or still underfitting the
data. The batch size and the number of training epochs are both significant parameters
that affect the training process overall. A larger batch size is usually beneficial, as it
may prevent overfitting because the model is forced to approximate larger batches
of instances. Multiple tests have shown that the most optimal batch size is 128. The
number of epochs depends on the batch size. Once the optimal batch size is found,
most of the models will have have successfully converged at epoch 25 or before.
Typically, the training process is monitored and terminated if the accuracy metric is no
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longer improved. A binary cross-entropy loss function was used for loss calculation,
as the output vector contains multiple independent binary variables.

5.3. Optimization

The main goal of our solving task is to optimize the model’s parameters. The opti-
mization process for an ANN is monitored using the weights and biases platform for ML
developers. Before training multiple ANN models and testing their topologies, ranges or
lists of parameter values are defined. After every training epoch, a validation dataset is
used to evaluate the model’s performance. The weights and biases platform tracks logs,
such as the loss function value, as well as model outputs, such as the predictions made
by the model on the validation dataset. The weights and biases platform also visualizes
hyper-parameters vs. performance, which allows an efficient search for the optimal val-
ues of hyper-parameters that improve the model performance without overfitting on the
training data (i.e., without memorizing or overfitting). In our experiments, we investigated
16 unique combinations of neural network types, vectorization types, vector sizes, and
whether there is information about a mixture before the crystallization step. All of the
combinations are enumerated and presented in Table 3.

Table 3. Combinations the neural network types, vectorization types, vector sizes, and whether there
is information on a mixture before the crystallization step.

Number Neural Network Type Vectorization Vector Size Pre-Mix Info

1 FFNN ECFP 512 no
2 LSTM ECFP 512 no
3 FFNN ECFP 1024 no
4 LSTM ECFP 1024 no
5 FFNN ECFP 512 yes
6 LSTM ECFP 512 yes
7 FFNN ECFP 1024 yes
8 LSTM ECFP 1024 yes
9 FFNN ECFP + E 512 no
10 LSTM ECFP + E 512 no
11 FFNN ECFP + E 1024 no
12 LSTM ECFP + E 1024 no
13 FFNN ECFP + E 512 yes
14 LSTM ECFP + E 512 yes
15 FFNN ECFP + E 1024 yes
16 LSTM ECFP + E 1024 yes

During the model tuning phase, the following parameters were optimized:

• Neural network layer size: 16, 32, 64, 128, 256, 512, and 1024 neurons
• Activation functions: GELU, SELU, ReLU, ELU, and tanH
• Optimizers: Adam, Nadam, SGD, and Adamax
• Batch sizes: 32, 64, 128, 256, 512, and 1024

Next to the parameter tuning, different ANN architectures were investigated by vary-
ing the numbers of layers: layers were added or removed depending on whether this
increased the model’s performance. During this process, the metrics of the validation
dataset were constantly monitored in order to evaluate the model’s performance. The lay-
ers were added until the evaluation metrics improved. This iterative process lasted until the
metrics were stabilized. The two models that were able to achieve the highest accuracy are
illustrated in Figure 2. The optimal models’ parameters for each combination are also pre-
sented in the Github repository: https://github.com/Mantas-it/crystall_neuralmodelling
(accessed on 30 March 2022).

https://github.com/Mantas-it/crystall_neuralmodelling
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Figure 2. Topologies of the two optimal models that resulted in the highest accuracy (with an
additional input for pre-crystallization solvents (a) and without the same (b)).

6. Results

The following experiments were performed on two versions of the dataset (described
in Section 4), using two vectorization methods (in Section 5.1) and two classifiers (in
Section 5.2). For this purpose, the Python 3.7 (Guido van Rossum, Netherlands, Amsterdam)
programming language with the TensorFlow Keras API library was used.

As presented in Section 3, we solved the multi-label classification task; in order to
evaluate it, we chose Accuracy (Equation (3)), Precision (Equation (4)), Recall (Equation (5)),
and F1-score (Equation (6)) metrics.

In Equations (3)–(6), TP (true positive) denotes the number of cases when yi was
correctly predicted as yi; TN (true negative) denotes the cases when yj was correctly
predicted as yj; FP (false positive) denotes incorrect cases when yj was predicted as yi; FN
(false negative) denotes incorrect cases when yi was predicted as yj.

Accuracy =
TP + TN

TP + FP + TN + FN
(3)

precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)
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F1 score =
2× precision× recall

precision + recall
(6)

The experiments with two vectorization methods (ECFP, ECFP + E), two classifiers
(FFNN, LSTM), two vector lengths (512 and 1024), and two versions of the dataset (with
solvent mixture information and without) were performed. Each experiment was repeated
three times; the results were averaged, and the confidence intervals (with a confidence level of
95%) were calculated. The obtained accuracies are visually presented in Figures 3 and 4; for
more detailed results (including the Precision, Recall, and F1-score values) see Tables 4 and 5.
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Table 4. Evaluation results on DS1. The lengths of the vectors are presented in parenthesis.

Vectorization Metric FFNN (512) LSTM (512) FFNN (1024) LSTM (1024)

ECFP

Accuracy 0.617 ± 0.003 0.832 ± 0.008 0.836 ± 0.004 0.836 ± 0.004
Precision 0.842 ± 0.005 0.899 ± 0.006 0.847 ± 0.008 0.905 ± 0.004

Recall 0.689 ± 0.003 0.877 ± 0.004 0.759 ± 0.008 0.880 ± 0.006
F1-score 0.758 ± 0.004 0.888 ± 0.005 0.800 ± 0.002 0.892 ± 0.002

LE

Accuracy 0.267 ± 0.005 0.257 ± 0.006 0.371 ± 0.006 0.862 ± 0.003
Precision 0.576 ± 0.007 0.655 ± 0.012 0.568 ± 0.003 0.928 ± 0.011

Recall 0.354 ± 0.005 0.336 ± 0.013 0.502 ± 0.007 0.889 ± 0.002
F1-score 0.439 ± 0.005 0.444 ± 0.009 0.533 ± 0.003 0.908 ± 0.006

ECFP + E

Accuracy 0.617 ± 0.003 0.832 ± 0.008 0.836 ± 0.004 0.836 ± 0.004
Precision 0.842 ± 0.005 0.899 ± 0.006 0.847 ± 0.008 0.905 ± 0.004

Recall 0.689 ± 0.003 0.877 ± 0.004 0.759 ± 0.008 0.880 ± 0.006
F1-score 0.758 ± 0.004 0.888 ± 0.005 0.800 ± 0.002 0.892 ± 0.002

Table 5. Evaluation results on DS2. The lengths of the vectors are presented in parenthesis.

Vectorization Metric FFNN (512) LSTM (512) FFNN (1024) LSTM (1024)

ECFP

Accuracy 0.617 ± 0.003 0.832 ± 0.008 0.836 ± 0.004 0.836 ± 0.004
Precision 0.842 ± 0.005 0.899 ± 0.006 0.847 ± 0.008 0.905 ± 0.004

Recall 0.689 ± 0.003 0.877 ± 0.004 0.759 ± 0.008 0.880 ± 0.006
F1-score 0.758 ± 0.004 0.888 ± 0.005 0.800 ± 0.002 0.892 ± 0.002

LE

Accuracy 0.267 ± 0.005 0.257 ± 0.006 0.371 ± 0.006 0.862 ± 0.003
Precision 0.576 ± 0.007 0.655 ± 0.012 0.568 ± 0.003 0.928 ± 0.011

Recall 0.354 ± 0.005 0.336 ± 0.013 0.502 ± 0.007 0.889 ± 0.002
F1-score 0.439 ± 0.005 0.444 ± 0.009 0.533 ± 0.003 0.908 ± 0.006

ECFP + E

Accuracy 0.617 ± 0.003 0.832 ± 0.008 0.836 ± 0.004 0.836 ± 0.004
Precision 0.842 ± 0.005 0.899 ± 0.006 0.847 ± 0.008 0.905 ± 0.004

Recall 0.689 ± 0.003 0.877 ± 0.004 0.759 ± 0.008 0.880 ± 0.006
F1-score 0.758 ± 0.004 0.888 ± 0.005 0.800 ± 0.002 0.892 ± 0.002

7. Discussion

Zooming into the results presented in Tables 3 and 4, Figures 2 and 3 allow us to state
that all of the tested methods are suitable for our solving task because they significantly
exceed the random (0.096) and majority (0.177) baselines.

Unfortunately, the direct comparison of our obtained results to any previously reported
results is impossible because (1) the solvent prediction problem (formulated as the multi-
label supervised classification problem) has not been solved before with the automatic ML
methods, and (2) we have used a specifically created training dataset (by selecting relevant
instances from the D. M. Lowe’s dataset) that was used to train the solvent prediction
model directly from reactants and products. However, for these two reasons, the performed
research is interesting from a scientific point of view.

Because the direct comparison of our results with previously reported results is not
possible, we compared them—at least—to some traditional ML approaches, in particular
Naïve Bayes. This approach was selected on purpose: the Naïve Bayes assumption about
the feature independence allows parameters to be learned separately, it performs especially
well when there are a lot of equally significant features, and the method is fast and does
not require huge data storage resources. Due to all these reasons, it is often selected as the
baseline approach. The tested Naïve Bayes method for our dataset resulted in 0.255 ± 0.017
accuracy. Despite it having demonstrated superiority over the random and majority
baselines, Naïve Bayes failed significantly compared to our optimal offered methodology.

In this research, we tested two vectorization techniques (ECFP, ECFP + E) and two
classifiers (FFNN and LSTM). The optimal configuration on the DS2 was having necessary
information about the solvents before crystallization for the vectorization technique, and
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the classifier was ECFP (vector length = 1024) and LSTM, respectively: it reached the
accuracy of 0.870 ± 0.004. The second-best result (0.862 ± 0.004 accuracy) achieved on
DS1 (i.e., without any information about the solvents before crystallization) was again
the LSTM classifier that was applied on top of ECFP + E (length = 1024). LSTM cells can
remember important information for longer periods of time, and are vitally important for
the interpretation of chemical symbol sequences. Hence, these results demonstrate the
impact of the prior information about the solvents before crystallization: it can slightly
boost the performance. Despite this, the increase was insignificant (by 0.008), and therefore
allowed us to conclude that this prior information (that sometimes is very difficult to
get) is not mandatory. Thus, the optimal results can be achieved either with or without
additional knowledge.

The vectorization with ECFP seems to be the optimal choice with all of the tested
configurations (all versions of the datasets, classifiers, and their parameters), except for
ECFP + LSTM on DS1. However, the ability of ECFP + E to cope with some tasks is
also not accidental: it was proven to be a good option when predicting chromatographic
solvent systems in [61]. Despite this, it is important to emphasize that ECFP + E typically
requires more training compared to ECFP to achieve similar accuracy levels. This limitation
might become an obstacle in cases when large amounts of training data are not available.
Our solving task is also interesting from this perspective because the training dataset is
not enormously huge (compared to what is typically used when training very accurate
ANN-based models); therefore, the superiority of ECFP is reasonable. Although our
recommendation for similar tasks regarding the vectorization type is clear, the level of
compression (i.e., vector size) in the latent layer is very task-dependent, and therefore
might need adjustments.

In contrast to what we assumed before the experimental investigation, the length
of the fingerprints does have a significant impact on the prediction accuracy: the longer
ones (of 512 and 1024) allowed models to achieve higher accuracy levels. Besides this, in
our preliminary experiments (that were not very comprehensive, and therefore were not
presented in his paper) it was noted that very short lengths (<64) restrict the model from
proper training, which results in its low accuracy even below random and majority baselines.
These insights allow us to claim that longer fingerprints may lead to optimal results.

The FFNN classifier underperforms LSTM in various configurations, achieving 10–20%
higher accuracy. The explanation of this phenomenon lies in the nature of these methods.
Simple FFNN ignores complex relations (treating them as separate features) between
fingerprints in molecules. On the contrary, LSTM can process sequential data, and can
combine individual molecular fingerprints in a meaningful manner.

Overall, optimized methods have achieved reasonably high accuracy (considering all
of the evaluation metrics presented in the paper). Besides this, multi-labeled cases were
considered accurate only if all of the solvents were predicted correctly, which means that
we have applied a stricter assessment method. However, in the majority of the tested
and erroneously considered instances, at least one solvent label was predicted correctly.
This means that the accuracy is even higher. Because we want to use our method in
real chemistry laboratories (that place very high demands on the accuracy of in-silico
methodology), semi-correct predictions had to be disregarded and considered to be false.
The accuracy is also sensitive to noise in the training dataset. Although much manual effort
was made to ensure the correct labeling of reactions and solvent labels, the collected data
span a few decades of organic chemistry research, meaning that not every single example
within the dataset contains the optimal choice for crystallization. Despite our efforts to clean
the dataset, it still may contain some noisy examples: automatically performed dataset
pre-processing cannot avoid errors completely. Even knowing that the training dataset is
not of the gold standard, the achieved accuracy is promising. Despite this, the following
steps must cover the detailed error analysis, the constant search for more training data of
good quality, and further methodology improvements. The implementation of all of these
listed steps is in our nearest plans.
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8. Conclusions and Future Work

In this paper, we offered reasonable approaches based on modern ML (i.e., DL) al-
gorithms to predict appropriate solvents for the purification of synthesis mixtures using
crystallization. We tested two vectorization methods (ECFP and ECFP encoders) along
with two types of neural networks (FFNN and LSTM) on two versions of datasets (with
and without prior knowledge about the solvents in the mixture before crystallization).

The optimal configuration (reaching the accuracy of 0.870 ± 0.004) was composed
of the ECFP vectorization technique and the LSTM multi-label classifier. Besides this, it
was achieved on the dataset containing additional information (i.e., information about the
solvents before crystallization). The results significantly exceed the majority and random
baselines, equal to 0.177 and 0.096, respectively. However, if the prior knowledge about
the solvents before crystallization is not given, then LSTM applied on the ECFP + E is the
better option. The high achieved accuracy suggests that our offered methodology may be
applied in practice, and to accelerate R&D processes in real chemical laboratories.

In the future, we are planning to continue our investigation in several directions:
(1) by testing a larger variety of ANN types, such as BiLSTM and transformer models;
(2) by increasing the number of solvents used in the crystallization process by extending the
number of classes and their coverage by training instances; and (3) by testing the offered
methodology in real chemical laboratories, and by investigating the level of practicality by
using tools functioning according to our offered methodology.
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