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Abstract: In this study, a backstepping-based fault-tolerant controller for a robotic manipulator
system with input and output constraints was developed. First, a barrier Lyapunov function was
adopted to ensure that the system output satisfied time-varying constraints. Subsequently, the
actuator input saturation and asymmetric dead-zone characteristics were also considered, and the
actuator characteristics were described using a continuous function. The impacts of actuator failures
and unknown dynamical parameters of the system were eliminated by employing Gaussian radial
basis function neural networks. The external disturbances were compensated for, using a disturbance
observer. Meanwhile, a finite-time dynamic surface technique was adopted to accelerate the conver-
gence of the system errors. Finally, simulation of a 2-degrees-of-freedom robotic manipulator system
showed the effectiveness of the proposed controller.

Keywords: actuator faults; input saturation; dead zone; output constraints; finite time

1. Introduction

Practical applications, such as robotic, electrical, and hydraulic systems, are frequently
subject to input and output constraints, owing to their intrinsic characteristics. For instance,
saturation, dead zone, hysteresis, and other input constraints have a direct impact on the
response of the actuator [1–6], which affects system output performance. Meanwhile, the
output or state constraints must be considered during the system controller design process
to satisfy the system output performance criteria. However, these constraints do not exist
individually. If these multi-constraint problems are disregarded during the design process,
the system performance may deteriorate or fail. Thus, it is necessary to eliminate the
influence of these nonlinear characteristics.

In recent years, numerous strategies to ensure the stability and performance of a system
with dead-zone characteristics have been proposed [1,7–18]. For instance, to eliminate
the influence of the dead-zone characteristic, in [7,8] an effective control was achieved by
constructing a dead-zone inverse function, and the dead-zone characteristic was described
by a linear function in [9,10]. An optimization algorithm was adopted in [19], where the
authors treated the input dead-zone characteristic as a bounded function and adopted an
adaptive approach to overcome the nonlinear characteristics. An adaptive fuzzy controller
was utilized to compensate for the dead zone in [20], both of which avoided the problem
of constructing the dead-zone inverse. With the development of neural networks (NNs)
technology, in [21], for a flexible robotic arm system, the NNs approach was conquered
based on the effect of dead-zone characteristics. In addition, owing to the performance
requirements of the system, its output is subject to certain constraints [22–25]; the barrier
Lyapunov function (BLF) is a common method for dealing with output or state constraint
problems. In [26], a logarithmic BLF was applied to the control-law design of a robot. The
control problem of a robotic arm system with time-varying output constraints was studied
in [27], and an effective controller was presented for the model of a marine vessel under
asymmetric constraints in [28], both of which expanded the application scenarios of the
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BLF. However, only a single constraint was considered in the aforementioned works, and
the constraints appeared in multiple forms in practical application scenarios. Therefore, the
control law design under multiple constraints is worth investigating.

Furthermore, as the working time and environment change, the actuators in the system
are prone to failure, which has an adverse impact on the system performance. Numerous
successful outcomes have recently been demonstrated in terms of addressing the control
challenges caused by actuator faults [29–40]. For instance, the effects of actuator failures
and disturbances were handled using an adaptive-based strategy in [31] and eliminated
using the NNs technique in [33]. Based on the backstepping strategy, the switched system
overcame the effects of faults and achieved a fast convergence of errors in [34]. In [35,36],
reasonable control laws were devised for the flexible robotic and spacecraft systems, respec-
tively, and the system remained stable in the event of actuator failure without violating the
constraints. In [37], an effective controller was designed to eliminate the effect of actuator
failure by combining fuzzy and backstepping controls. However, in the aforementioned
types of fault-tolerant control, the control problem under multiple constraints is rarely
considered, and the combination of multiple constraints and actuator faults makes the
controller design more challenging, thereby inspiring our research.

Inspired by the previous work, in this paper, based on the NNs and dynamic sur-
face control (DSC) approach, we develop a suitable controller for a robotic system with
multiple constraints and actuator failures. Compared with the existing work, the main
contributions are as follows:

1. Compared to the results in [1,10,31,33,36], this study considered actuators with multi-
ple constraints. The hyperbolic tangent function and asymmetric dead-zone function
were introduced to describe the input characteristics of the system. The entire design
process was based on the backstepping scheme in which the DSC and Nussbaum
functions are utilized to optimize the design process.

2. In contrast to [11,33], time-varying output constraints were considered to ensure that
the system still met the performance requirements, even if actuator failure occurred.
The NNs approach was utilized to fit the unknown parameters and faults of the robots.

3. Based on [11], a finite-time filter was applied to optimize the design process and
achieve fast convergence of the system error.

2. Problem Formulation

In this paper, we will study the problem of fault-tolerant control of a manipulator
system with multiple constraints. The constraints considered include input saturation,
dead zone, and time-varying output constraints.

Considering the uncertainty of the system structure and the possible actuator failures
during operation, we employ radial basis function neural networks to compensate for the
unknown continuous functions:

fi(Z) : Rq → R
fi(Z) = WT

i Si(Z), i = 1, 2, . . . , n
(1)

where W = [W1, W2, . . . , Wl ]
T ∈ Rl is the weight vector, and l is the number of nodes

in the hidden layer of the NNs. Theoretically, when l is chosen to be large enough, the
output WT

i Si(Z) of NNs can achieve an exact approximation for any continuous function.
Z = [Z1, Z2, . . . , Zq]T ∈ ΩN ⊂ Rq is the NNs input vector, and Si = [s1, s2, . . . , sl ]

T ∈ Rl

is the output value of the activation function. The approximation process of the NNs is
described as

fi(Z) =W∗Ti Si(Z) + εi(Z) ∀Z ∈ ΩN ⊂ Rq

i = 1, 2, . . . , n
(2)
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where W∗ = [W∗1 , W∗2 , . . . , W∗l ]
T is the vector of ideal weights, and εi = [ε1, ε2, . . . , ε l ]

T is
the approximation error that satisfies |εi(Z)| ≤ ε̄i, where ε̄i > 0 is an unknown bound. The
Gaussian-type activation function is

sk(Z) = exp

[
−(Z− µk)

T(Z− µk)

η2
k

]
, k = 1, 2, . . . , l (3)

where µk = [µk1, µk2, . . . , µkq]
T and ηk denote the centers and widths of the Gaussian

function, respectively. The structure used in this paper is a three-layer network, and it is
shown in Figure 1.

Figure 1. Schematic of neural network structure.

Lemma 1 ([11]). The following inequality holds for any pair of vectors a, b ∈ Rn.

aTb ≤ εp‖a‖p

p
+
‖b‖q

qεq , (4)

where ε > 0, p > 1, and q > 1.

Lemma 2 ([41,42]). For the filter with the following form:

ẋO + α(xO − xI) + β(xO − xI)
q/p = 0

xO(0) = xI(0),
(5)

the output signal xO will track the input signal xI in a finite time, and the upper bound of time
satisfies

t =
p

α(p− q)
(ln[α(xO(0)− xI,max)

(p−q)/p + β]− ln β). (6)

where α and β are parameters to be designed, and p and q are odd numbers and satisfy p > q > 0.

Lemma 3. The following inequality holds for the constant vector b1 > 0 and any vector x in the
interval |x| < |b|:

log
bTb

bTb− xTx
≤ xTx

bTb− xTx
. (7)

Assumption 1. The desired trajectory yd and its first derivative are available and bounded.

Assumption 2 ([43]). The disturbance Λ(t) is continuous and bounded, and its first order deriva-
tive satisfies Λ(t) < Λ̄, d(Λ(t))/dt < b1.
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Assumption 3 ([44]). For the actuator failure φ, ∃φ̄ > 0 such that φ < φ̄ for t > 0.

The dynamics model of an n-links robotic system with actuator failures can de-
scribed as

M(q)q̈ + C(q, q̇)q̇ + G(q) = τSD + Λ(t) + φ(q, q̇, t) (8)

where q, q̇, q̈ ∈ Rn are the position, velocity, and acceleration vectors, respectively, τSD ∈ Rn

is an input of the system, which is influenced by the saturation and dead zone, and v ∈ Rn

is an intermediate variable. M(q) ∈ Rn×n is an inertia matrix, C(q, q̇) ∈ Rn×n denotes the
Centripetal and Coriolis torques matrix, and G(q) ∈ Rn represents the gravitational force
vector. Λ(t) ∈ Rn is a disturbance, and φ(q, q̇, t) represents the fault function of the actuator
during operation. Then, we use M, C, G, Λ, and φ to simplify the design below.

Property 1. The matrix M(q) is symmetric and positive definite.

Property 2. The matrix Ṁ(q)− 2C(q, q̇) is skew symmetric.

Since actuator failures often occur in real systems, the description function is intro-
duced and expressed as

φ(t) = −D(t)τSD + φd, (9)

where τSD is the input signal of the actuator, and φd means the uncertain deviation fault.
D(t) = diag(D1, D2 . . .) represents the actuator effectiveness, with each element satisfying
the condition 0 < Di < 1; when Di = 1, it means a complete failure and Di = 0 means no
performance failure.

Let x1 = q and x2 = q̇, and then the description of the robot system can be rewritten as

ẋ1 = x2

ẋ2 = M−1[τSD + Λ + φ− Cẋ1 − G].
(10)

In practice, the actuator is often subjected to a variety of constraints, and in this paper,
we consider the robot system with the dead zone and saturation constraints, along with
actuator failures. Then, we employ a smooth function to describe the saturation and dead
zone characteristics, which is designed as

τSD = uMtanh(
ι(v)
uM

) = uM
eι(v)/uM − e−ι(v)/uM

eι(v)/uM + e−ι(v)/uM
, (11)

and

ι(v) = kv +
k
2r

ln
(

cosh(r(v− ζr))

cosh(r(v + ζl))

)
+

k
2
(ζl − ζr), (12)

where uM is the bound of τSD. k, ζl , and ζr represent the scale factor and the dead zone left
and right points, and r is a positive constant. v(t) is an intermediate variable, and then we
state the auxiliary system as

v̇ = −cv + ω, (13)

with c > 0.
In this section, we describe the manipulator system with multiple constraints and

actuator faults. The control objective is that the system can track the desired trajectory yd.
In order to reduce the impact of constraints and unknown faults on the system performance
during the control process, we need a reasonable design of ω.
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3. Control Design
Adaptive Neural Dynamic Surface Controller Design

Step 1: First, the tracking error e1 and the second error e2 are defined as

e1 = x1 − yd. (14)

e2 = x2 − a1. (15)

where a1 is a virtual control. The specific form is chosen as

a1 = −K1e1 +
n

∑
i=1

e1i ḃ1i
b1i

+ ẏd, (16)

where K1 = diag(K11, K12, . . . , K1n) is a positive matrix. In order to achieve the control
objectives, i.e., |e1| < |b1|, with e1 = [e11, e12, . . . , e1n]

T and b1 = [b11, b12, . . . , b1n]
T , we

construct the first Lyapunov function as

V1 =
1
2

n

∑
i=1

log
b2

1i
b2

1i − e2
1i

. (17)

Then the derivative of (17) yields

V̇1 =
n

∑
i=1

(−
K1ie2

1i
b2

1i − e2
1i
+

e1ie2i

b2
1i − e2

1i
). (18)

Step 2: The derivative of e2 = [e21, e22, . . . , e2n]
T is expressed as

ė2 = M−1[τSD + Λ + φ− Cẋ1 − G]− ȧ1. (19)

We define the error y2 between the output signal a2O and the input signal a2I of the
first-order filter as

y2 = a2O − a2I , (20)

and a new error signal e3 = [e31, e32, . . . , e3n]
T is given as

e3 = τSD − a2O. (21)

Then ė2 is rewritten as

ė2 = M−1[e3 + y2 + a2I + Λ + φ− Cx2 − G]− ȧ1. (22)

Therefore, we design the virtual control law a2I as

a2I =− K2e2 − [
e11

b2
11 − e2

11
,

e12

b2
12 − e2

12
, . . . ,

e1n

b2
1n − e2

1n
]T

+ Ca1 + G + Mȧ1 − Λ̄sgn(e2)− φ,
(23)

where K2 is the positive matrix with K2 = diag(K21, K22, . . . , K2n).
In the above equation, we should know the upper bound Λ̄ in order to eliminate the

effect of disturbance that is difficult to obtain in practice. To solve this problem, we utilize
the adaptive scheme to approximate Λ, and we define Λ̂ to be an estimated value, thus we
have the approximate error

Λ̃ = Λ− Λ̂. (24)

Taking its derivative, we obtain

˙̃Λ = Λ̇− ˙̂Λ. (25)
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Then we design the adaptive law as

˙̂Λ = Γdi(e2i + δdiΛ̂), (26)

where Γdi and δdi are positive constants. The NNs are utilized to approximate the unknown
parameter part of the system, and the control law is modified as

a2I =− K2e2 − [
e11

b2
11 − e2

11
,

e12

b2
12 − e2

12
, . . .]T

− Λ̂ + Ŵτ
TSτ(Z) + ŴTS(Z),

(27)

and we define the approximate error ˜(•) = (•)∗ − ˆ(•) so that

W∗TS(Z) = ŴTS(Z)− ε

= Ca1 + G + Mȧ1 − ε,
(28)

W∗Tτ S(Zτ) = Ŵτ
TS(Zτ)− ετ

= φ− ετ ,
(29)

where Z = [xT
1 , xT

2 , aT
1 , ȧT

1 ]
T , Zτ = [xT

1 , xT
2 , e1

T , τSD]
T . ŴTS(Z), Ŵτ

TS(Zτ) are the outputs
of the network, and the updating law is designed as

˙̂Wi = −Γi[Si(Z)e2,i + σiŴi], (30)

˙̂Wτi = −Γτi[Si(Zτ)e2,i + στiŴτ i], (31)

where Γi = ΓT
i > 0, Γτi = ΓT

τi > 0, and σi, στi > 0.
Consider the second Lyapunov function candidate as

V2 = V1 +
1
2

eT
2 M(x1)e2 +

1
2

Λ̃TΓdΛ̃ +
1
2

n

∑
i=1

W̃T
i Γ−1

i W̃i +
1
2

n

∑
i=1

W̃T
τiΓ
−1
τi W̃τi. (32)

Taking the derivative of (32) yields

V̇2 ≤ −
n

∑
i=1

K1ie2
1i

b2
1i − z2

1i
− eT

2 (K2 − In×n)e2

+ eT
2 y2 + eT

2 e3 −
n

∑
i=1

σi
2

∥∥W̃i
∥∥2 −

n

∑
i=1

στi
2

∥∥W̃τ i
∥∥2

+
n

∑
i=1

σi
2
‖W∗i ‖

2 +
n

∑
i=1

στi
2
‖Wτ

∗
i ‖

2 +
1
2
‖ε̄‖2 +

1
2
‖ε̄τ‖2

− 1
2

n

∑
i=1

(
δdi − Γ−1

di

)
Λ̃2

i +
1
2

n

∑
i=1

Γ−1
di b2

1i +
1
2

n

∑
i=1

δdiΛ̄
2
i .

(33)

Then we obtain

V̇2 ≤ −
n

∑
i=1

K1ie2
1i

b2
1i − z2

1i
− eT

2 (K2 − In×n)e2

+ eT
2 y2 + eT

2 e3 −
n

∑
i=1

σi
2

∥∥W̃i
∥∥2 −

n

∑
i=1

στi
2

∥∥W̃τ i
∥∥2

− 1
2

n

∑
i=1

(
δdi − Γ−1

di

)
Λ̃2

i + C2,

(34)
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where

C2 =
n

∑
i=1

σi
2
‖W∗i ‖

2 +
n

∑
i=1

στi
2
‖Wτ

∗
i ‖

2 +
1
2
‖ε̄‖2 +

1
2
‖ε̄τ‖2 +

1
2

n

∑
i=1

Γ−1
di b2

1i +
1
2

n

∑
i=1

δdiΛ̄
2
i (35)

Step 3: Consider the final Lyapunov function V3 as

V3 = V2 +
1
2

eT
3 e3 +

1
2

yT
2 y2. (36)

In order to obtain the derivative of a2I , we pass the virtual control signal a2I through
the finite-time first order filter with positive constants α2 and β2 as

ȧ2O = −α2(a2O − a2I)− β2(a2O − a2I)
q/p, a2O(0) = a2I(0). (37)

We utilize the Nussbaum function to convert ω

N(χ) = χ2 cos(χ),

χ̇ = γχe3ω̄,

ω = N(χ)ω̄,

(38)

where γχ > 0 is positive constant, and ω̄ is an auxiliary control signal vector.
ω̄ is constructed as

ω̄ = −K3e3 − e2 + pSDcv + ȧ2O, (39)

where K3 = diag(K31, K32, . . . , K3n) is the positive matrix and pSD = diag( ∂τSD1
∂v1

, ∂τSD2
∂v2

, . . . ,
∂τSDn

∂vn
).
Then we take the derivative of V3

V̇3 ≤ −
n

∑
i=1

K1ie2
1i

b2
1i − z2

1i
− eT

2 (K2 −
3
2

In×n)e2 − eT
3 K3e3

−
n

∑
i=1

σi
2

∥∥W̃i
∥∥2 −

n

∑
i=1

στi
2

∥∥W̃τ i
∥∥2 − 1

2

n

∑
i=1

(
δdi − Γ−1

di

)
Λ̃2

i

+
n

∑
i=1

χ̇i
γχi

(pgv
i
Ni(χi)− 1) + (1− α2)yT

2 y2 + C3,

(40)

where C3 = C2 +
1
2 ηT

2 η2, and η2 is the nonnegative continuous function such that

|ȧ2I | ≤ η2(z1, e2, Ŵi, yd, ẏd, ÿd). (41)

Finally, we obtain

V̇3 ≤ −ρV3 +
n

∑
i=1

χ̇i
γχi

(pgv
i
Ni(χi)− 1) + C3, (42)

where

ρ =min[min(2K1i), min(
λmin(2K2 − 3In×n)

λmax(M)
), min(2K3i),

min(
σi

λmax(Γ−1
i )

), min(
στi

λmax(Γ−1
τi )

), min(
δdi − Γ−1

di

λmax

(
Γ−1

d

) ), 2(1− α2)].
(43)

Integrating (42) gives

V3(t)−V3(0) ≤ −ρ
∫ t

0
V3(τ)dτ + O, (44)
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where O =
∫

∑n
i=1

χ̇i
γχi

(pgv
i
Ni(χi)− 1)dt. From [45], χ is bounded, so O is bounded, and in

turn we determine that there exists an upper bound Q for V3 such that

1
2

n

∑
i=1

log
b2

1i
b2

1i − e2
1i
≤ V3 ≤ Q,

1
2

eT
2 Me2 ≤ V3 ≤ Q.

(45)

Then the error signals e1 and e2 are kept within the compact set Ωe1 and Ωe2

Ωe1 : =
{

e1i ∈ Rn | ‖e1i‖ ≤
√

b2
1i(1− e−2Q)

}
,

Ωe2 : =

{
e2 ∈ Rn | ‖e2‖ ≤

√
2Q

λmin(M)

}
.

(46)

Similarly, we can determine that the errors e3, Λ̃, W̃,and W̃τ are bounded. Therefore,
we can conclude that the tracking errors and the approximate errors of the system converge
to zero under the conditions of the proposed control law and suitable parameters.

4. Simulations
4.1. Robotic System Establishment

In the simulation part, using the robotic arm model in [46], the structure is shown in
Figure 2. The descriptions of inertia matrix M(q), Centripetal and Coriolis torques matrix
C(q, q̇), and gravitational force vector G(q) are provided as

M(q) =
[

M11 M12
M21 M22

]
, (47)

C(q, q̇) =
[

C11 C12
C21 C22

]
, (48)

G(q) =
[

G11
G21

]
, (49)

and
M11 = m1l2

c1 + m2

(
l2
1 + l2

c2 + 2l1lc2 cos q2

)
+ I1 + I2,

M12 = m2

(
l2
c2 + l1lc2 cos q2

)
+ I2,

M21 = m2

(
l2
c2 + l1lc2 cos q2

)
+ I2,

M22 = m2l2
c2 + I2,

C11 = −m2l1lc2q̇2 sin q2,

C12 = −m2l1lc2(q̇1 + q̇2) sin q2,

C21 = m2l1lc2q̇1 sin q2,

C22 = 0,

G11 = (m1lc2 + m2l1)g cos q1 + m2lc2g cos(q1 + q2),

G21 = m2lc2g cos(q1 + q2).

(50)

The structural parameters of the robot are shown in Table 1, and the initial state is
set as

q1(0) = 0, q2(0) = 1, q̇1(0) = 1, q̇2(0) = 0. (51)
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Table 1. Parameters of the robot.

Parameter Description Value

m1 Mass of link 1 2.00 kg
m2 Mass of link 2 0.85 kg
l1 Length of link 1 0.35 m
l2 Length of link 2 0.31 m
I1 Moment of inertia of link 1 1

4 m1l2
1 kgm2

I2 Moment of inertia of link 2 1
4 m2l2

2 kgm2

Figure 2. Sketch of two-link robot manipulator structure.

The desired tracking trajectory is given as yd = [sin(t), cos(t)]T , where t ∈ [0, ts]
and ts = 20 s. The other conditions and parameters are taken as K1 = diag(7, 3), K2 =
diag(10, 5), K3 = diag(15, 10), and c = 2. The disturbance is given as Λ = [0.5 sin(t) +
1, 0.5 cos(t) + 0.5]T . Further, to describe the error signals during actuator operation, we
consider the following form of φ

φ =

{
−0.4τSD, t ∈ [5, 10]
−0.4τSD + [2 cos(t), 2]T . t ∈ [13, 18]

(52)

4.2. Model-Based Control

For the model-based (MB) control, we use the MB control designed in (23), and then
the other parameters are set as p = 15, q = 11, α2 = 40, and β2 = 40. The saturation
value of the actuator uM is set as diag(13, 10). The dead zone characteristic parameters are
set as k = [1, 1]T , r = [2, 3]T , ζl = [2, 1]T , and ζr = [10, 3]T , and the time-varying output
constraints are b1 = [0.8exp(−5t) + 0.2, 0.8exp(−5t) + 0.2]T . The initial conditions are
taken as a2O(0) = 0, Λ̂(0) = [0, 0]T .

The simulation results are illustrated in Figures 3–6. According to Figures 3 and 4,
it can be seen that the system has good position tracking performance. The position output
errors do not violate the time-varying output constraints, and the errors can be kept to a
minimum during periods of actuator failure. Figures 5 and 6 illustrate the relationship
between the system inputs and actuator inputs. The system input signals always stay
within the saturation interval, and the control signals fluctuate widely at moments of
sudden change.
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Figure 3. q1 position trajectory and tracking error e11 (MB control).

0 2 4 6 8 10 12 14 16 18 20

Time t [s]

-1

-0.5

0

0.5

1

q
2

 a
n

d
 y

d
2

 [
ra

d
]

q2

yd2

0 2 4 6 8 10 12 14 16 18 20

Time t [s]

0

0.01

0.02

0.03

P
o

s
it
io

n
 e

rr
o

r 
e

1
1

 [
ra

d
]

Figure 4. q2 position trajectory and tracking error e12 (MB control).
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Figure 5. Control inputs τSD and v for the first joint (MB control).



Electronics 2022, 11, 1343 11 of 17

0 5 10 15 20

Time t [s]

-10

-5

0

5

10

15

S
D

2
 a

n
d
 v

2
 [
N

m
]

SD

v

Figure 6. Control inputs τSD and v for the second joint (MB control).

4.3. Adaptive Neural Network Control

For NNs control, we use the control law (27) with the update law (30) and (31). The
constraint and gain parameters are the same as those of the MB control, and the control
process is shown in Figure 7. The initial conditions are taken as Ŵ(0) = 0, Ŵτ(0) = 0,
a2O(0) = 0, Λ̂(0) = [0, 0]T . S(Z) and S(Zτ) both have 256 nodes; the node centers of NNs
µki, i = (1, 2, . . . , 8) are selected in the area of [−1, 1]× [−1, 1]× [−1, 1]× [−1, 1]× [−1, 1]×
[−1, 1]× [−1, 1]× [−1, 1], ηk = 2. The other parameters are given as

Γ = 10I256×256, σ = [0.01; 0.01],

Γτ = 50I256×256, στ = [0.02; 0.02].
(53)

Figure 7. The control process of the adaptive neural network control.
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The position tracking performance is shown in Figures 8 and 9, while the correspond-
ing actuator input v and the system input τSD are displayed in Figures 10 and 11. Compared
with the control strategy of MB, the neural network-based control method reduces the
fluctuation of the control signal to a certain extent. Figures 12 and 13 depict the weights of
the NNs approximation W and Wτ .
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Figure 8. q1 position trajectory and tracking error e11 (NNs-based control).
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Figure 9. q2 position trajectory and tracking error e12 (NNs-based control).
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Figure 10. Control inputs τSD and v for the first joint (NNs-based control).
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Figure 11. Control inputs τSD and v for the second joint (NNs-based control).
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Figure 12. Norms of the adaptation weights W (NNs-based control).
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Figure 13. Norms of the adaptation weights Wτ (NNs-based control).

4.4. PD Control

This case considers a PD controller with a specific control law as τ = −Kpe1 − Kd ė1,
where Kp = diag(150, 20), Kd = diag(50, 20). We compare the tracking errors for several
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different cases with the same control constraints (uncompensated for faults, MB control (23),
fault-tolerant DSC (F-DSC) (β2 = 0), fault-tolerant finite-time DSC (F-FDSC) (27), and PD
control) in Figures 14 and 15. First, when compared to the uncompensated, the employment
of the NNs approach to compensate for the fault signal improves system performance
during the fault time. Second, when the actuator’s state changes, F-FDSC can make
the tracking error enter the steady state more smoothly and reduce the error fluctuation
compared to F-DSC.
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Figure 14. Position error e11.
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Finally, we sorted out in Table 2 the maximum tracking error values E for the above
methods during the period of actuator failure, where E = max|x1 − yd|. By comparison, it
can be seen that NNs fault-tolerant control is better than the traditional PD control.

Table 2. Output error values.

Parameter e11 [rad] e12 [rad]

Uncompensated 0.0936 0.0738
MB 0.0282 0.0245

F-DSC 0.0498 0.0366
F-FDSC 0.0460 0.0360

PD 0.0635 0.0872
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5. Conclusions

In this study, a neural-network-based fault-tolerant controller was proposed for a
robotic manipulator system with multiple constraints and actuator failures. A finite-time
DSC filter was employed to optimize the design process and ensure that the output of
the system converged quickly, even if actuator failure occurred. The neural network
approach was applied to approximate actuator faults and uncertain robotic parameters,
and a disturbance observer was used to eliminate the effects of external disturbances.
Finally, the effectiveness of the proposed controller was demonstrated by the simulation
results, that is, the system remained stable and the constraints were never violated, it had
better performance during the actuator failure period, and the error signal could enter the
steady state faster. The digital simulation initially verifies the feasibility of the designed
controller, which we will also verify in real systems in the future.
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