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Abstract: This paper deals with the modelling and control of differential steering for vehicular
motions with the help of Sliding Mode Control (SMC) with a Super-Twisting Algorithm (STA). A
single-track mechanical model of the vehicular dynamics is proposed and validated by simulations.
A control strategy based on the STA is proposed for the yaw dynamics to improve travel comfort
and the stability of the vehicular motion. The desired yaw trajectory is given and the equivalent
and corrective control parts of the STA are calculated by the controller. Simulation results show the
effectiveness of the proposed control strategy.
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1. Introduction

With the rise of fuel prices, sticker emission regulations, and the potential EU ban on
combustion vehicles, the rise of electric vehicles is not only inevitable, it is necessary and has
already begun. Companies such as Volkswagen (VW) have already announced the end of
production for all combustion vehicles between 2033 and 2035. Last year, 54% of all newly
registered vehicles in Norway were electric. It could be therefore worthwhile to look into
new ideas that potentially could increase the efficiency and reliability of electric vehicles.
One of the great advantages of electric vehicles is the minimisation of moving parts such as
the transmission, drive shaft, and potentially, the differential gear. These aspects reduce
the costs for the manufacturer and the customer in the long term and greatly simplify
the maintenance. Most electric cars such as the upcoming VW I.D Life, Tesla Roadster,
and even VW’s electric race car, the VW I.D. R, still use differential gears. One of the few
notable exceptions is the family of Rimacs of the Croatian manufacturer of the same name,
which uses four independent motors at each wheel. For this paper, we look at a vehicle
with independently driven rear wheels. Rear-wheel drive was chosen for the enhanced
simplicity, as we wanted to minimise the moving parts of the vehicle. For the controller, the
well-known Sliding Mode Control (SMC) was chosen with the Super-Twisting Algorithm
(STA) as the corrective part of the controller. SMC enjoys a wide application in industry
and is cherished for its robustness and ability to control linear and nonlinear systems. The
drawback of the robustness of SMC is the so-called chattering phenomenon, which can
make it unusable in certain types of electric systems–for example, induction motors–due
to the incredibly high frequency. While there are several ways to solve this problem, the
STA is one of the most interesting options for the constraints of this paper, as it is able to
work well with disturbances that cannot be known.The paper is spilt into two main parts:
the modelling of the linear single-track vehicle dynamics and the description and analysis
of the sliding mode controller. Firstly, the tyres were modelled using Pacejka’s so-called
“Magic” tyre formula, and the lateral and longitudinal tyre forces are described. A short
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analysis and a description of the induction motors are given, followed by the creation of
the two-degree-of-freedom single-track model. Then, the desired yaw rate was calculated
using the steady-state self-steering gradient. Finally, SMC with the STA was derived and
an analysis was performed with the focus on a comparison with a PI controller and a
normal SMC. For all the simulations and analyses, Matlab Simulink was used. The main
contributions of the paper are as follows:

• Modelling of vehicle and tyre dynamics;
• Showcasing the advantages of the STA compared to SMC.

Literature Review

The topic of vehicular control systems is very extensive and broad. During the research
of the topic, only a few papers were found that considered the exact same research question
as this topic. The most analogous topic that was found was the topic of torque vectoring;
in [1], a good example of this can be found. As the topic of vehicular dynamics is well
researched, a plethora of sources on the topic can be found. To limit the scope, the research
was mostly limited to some of the most influential works in the area, such as the works of
Hand B. Pacejka [2] and the original description of of the single-track model by P. Riekert
and Tobias Schunck [3]. Furthermore, the work by Anne von Vietinghoff [4] on the control
of nonlinear vehicles was used to validate the created vehicle model. A difficulty during
the research for the modelling of the vehicle dynamics was the recurring errors in the
calculations and nonsensical values. As the topic of electric motors was sufficiently studied
beforehand, fewer sources were needed. Bahrams’ book Induction Motors Analysis and
Torque Control [5] was deemed to be extensive enough to cover the topic. For the research
of the basics of SMC, some of the original sources from Utkin [6], Emelyanov [7], and
Lyapunov [8] were used to further the understanding of SMC. More modern sources were
used, for example [9,10], to further understand the background of SMC and its possible
applications. Further advances in the application of SMC were described in [11], in which
a particular sliding surface was defined to control a valve system. In [12,13], the authors
applied SMC to reduce the ripple of the torque even in the presence of disturbances and
uncertainties. A more advanced algorithm considering a combination of SMC and Model
Predictive Control (MPC) can be found in [14,15], in which the authors realised an adaptive
switching gain for SMC based on MPC. SMC is also applied in special tasks such as
decoupling control or in order to robustify an already-obtained decoupling control. For
instance, in [16], geometric decoupling control was applied and robustified with the help
of SMC, and also, in [17], decoupling feedforward control was employed, whereas sliding
mode control guarantees an accurate tracking of the desired trajectories. In [18], the sliding
mode controller contributed to the robustness of the overall control structure and can
address any kind of inaccessible external and internal disturbance. One of the most useful
sources for the implementation of the super-twisting algorithm can be found in [19], as it
dealt with slip control for electric vehicles. Another useful application can be found in [20],
in which the authors used an STA to replace a PI controller for a synchronous motor, and
in this paper, synchronous machines are used, so much of their findings can be carried
over. The potential of the STA to solve the chattering phenomenon was shown well in [21],
as well as its ability to help vehicle control systems. Furthermore, [22] showed the ability
of SMC to work with many different approaches such as AI. The work in [23,24] showed
the ability of STA to be used in many different scenarios such as in UAVs and its use in
dynamic voltage restorers. This paper is organised in the following way: In Section 2, each
part of the model is described. In Section 3, the STA strategy is described. In Section 4, the
simulated results are discussed. The conclusions close the paper.

2. Vehicle Model

The broad topic of vehicle modelling can be broken down into the following parts:
tyre forces, electric motor, Ackerman steering, single-track model, the self-steering gradient,
and wheel rotational dynamics.
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2.1. Tyre Forces

Tyres are very difficult to model accurately. Even the most complex models are still
simplified estimations. However, the importance of tyres should not be understated, seeing
that almost all forces that influence the dynamics of a vehicle are the result of the interaction
of the tyres with the road. Over the years, a wide variety of models such as the Brush and
Dugoff model have been developed. For this paper, we decided to use Pacejka’s so-called
“Magic” tyre formula (MF). The MF has seen a wide variety of applications in vehicle
control systems. It is known as the “Magic formula” because the structure of the selected
equations has no physical foundation, but they work for a wide range of tyre constructions
and operating circumstances. Each tyre is characterised by 10–20 parameters for each
important force that it can produce at the contact patch, see Tables 1 and 2. All these
parameters can be formed in the fitting constants that make up the formula. For this paper,
the camber angle is neglected; therefore, all parameters that are influenced by the camber
angle are also neglected [2].

2.1.1. Lateral Tyre Forces

The coefficients for the lateral forces for dry asphalt are as follows.

Table 1. Lateral coefficients for dry asphalt.

Coefficient Influence Unit Typical Range

Ca Shape factor 1.2–1.8

a1 Load influence on lateral friction coefficient 1
kN −80–80

a2 Lateral friction coefficient 900–1700

a3 Change of stiffness with slip N
deg 500–2000

a4 Change of progressivity of stiffness/load 1
kN 0–50

a6 Curvature change with load −2–2

a7 Curvature factor deg
N −20–1

a8 Load influence on horizontal shift deg
N −1–1

a11 Vertical shift N −200–200

a12 Vertical shift at load = 0 N −10–10

Table 2. Longitudinal coefficients for dry asphalt.

Coefficient Influence Unit Typical Range

Cb Shape factor 1.4–1.8

b1 Load influence on longitudinal friction coefficient 1
kN −80–80

b2 Longitudinal friction coefficient 900–1700

b3 Curvature factor of stiffness/load
N
λ

kN2 −20–200

b4 Change of stiffness with slip N
λ 100–500

b5 Change of progressivity of stiffness/load 1
kN −1–1

b6 Curvature change with load2 −0.1–0.1

b7 Curvature change with load −1–1

b8 Curvature factor −20–1
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For lateral force, the stiffness, shape, peak, and curvature factors are calculated as follows:

D = a1Fz2 + a2Fz (1)

BCD = a3 sin
(

a4 tan−1
(

Fz
a4

)
2
)

(2)

B =
BCD
BD

(3)

E = a6F2
z + a7Fz + a8 (4)

with Fz being the normal force, D the peak factor, BDC the stiffness, B the stiffness factor,
and E the curvature factor. Out of these fitting constants, we can form the MF for the
lateral force:

Fy(α) = D sin(C tan−1[Bα− E(Bα− tan−1(Bα))]) (5)

with Fy(α) being the lateral tyre force and α the slip angle. All the tyre forces are the result
of the deformations of the tyre at the contact patch–to be more precise, the relation between
the wheel slip and the tyre stiffness, similar to a spring. The slip for the lateral tyre force
is called the slip angle (α) and is caused by the difference between the lateral (Vy(t)) and
longitudinal (Vx) velocity. As the tyre spins, the friction between the tyre and the road
surface causes the contact patch to stay aligned with the longitudinal direction. If a side-slip
velocity u is introduced, the contact patch will be deformed. When a tread element enters
the contact patch, the friction between the road and the tyre causes the tread element to
remain stationary; yet, the tyre continues to move laterally. Thus, the tread element will be
“deflected” sideways. Normal cornering manoeuvres result in small slip angles, low lateral
force, and minimal sliding of the tyre. At larger slip angles, the lateral force increases and
reaches the maximum, as the tyre begins to slide.

2.1.2. Longitudinal Tyre Forces

The calculation for the longitudinal tyre forces is similar to the lateral tyre forces. The
coefficients for the longitudinal forces for dry asphalt are, for the lateral force, the stiffness,
shape, peak, and curvature factors, calculated as follows:

D = b1F2
z + b2Fz (6)

BCD =
b3F2

z + b4Fz

eb5Fz
(7)

B =
BCD
BD

(8)

E = b6F2
z + a7Fz + b8. (9)

Out of these fitting constants, we can form the MF for the lateral force:

Fx(λ) = D sin(C tan−1[Bλ− E(Bλ− tan−1(Bλ))]) (10)

with Fx(λ) being the longitudinal tyre force. The longitudinal slip (λ) is caused by the
relative rotational speed of the outer tyre and the rotational speed at the wheel axis during
acceleration and deceleration. The friction between the tyre and the road surface causes the
contact patch to get stretched or squished as the tyre tries to rotate faster or slower, thus
deforming the tyre.

2.1.3. Nominal Cornering Stiffness

If we now look at the MF for the lateral (5) and longitudinal (10) forces and plot the
force in relation to the slip, we obtain the cornering stiffness for the lateral and longitudinal
tyre stiffness for longitudinal motion. To further simplify the tyre model, we assumed that
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our model only operates within the linear region of the tyre dynamics, then we can define
the nominal tyre stiffnesses.

Ḟy(0) = Cα (11)

Ḟx(0) = Cλ (12)

where Cα is the nominal cornering stiffness given in N
deg and Cλ is the nominal tyres stiffness

given in N
λ .

2.2. Electric Motor

An asynchronous/induction motor (IM) was chosen for its reliability, simplicity, and
lower cost when compared to a synchronous motor [5]. The torque of the motor can be
calculated as follows:

Vth(t) =
Xm√

R2
1 + (X1 + Xm)2

Vmax

fmax
( f (γ)) (13)

f (γ) = fmaxγ(t)u(t) (14)

Zth =
(jXm)(R1 + jX1)

R1 + j(X1 + Xm)
(15)

R2 =
√

R2
th + (Xth + X2)2 (16)

T(t) =
3V2

th(t)
R2

σ(t)

ω(t)σ(t)((Rth +
R2

σ(t) )
2 + (Xth + X2)2

(17)

where Vth(t) is the Thevenin voltage, Zth is the Thevenin impedance, Xth is the reactance,
X1 is the stator reactance,X2 is the rotor reactance, Xm is the magnetisation branch reactance,
R1 is the stator resistance, R2 is the rotor resistance, Vmax is the maximum phase voltage,
fmax is the maximum frequency, f (γ) is the input frequency given by the accelerator, γ(t)
is the accelerator position from 0→ 1, ωs(t) is the rotor speed, σ(t) is the rotor slip, Td(t)
is the desired torque, and u(t) is the controller input of the yaw dynamics controller. The
control inputs u1,2(t) can be derived from the desired torque:

u1(t) =

√
3 R2

σ1(t)
Td1(t)ω1(t)(Rth +

R2
σ1(t)

2
+ (Xth+X2)

2)

3 Xm√
R2

1+(X1+Xm)2
Vmax f (t)

(18)

u2(t) =

√
3 R2

σ2(t)
Td2(t)ω2(t)(Rth +

R2
σ2(t)

2
+ (Xth+X2)

2)

3 Xm√
R2

1+(X1+Xm)2
Vmax f (t)

. (19)

2.3. Ackermann Steering

The Ackermann steering is the most-used steering configuration in vehicles today.
This is achieved by increasing the inner steering angle relative to the outer steering angle
so that all tyres turn around the same point, as can be seen in Figure 1. The configuration
increases stability and decreases tyre wear due to increased longitudinal slip and lateral
scrubbing when compared to a parallel steering system [25]. One disadvantage is that the
cornering radius at high speeds is increased, but since this paper deals with vehicles under
everyday driving circumstances, this is of no concern.
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Figure 1. Ackermann steering system.

Angles for the inside and outside tyre are calculated as follows:

φi(t) = tan−1
(

2l sin φ(t)
2l cos φ(t)− lw sin φ(t)

)
(20)

φo(t) = tan−1
(

2l sin φ(t)
2l cos φ(t) + Lw sin φ(t)

)
. (21)

Now that all the tyres turn around the same point, further simplification of the vehicle
model is possible.

2.4. Single-Track Model

The two-degree-of-freedom single-track model (also known as the “bicycle model”)
was first developed in 1940 by Riekert and Schunck [3]. This model assumes that the car
can be described by only one front and one rear equivalent tyre linked by the vehicle body,
as seen in Figure 2. For this assumption to work, the vehicle mass is condensed to a singular
point at the centre of gravity, so that there is no pitching and rolling motion along its x and
y axes and the longitudinal velocity stays constant.

From (5) and (11), we can calculate the lateral tyre forces as follows:

Fy f (t) = CαFα f (t) (22)

Fyr(t) = CαRαr(t) (23)

where CαF and CαR are the nominal cornering stiffnesses at the front and rear tyres and
α f (t) and αr(t) are the front and rear slip angles.

α f (t) = β(t)− tan−1

(
vy(t) + Ψ̇(t)lv

vx

)
− φ(t) (24)

αr(t) = β(t) + tan−1

(
vy(t) + Ψ̇(t)lr

vx

)
(25)
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with β(t) being the vehicle slip angle, φ(t) the steering angle, vx and vy(t) the longitudinal
and lateral velocities, la the distance from the front tyre to the centre of gravity, and lr
the distance from the rear tyre to the centre of gravity. According to the Newton–Euler
equations, the following inertial force balance equations are established:

v̇y(t)m = Fy f (t) + Fyr(t) (26)

Ψ̇(t) + Izz = Fy f (t)lv − Fyr(t)lr + Mz(t) (27)

Mz(t) = Fx1(t)
lw
2
− Fx2(t)

lw
2

(28)

with m being the combined mass of the vehicle and passengers, Izz being the moment of
inertia of the vehicle around the z axis, Mz(t) being the correction moment, and Fx1(t) and
Fx2(t) being the longitudinal forces of the inner and outer rear tyres. Since we assume that
the velocity is constant, it is possible to write the lateral acceleration as

v̇y(t) = vx(Ψ̇(t)− β̇(t)). (29)

Figure 2. Single-track model.

If we now insert Equations (22)–(25) into our equations of motion (26) and (27),
we obtain:

vx(Ψ̇(t)− β̇(t))m = CαF

(
β(t)−

vy(t) + Ψ̇(t)l f

vx
− φ(t)

)
+ CαR

(
β(t) +

vy + Ψ̇(t)lr
vx

)
(30)

Ψ̈(t)Izz = CαF

(
β(t)−

vy(t) + Ψ̇(t)l f

vx
− φ(t)

)
l f − CαR

(
β +

vy(t) + Ψ̇(t)lr
vx

)
lr + Mz(t). (31)
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In order to describe the dynamic behaviour of the single-track model, a state space
model is used, which can easily be derived from the equations of motion. The state space
model can be written in the following way:

[
β̇(t)
Ψ̈(t)

]
=

 −CαF+CαR
mvx

m∗v2
x−(CαRb−CαFa)

mv2
x

−CαRb−CαFa
Izz

−CαRb2+CαFa2

Izzvx

[β(t)
Ψ(t)

]
+

[
− CαF

mvx
0

CαFa
Izz

1
Izz

][
φ(t)

Mz(t)

]
. (32)

2.5. Self-Steering Gradient

The self-steering gradient (“SSG”) describes the typical steering behaviour of any
given vehicle under normal circumstances, with the three SSG modes being:

• SSG > 0 : under-steering;
• SSG = 0 : neutral;
• SSG < 0 : oversteering.

Most consumer vehicles are set to be slightly under-steering for increased stability and
safety. In this paper, the SSG is used to define the desired yaw rate Ψ̇d. The SSG is defined
as the relationship between the steering angle φ and the lateral acceleration v̇y(t) and can
be easily derived like this: Let us consider the following kinematic relationships:

φ(t) =
l

R(t)
+ α f (t)− αr(t) (33)

vx = R(t)Ψ̇(t) (34)

v̇y(t) = vxΨ̇(t), (35)

with R(t) being the turning radius of the vehicle measured from the centre of gravity.
Please notice that the product of R(t) and Ψ̇(t) is constant. During steady-state cornering,
all moments around the centre of gravity are zero:

Fy f (t)a− Fyr(t)b = 0, (36)

with Mz(t) = 0. We can write this function as

Fy f (t) = m
lr
l

v̇y(t) = m f v̇y(t) (37)

Fyr(t) = m
l f

l
v̇y(t) = mr v̇y(t) (38)

with m f and mr are the distributed weight at the front and rear tyres. We can insert this
into (33), giving us

φ(t) =
l

R(t)
+

( m f

CαF
+

mr

CαR

)
︸ ︷︷ ︸

SSG

v̇y(t). (39)

Seeing as we cannot measure R(t) easily, we can rewrite the SSG to only contain
direct parameters:

SSG =
m(CαRlr − CαFl f )

CαFCαRl
. (40)

If we now insert (34), (35), and (40) into (39) and solve for Ψ̇, we obtain

Ψ̇d(t) =
vx

l + v2
xSSG

φ(t) (41)

with Ψ̇d(t) being the desired yaw rate.
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2.6. Wheel Rational Dynamics

The rotation on the wheel is the result of the interaction of the torque applied to the
wheel and the forces acting against the wheel, as can be seen in Figure 3.

Iwω̇(t) = Tw(t)− (Fr + F∆(t))Re (42)

where Iw is the combined moment of inertia of the wheel and the rotor of the engine, ω̇(t)
is the rotational acceleration of the wheel, Tw((t) is the torque applied to the wheel, Fr is the
constant rolling resistance, F∆(t) are the changing forces that act on the wheel that can occur
due to cornering or changes in the road conditions, and Re is the effective wheel radius.

Figure 3. Basic dynamics of a tyre.

The longitudinal tyre forces are calculated similar to the lateral tyre forces:

Fx(t) = Cλλ(t) (43)

where Fx(t) is the longitudinal tyre force, Cλ(t) is the longitudinal wheels stiffness, and λ
is the longitudinal tyre slip. The slip for the individual rear wheels is calculated as follows:

λ1(t) = −
(vx + Ψ̇(t) lw

2 )− Reω1(t)

vx + Ψ̇ lw
2

(44)

λ2(t) = −
(vx − Ψ̇(t) lw

2 )− Reω2(t)

vx − Ψ̇ lw
2

(45)

where Ψ̇(t) is the yaw rate of the vehicle and ω1(t) and ω2(t) are the rotational velocities of
the inner and outer rear tyres. If Reω(t) is 0, the wheel is locked and sliding occurs without
rotation. If λ(t) > 0, the wheel is accelerating, and if λ(t) < 0, the wheel is breaking.

Correction Momentum and Torque

The correction momentum is the sum of all moments caused by longitudinal forces. If
we now consider (28) and insert (42)–(45), we can write the correction moment as

Mz(t) =

(
−
(vx + Ψ̇(t) lw

2 )− Reω1(t)

vx + Ψ̇(t) lw
2 )

)
Cλl f −

(
−
(vx − Ψ̇(t) lw

2 )− Reω2(t)

vx − Ψ̇(t) lw
2 )

)
Cλlr. (46)
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The correction torque or desired torque can be calculated by solving (46) for ω1(t) and
ω2(t), giving us:

ω2d(t) =
ω1(t)(vx − Ψ̇(t) lw

2 )

(vx + Ψ̇(t) lw
2 )

−
Mz(vx − Ψ̇(t) lw

2 )

CλlrRe
(47)

ω2d =
ω1(vx − Ψ̇ lw

2 )

(vx + Ψ̇ lw
2 )

)−
Mr(vx − Ψ̇ lw

2 )

CλlrRe
(48)

with ω1d(t) and ω2d(t) being the desired rotational wheel speeds. If we now consider (42)
and insert the derivative of (47) and (48), we can solve for the desired wheel torque:

T1d(t) = Iωω1d(t) + ((Fr + F∆)Re) (49)

T2d(t) = Iωω2d(t) + ((Fr + F∆)Re). (50)

From here, we can insert the desired torque into the control inputs from Section 4 to
control the IM.

3. Sliding Mode Control

Sliding Mode Control (SMC), or Variable Structural control (VSC) as it is sometimes
called, is a nonlinear control strategy that applies a discontinuous signal to alter the
dynamics of a system. SMC was first developed in the 1960s in the Soviet Union by
Emeljanov [7] and Utkin [6] based on the work of Poincaré and Lyapunov. SMC systems
have two distinct phases: the reaching phase and the sliding phase. During the reaching
phase, the SMC tries to drive the system onto the sliding surface. Once it reaches the
sliding phase, the SMC will try to keep the system state in the neighbourhood of the
sliding surface by using a switching function. SMC systems have multiple advantages.
The dynamic behaviour of the system may be directly tailored by the choice of switching
function; essentially, the switching function is a measure of desired performance. The
control system is very robust and can be totally insensitive to matched uncertainness,
which, for example, can be found in mechanical systems. Furthermore, it can be used
to control linear and nonlinear systems. However, it still has disadvantages. One of the
main disadvantages is the necessity of a discontinuous control signal, which needs to
switch at extremely high frequencies (theoretically infinitely high) to provide reasonable
rejection of uncertainty. Furthermore, the high frequency could make the usage of SMC
for certain electrical systems impossible. Seeing as we want the control for the electrical
components, the chattering problem needs to be solved. To solve the problem, the control
law needs to be a continuous function of time. One way to solve that would be to use a
saturation function instead of a sign function as the switching function. However, seeing
as we need to control a second-order system, the use of the “Super-Twisting” Algorithm
(STA) becomes possible [19]. The advantage of the STA is its high robustness without too
much compromising on the converging speed and that its design does not depend on the
knowledge of the bound values of the uncertainties disturbances [19]. That can be a huge
advantage for a vehicle, as there are many external factors that can influence the driving
behaviour. Some of them include differences in temperature, road surfaces, and weather. It
could also be the change of air pressure, which can change the size of the contact patch and
influence the driving behaviour. The main goal is to derive the sliding function s(t)→ 0,
which is linear. In this context, the following proposition states the asymptotic stability of a
sliding function using the contractive control law.

Proposition 1. Let us consider the following sliding surface, witch only depends on the positive
scalar parameter k > 0:

s(t) = ε(t) + k
∫ t

0
(ε(τ)(τ))dτ, (51)
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with s(t) being our sliding surface and ε(t) being the tracking error, defined as

ε(t) = Ψ̇(t)− Ψ̇d(t), (52)

then there exists a feedback control law that guarantees the asymptotic stability of the equation of
motion (30).

Proof. Let us consider the equation of motion (30), which can be written in the following
form (expressed in the state variables):

Ψ̈(t) = −CαRb− CαFa
Izz

β(t)− CαRb2 + CαFa2

Izzvx
Ψ̇(t) +

CαFl f

Izz
+

1
Izz

Mz(t). (53)

If we consider (51) and (52), it follows that:

s(t) = Ψ̇(t)− Ψ̇d(t) + k
∫ t

0
(Ψ̇(τ)− Ψ̇d(τ))dτ. (54)

To make sure that s(t) = 0 will be reached in a finite time, the Lyapunov approach can
be used. First, we select the Lyapunov candidate:

V(s(t)) =
1
2

s(t)2, (55)

from which follows
V̇(s(t)) = ṡ(t)s(t) (56)

V̇(s(t)) = (Ψ̈(t)− Ψ̈d(t) + k(Ψ̇(t)− Ψ̇d(t)))s(t). (57)

The control output consists of two parts:

u(t) = ueq(t) + ucor(t) (58)

where ueq(t) is the equivalent output and ucor(t) is the corrective output that keeps SMC
on the sliding surface. ueq(t) can be easily calculated by setting V̇(t) = 0 and solving for
the output Mz(t). If we now consider the yaw motion equations:

Ψ̈(t) = −CαRb− CαFa
Izz

β(t)− CαRb2 + CαFa2

Izzvx
Ψ̇(t) +

CαFl f

Izz
Φ(t) +

1
Izz

Mz(t) (59)

ueq(t) = Mz(t) (60)

where

Mz(t) = CαRb− CαFβ(t) +
CαRb2 + CαFa2

vx
Ψ̇(t)− CαFl f Φ

+ [Ψ̈d(t)− k(Ψ̇(t)− Ψ̇d(t))s(t)]Izz. (61)

Imposing that
V̇(s(t)) < 0, (62)

and to satisfy (62), the following corrective part of the control input in the context of STA
can be considered:

ucor(t) = −
√

U
√
|s(t)| sgn(s(t)) + ξ(t) (63)

ξ̇(t) = −W sgn(s(t)), (64)

where U and W are two positive constants that should be manually tuned to be large
enough to ensure a good performance.
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Remark 1. Typically (see [20]), W ≈ 1.1U to obtain in general good dynamical performance. As
we can see in Figure 4, the STA behaves similarly to a PI controller [20], with the big difference
being that the STA uses a sigmoid function instead of a proportional function.

Figure 4. Block diagram of PI (left) and super-twisting (right) controllers.

4. Analysis and Discussion of the Results

All simulations were preformed in MATLAB SIMULINK®. The Basic control strategy
that was used in all simulations can be seen in Figure 5. For the analysis of the system and
the controller, a series of different scenarios was simulated. All simulations were run with
a constant steering angle of 10° or a steering angle as a sine wave input with an amplitude
of 10° and a frequency of 1 rad

s , with a sample time of 10 s. Later on, the disturbance was
always applied to F∆1(t). The disturbance signal was a uniform random number with an
upper bound of |20|N and a sample time of 0.1 s and the seed set to 0. A uniform random
number with seed was chosen to provide repeatability for testing.

Figure 5. Basic control strategy.

The analysis of the system was performed with the following vehicle and IM constants,
see Tables 3 and 4.
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Table 3. Vehicle constants.

m 2100 kg

Izz 2800 kg m2

l f 2 m

vx 15 m/s

lr 3 m

Fr 80 N

lw 1.8 m

CaF 75,000 N
deg

CaR 150,000 N
deg

Cλ −15,000 N
λ

Table 4. IM constants.

Pole Number 6

fmax 50 Hz

fmax
400√

3
V

R1 0.182 Ω

X1 0.990 Ω

X2 0.180 Ω

Xm 7.4 Ω

The following gains of the SMC STA and PI controller were used, see Table 5.

Table 5. Controller gains.

STA/SMC Overestimated STA/SMC Underestimated

U 100 15

k 500 500

PI Controller

P −1000 N/A

I −800 N/A

4.1. Simulation of an Uncontrolled and Undisturbed System

In the first test, the system was left uncontrolled and no disturbances were applied,
first, the constant steering angle and, after that, the sine wave input.

In Figures 6 and 7, the difference between the yaw rate and the desired yaw rate can
be observed. This is mainly caused by the high moment of inertia of the vehicle. These two
graphs served as the baseline for the further tests.
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Figure 6. Uncontrolled yaw rates with no disturbance sine input.

Figure 7. Uncontrolled yaw rates with no disturbance uncontrolled constant input.

4.2. Simulation of a Controlled Undisturbed System

For this test, k and U were set to k = 500 and U = 100. The system was controlled by
the SMC, and no disturbance was applied.

If we now compare the results from Figure 6 (the uncontrolled test) with the results of
the controlled test in Figure 8, we can see a drastic improvement. If we would zoom in on a
maximum, we can see a slight error between the desired yaw rate and the current yaw rate,
as seen in Figure 9. This error is the highest at the maxima with an error of about 0.004 rad

s ,
which can be neglected, considering that 0.004 rad

s is approximately equal to 2.3 rotations
per hour.
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Figure 8. Controlled yaw rates with no disturbance with sine wave input.

Figure 9. Controlled yaw rates with no disturbance with sine wave input, zoomed in.

As can be seen in Figures 10 and 11, the system performed worse if compared to the
uncontrolled test with no disturbance in Figure 6, with much variation in the yaw rate,
which would cause an unpleasant driving experience. This becomes even more apparent if
we apply the same disturbance to a system with a constant steering angle.
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Figure 10. Uncontrolled yaw rates with disturbance with sine wave input.

Figure 11. Uncontrolled Yaw rates with disturbance with constant input.

4.3. Simulation of a Controlled and Disturbed System

To show the effectiveness of SMC, the system was left uncontrolled and the distur-
bance was applied. If we now apply SMC to the disturbed system, we obtain the following.

The performance of the system was quite similar to the controlled system with no
disturbance in Figure 8. It even went down to a similar error of about 0.004 rad

s in Figure 12.
If we look at the maximum of the system and compare it to Figure 9, we can see a slight
variation over time of about 0.0002 rad

s , which, again, is negligible.
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Figure 12. Controlled yaw rates with disturbance with constant input.

PI Controller vs. SMC Super-Twisting

During initial testing of a system, a PI controller was used. These testes were carried
out without any disturbance and produced good results. Due to the high stiffness of
the system, the proportional gain was set to P = −1000 and the integral gain was set to
I = −800. While initially, it showed promising results, the moment the disturbance was
applied, the weakness of the PI controller was revealed.

As can be clearly seen in Figure 13, the controller was not able to control the system
adequately. While it behaved better than the uncontrolled disturbed system, as seen in
Figure 10, it was nowhere close to the performance that can be seen in Figure 12.

Figure 13. PI-controlled yaw rates with disturbance with sine wave input.

Comparing the PI controller to the SMC strategy is not a fair task. In any case, some
structural considerations can be made. The PI controller is one of the oldest and simplest
controller that we can find in industrial applications. The PI controller can be used for
linear and nonlinear systems, and its success and longevity are due to its easy, cheap, and
direct application. In its basic structure, the PI controller is a signal-based controller. In
this sense, it is quite a robust controller, but the difficulty that it presents is that it is not
easy to tune. In fact, in accordance with the stability and the robustness of the closed-loop
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scheme, the tuning procedure plays a key role. SMC presents also high stability and robust
quality due to its corrective part; see [9]. The advantage of SMC is that it is structurally
straightforward to prove the stability and the robustness of the closed-loop control system
assuming that the upper and lower bounds of the uncertainties, including the disturbance,
are known. In case these bounds are not known, then an STA can be applied; see [20]. In
fact, in this context, the control strategy works also without knowledge of these bounds.

4.4. SMC vs. STA

As was already stated, one of the main benefits of the STA is that the upper bounds
of the disturbances are not required to be known. This becomes very useful if the upper
bounds of the disturbances are not known. We can compare the STA to normal SMC with
the corrective input defined as

ucor(t) = U sgn(s(t)). (65)

In comparing SMC with the STA, both controllers used the same k and U as in the
tests before, giving us the following results.

As can be seen in Figure 14, the yaw rate of the system with SMC constantly stays
higher than the desired yaw rate. The STA-controlled system (see Figure 15) varied more
over time. While the error for both of them was quite small, a bigger problem was revealed
when the sliding surfaces of Figures 14 and 15 were compared.

Figure 14. Controlled yaw rates with SMC and constant input.

Figure 15. Controlled yaw rates with disturbance with constant input.
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If we compare the sliding surface of SMC (Figure 16) and the STA (Figure 17), were
can immediately see that, without the known upper bounds of the disturbances, the sliding
surface of SMC constantly increased, and it was not able to keep nor steer s(t)→ 0. While
the STA is not perfect, it was able to keep s(t) near 0, which would be still good enough for
our purposes.

Figure 16. Sliding surface SMC and constant input.

Figure 17. Sliding surface STA and constant input.

4.4.1. SMC with Known Upper Bounds

If we assume that the upper bounds of the disturbances are knowable, meaning

ucor(t) = dF∆eU sgn(s(t)) (66)

the SMC has a better performance (Figure 18) if compared to Figure 14. Furthermore, the
sliding surface of Figure 19 performs better than SMC (Figure 16) without known upper
bounds or the STA in Figure 17. However, with this, we ran into the so-called chattering
problem. As already stated, the high frequency makes it impossible to use it for certain
electrical systems [21].



Electronics 2022, 11, 1330 20 of 24

Figure 18. Controlled yaw rate with SMC and upper bounds known.

Figure 19. Sliding surface SMC and upper bounds known with constant input.

4.4.2. Achievability

Another problem we might have is the question of achievability. While Cλ is relatively
big at −15, 000 N

λ , for the control output, a longitudinal slip of λ1 = 0.74 is required for
both wheels to achieve the required maximal correction moment of Mz = 20, 000 N , see
Figure 20. While this is still possible to achieve, it is highly ineffective. If we compare it to
the correction moment of the STA (Figure 21), a much lower momentum is needed for a
similar performance.

Generally, it can be said that the STA is less accurate than SMC. Precision accuracy
is not necessarily needed as this design is intended for consumer vehicles. It is more
important to have a smoother continuous control signal than a fast and accurate one.

If we compare SMC and the STA in their energetic error over a period of time of
t = 0→ t = 10 by calculating

e∆ =
∫ t

0
ε(τ)2dτ (67)

we obtain an energetic error for SMC of e∆ = 0.00269 and for the STA of e∆ = 0.00558.
While the energetic error of the STA was worse, if we compare SMC (Figure 18) and the
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STA (Figure 15) in regard to the maximum error, we can see that the SMC had a maximum
error of 0.01 rad

s and the STA a maximum error of 0.005 rad
s .

Figure 20. Control output of SMC upper bounds known.

Figure 21. Control output of the STA.

4.4.3. SMC and STA with Underestimated Correctiveness

To show the ability of of the STA to perform without knowing the upper bound of the
error, the corrective part was set to be U = 15. This test was both performed first with the
STA and then with SMC. This test was performed for a duration of 200 seconds to better
show the performance of both controllers.

In both cases, the error was larger than with the well-estimated corrective part, with
the difference being that the STA (Figure 22) had a trend toward the desired value, while
SMC (Figure 23) stayed constant over the desired yaw rate. In terms of the energetic error,
the STA performed better with an energetic error of e∆ = 0.002971 and SMC with an
energetic error of e∆ = 0.004319. Both had a maximal error of 0.007 rad

s . We compared the
results of this test with the one performed before, see Table 6.
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Table 6. Results.

STA Overestimated STA Underestimated

Energetic error 0.00558 0.002971

Maximum error 0.005 rad
s 0.007 rad

s

SMC Overestimated SMC Underestimated

Energetic error 0.002971 0.004319

Maximum error 0.001 rad
s 0.007 rad

s

Figure 22. STA with underestimated value.

Figure 23. SMC with underestimated value.

As can be clearly seen from the table, the STA was able to perform better than SMC
in this case, thus proving that the STA is able to perform without the upper bounds
being known.

5. Conclusions

This paper explored the possibility to use two IMs and SMC with the STA to replace
the differential gear in a consumer vehicle. While a real measurement of a model vehicle
was not possible as originally planned for this paper, the results are promising. The yaw
rate of the vehicle aligned with what can be found in [4], which originally was the biggest
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problem to overcome due to the numerous errors that could be found in some of the
originally consider literature. SMC has shown a great capability to control the system
under different circumstances and even outperforming the classic PI controller. Some
similar results also were found in [20]. The capability of the STA to solve the chattering
phenomena problem while keeping the robustness of the SMC intact is surprising, as it
was a later addition to the paper, and firs,t a standard SMC approach was chosen. While
SMC with the STA was not able to slide perfectly, the resulting error was still very small,
especially considering the speed of the disturbance. Its ability to perform even without
knowing the upper bounds of the disturbance makes it a very valuable control tool. As the
model in this paper was heavily simplified and highly linear, a real vehicle might perform
differently, which would be interesting to test the theoretical knowledge on a real vehicle
to see if the theory translates into praxis. Theoretically, it could perform even better due
to the nonlinearity of the tyres, as rapid changes in momentum and acceleration are no
longer possible. Furthermore, it was interesting to see the interactions of the different parts
of the vehicle model and SMC and the STA. While a more in-depth look into all parts of
this paper would be highly interesting, it would go beyond the scope of this paper. The
impact of longitudinal motion on the controller would especially be of high interest and/or
the behaviour of the controller in extreme situations, as described in [4].
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