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Abstract: The Bai People have left behind a wealth of ancient texts that record their splendid
civilization, unfortunately fewer and fewer people can read these texts in the present time. Therefore,
it is of great practical value to design a model that can automatically recognize the Bai ancient (offset)
texts. However, due to the expert knowledge involved in the annotation of ancient (offset) texts, and
its limited scale, we consider that using handwritten Bai texts to help identify ancient (offset) Bai
texts for handwritten Bai texts can be easily obtained and annotated. Essentially, this is a problem
of domain adaptation, and some of the domain adaptation methods were transplanted to handle
ancient (offset) Bai text recognition. Unfortunately, none of them succeeded in obtaining a high
performance due to the fact that they do not solve the problem of how to separate the style and
content information of an image. To address this, an information separation network (ISN) that
can effectively separate content and style information and eventually classify with content features
only, is proposed. Specifically, our network first divides the visual features into a style feature and a
content feature by a separator, and ensures that the style feature contains only style and the content
feature contains only content by cross-domain cross-reconstruction; thus, achieving the separation of
style and content, and finally using only the content feature for classification. This greatly reduces
the impact brought by cross-domain. The proposed method achieves leading results on five public
datasets and a private one.

Keywords: Bai character; domain adaptation; deep learning

1. Introduction

The Bai People are the 15th largest national minority in China, mainly living in Yunnan,
Guizhou and Hunan provinces, with the majority of the population gathered in the Dali Bai
Autonomous Prefecture of Yunnan. The Bai text, as a unique Bai script, on one hand, has
carried the splendid culture of the Bai People for thousands of years, most of which have
been passed down through ancient books or offset printing. On the other hand, fewer and
fewer modern people know them, let alone recognizing them. Hence, in the perspective
of practicality, it is of great value to design a model that can recognize ancient (offset)
Bai texts.

With the renaissance of deep neural networks [1,2], more and more computer vision
tasks have achieved remarkable breakthroughs, yet the data-starved nature of deep models
prevents them from obtaining a good result when less training data is available. The current
situation is that the annotation of ancient (offset) Bai text requires expert knowledge and
the difficulty to collect them is self-evident, and a superior performing recognition network
cannot be trained, using only this data as the training set. Fortunately, a large handwritten
Bai text dataset has been collected by Zeqing et al. [3]. Therefore, this handwritten Bai text
dataset and part of the unlabeled ancient book (offset) dataset are used to jointly train a
deep learning model capable of recognizing ancient book (offset) Bai text.
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Obviously, the handwritten Bai text and antique (offset) Bai text have the same content
in different styles, and from a deep learning perspective, this task can be treated as a
cross-domain adaptation problem. Now there are many mature models in the domain
adaptation, and eight latest methods were reported to tackle the problem of cross-domain
adaptation of Bai text, but the results are not so promising. The truth is that these methods
do not have the ability to separate the content and style information of text images directly.
For example, DANN [4] expects the visual features extracted to be style-independent,
and MCD [5] expects different classifiers to obtain the same labels in the target domain.
Therefore, the visual features obtained by these methods cannot completely remove the
style information and, in return, will be affected by different domains.

To overcome this, an information separation network (ISN) that can effectively sep-
arate content and style information and eventually classify with content features only,
is proposed, greatly reducing the influence brought by different domains. Based on the
fact that the original visual features contain not only content information, a separator to
separate content and style information in visual features into content and style features
is designed, as well as a combiner to combine content and style features back into visual
features. In addition, a discriminator that can be used to distinguish between different
styles of visual features, ensures that the combined visual features contain the original
content and style features used in the combination, thus, finally completing the separation
of content and style information. Last but not least, the proposed method achieves the
state-of-the-art (SOTA) results on a private dataset and five public ones.

The contribution is threefold:

• A Bai text cross-domain adaptive dataset using an existing Bai handwritten dataset
and our own collection of ancient (offset) Bai text datasets is constructed.

• An information separation network (ISN) that can effectively separate content and
style information in visual features is designed.

• The proposed method achieves the state-of-the-art (SOTA) results on a private dataset
and five public ones.

2. Related Work
2.1. Bai Text Recognition

Zeqing et al. [3], as a pioneer in using deep learning to solve the Bai text recognition
problem, collected a dataset with 400 Bai characters in different handwriting, and an average
of roughly 2000 samples per Bai text, which is a huge dataset of roughly 800,000 images. In
their work, Zeqing et al. considered the use of Chinese characters similar to Bai characters
to improve the model’s Bai character recognition capability through knowledge transfer [6],
and achieved remarkable results. However, the application value of their research was
greatly limited, for they focused on the recognition of handwritten characters only, but the
real application scenario is more about the recognition of ancient (offset) Bai characters.
While we take a more direct approach to the recognition of ancient (offset) Bai characters,
which has more practical value.

2.2. Domain Adaptation

Domain adaptation aims to transfer the knowledge from a source domain to a target
domain. DANN [4], a pioneer in solving the domain adaptation problem, provides a model
that can constrain the network with a discriminator so that the features extracted from
the source and target domains are as similar as possible, eliminating the effect of different
domains. DWL [7] proposes a dynamic weighted learning method (DWL) for domain
adaptation. By monitoring the degree of alignment and discriminability in real-time, their
method dynamically adjusts the weight of alignment learning and discriminability learning,
so as to avoid excessive alignment or excessive pursuit of discriminability. ADDA [8] first
learns a discriminative representation using the labels in the source domain and then
a separate encoding that maps the target data to the same space using an asymmetric
mapping learned through a domain-adversarial loss.
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MCD [5] models the domain adaptation problem [9] as a semi-supervised learning [10]
problem by making multiple classifiers collaborate with each other and obtain more robust
classification outputs by adopting some techniques commonly used in semi-supervised
learning, such as ensuring the consistency of classifier outputs, thus greatly improving
the performance of the model. SYM [11] designs symmetric object classifiers, which serve
as domain discriminators as well. This idea, like MCD [5], comes from semi-supervised
learning, and is still a technique that has not been utilized widely. CDAN [12] conditions the
adversarial model on the discriminative information conveyed in the classifier predictions.
This approach is equivalent to not constraining the features directly, but rather constraining
the output of the classifier, giving a more powerful and effective constraint to the classifier
and thus improving the accuracy of the model.

3. Method
3.1. Notations and Definitions

Suppose that we have a source domain dataset (handwritten Bai character dataset)
denoted as S = {(xs, y)|x ∈ X s, y ∈ Y}, where X s and Y denote the set of samples
and labels in the source domain dataset, respectively. Similarly, we have a target domain
dataset (ancient books or offset printed Bai character dataset) denoted as T = {xt|xt ∈ X t},
where X t denotes the set of samples in the target domain dataset. The main goal of this
paper is to obtain a classifier f : X t → Y that can recognizethe target domain images by
using the labeled source domain dataset S and the unlabeled target domain dataset T as
training sets.

3.2. Overview

The framework of the proposed approach is shown in Figure 1, which is called infor-
mation separation network (ISN). The framework contains five modules: a backbone (B), a
separator (Se), a combiner (Co), a discriminator (D) and a classifier (C).
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Figure 1. The overall framework of our proposed method.

The backbone (ResNet101) can be most of the convolutional neural networks, and its
main role is to extract the image’s visual features, which usually contain both style and
content information.

In view of this property of visual features, a novel separator for separating visual
features into two features, style features and content features, is proposed. The sepa-
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rated features are expected to contain only one of the style and content information in
visual features.

The combiner can put the style and content features separated by the separator back
together as a visual feature, and the visual feature is expected to contain both the style
and the content of the feature, even if the style and content features are from different
visual features.

The discriminator is mainly used to distinguish the visual features of the source
domain and the target domain. Besides the only difference in style, the contents of the
visual features of the source and target domains are the same. The key of the discriminator,
therefore, is to distinguish which style a certain visual feature belongs to.

The classifier plays the part of classifying features that contain only content informa-
tion, which can be used as a basis for classification. In a word, the classifier can ensure that
the content features contain rich content information.

3.3. Pre-Training Stage

If the visual features extracted by the backbone do not contain enough information,
the subsequent training separator and combiner would be meaningless. Therefore, in order
to achieve a better visual feature extraction, according to the suggestions of ADDA [8],
the backbone needs to be pre-trained with the source domain dataset first. The loss is
as follows:

Lpre = E[L(C(cs), y)], (1)

where cs is the content feature of the source domain visual features separated by the
separator, and L is a classification loss, such as cross-entropy loss [13]. After pre-training,
the backbone can ensure that the visual features extracted by itself can fully contain the
information of the source domain data image, including both content and style information.
The reason why we have to make sure that the visual features contain these information
is that the content information is the key for the classifier to classify visual features into
different categories. At the same time, if the visual features do not contain any style
information of the image, there will be no sharp decline in the performance in cross domain
testing. Therefore, visual features must also contain rich style information. The separation
of content and style information is the key to realizing cross-domain adaptation, and also
the main research focus of this paper.

3.4. Information Separation Stage

Similar to previous works [4,8], the adversarial learning [14] is applied in order to
realize cross-domain adaptation. The difference lies in that we do not directly restrict the
visual features to be independent of style, but by constraining the separator and combiner,
the separator can separate the style and content information of visual features. To achieve
this, a discriminator is first trained to distinguish visual features in the source and target
domains with the following losses:

LD =−E[D(vs)] +E[D(vt)]

+ βE[(||∇v̂D(v̂)||2 − 1)2],
(2)

where vs is a visual feature of the source domain and vt is a visual feature of the target
domain. The last term is the Wasserstein loss [15] by enforcing the Lipschitz constraint [16],
where v̂ = µvs + (1− µ)vt with µ ∼ U(0, 1). β is a hyperparameter, and as suggested
in [15], β = 10 is fixed. Since the visual features contained in the source and target domains
have the same content information but differ in their style information, so the discriminator
distinguishes the visual features in the source and target domains mainly based on the
style information contained in the visual features.

According to the properties of the discriminator, as long as the visual features com-
bined by the combiner can be identified by the discriminator as containing only the style
information of the style feature and not the style information of the content feature in-
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volved in the combination, it is guaranteed that the style features separated by the separator
contain style information. According to this idea, we have the following losses:

LSC =−E[D(Co(ss, cs))]−E[D(Co(ss, ct))]

+E[D(Co(st, ct))] +E[D(Co(st, cs))],
(3)

where ss, cs = Se(vs) are the style features and content features separated from the visual
features of the source domain, and st, ct = Se(vt) are the style features and content features
separated from the visual features of the target domain. The loss expects that the visual
features combined with the source domain style features will be identified as source
domain style visual features, regardless of whether the content features come from the
source or target domain, and vice versa. In order to do this, the separator must ensure
that the separated content features do not contain any style information of the visual
features, which of course does not mean that the style features do not contain any content
information. In order to make the content information be included in the content features
as much as possible, we cannot ignore the classifier in the process of training the separator
and the combiner, and the classifier [17] only participates in the classification with the
help of the content features; therefore, it needs the content features to contain rich content
information. That is, we only need to continue to involve the loss used in pre-training in
the subsequent training as well, which is as follows:

LBSC = E[L(C(cs), y)]. (4)

In addition, if we want to further improve the quality of the separated content and
style features, and make sure they contain as much information as possible of the original
visual features, the following reconstruction losses need to be introduced:

LRe =E[||Co(Se(vs))− vs||]
+E[||Co(Se(vt))− vt||].

(5)

To sum up, in the information separation stage, the overall optimization objective L of
the separator, combiner, classifier and backbone is:

L = LSC + λ1LBSC + λ2LRe, (6)

where λ1 and λ2 are hyperparameters. In all our experiments, the λ1 is fixed to be 1 and λ2
is 0.01. The training process of the proposed model is summarized in Algorithm 1.

Algorithm 1 Proposed approach.

Require: The source dataset S and the target dataset T .
Ensure: Random initialization of the parameters of B, C, D, Co, Se;

1: while B does not converge do
2: for samples in S do
3: The samples are used to optimize B by Equation (1);
4: end for
5: end while
6: while the model does not converge do
7: for source and target samples in zip{S , T } do
8: The samples are used to optimize D by Equation (2);
9: The samples are used to optimize B, C, Co and Se by Equation (6);

10: end for
11: end while
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3.5. Testing Stage

The test is conducted in the target domain test set, and the only modules involved in
the final test are the backbone, separator and classifier. The visual features are first extracted
from the target domain images with the backbone, then the content features are separated
with the separator, and finally, the content features are classified with the classifier.

4. Experimental Results
4.1. Experimental Setup

Datasets. The proposed method is evaluated on the following private dataset: Bai Char-
acter Cross-domain dataset, and five public ones: Digts [8], VisDA-2017 [18], Office-31 [19],
Office-Home [20] and ImageCLEF-DA [21].

Specifically, the Bai Character Cross-domain (BCC) dataset consists of images from
three different domains: Handwritten (H), Ancient books (A) and Offset (O), and each
domain contains 400 categories. The main function of this dataset is to train the proposed
model to perform cross-domain tasks from handwritten texts to antique (H→A) or off-
set (H→O) texts. Digts consists of three datasets with different domains: MNIST [22],
USPS [23] and SVHN [24] digits datasets, and we take the adaptations in three directions
into consideration: MNIST→USPS (M→U), USPS→MNIST (U→M), and SVHN→MNIST
(S→M). The Visual Domain Adaptation Challenge 2017 (VisDA-2017) is oriented to the task
of vision domain adaptation, which includes the tasks of target classification and target
segmentation. This paper addresses the task of target classification, and the dataset has a
total of 12 classes. Office-31 contains images of 31 categories drawn from three domains:
Amazon (A), Webcam (W) and DSLR (D), and the proposed method was evaluated on
the one-source to one-target domain adaptation. OfficeHome is a more challenging recent
dataset that consists of images from 4 different domains: Art (Ar), Clip Art (Cl), Product
(Pr) and Real-World (Rw) [25]. Each domain contains 65 object categories found typically
in office and home environments. ImageCLEF-DA aims to provide an evaluation forum for
the cross–language annotation and retrieval of images.

Implementation Details. The backbone changes as the training dataset changes, but
usually it is the ResNet [2] pre-trained on ImageNet. The separator, discriminator and
combiner are all three-layer multilayer perceptron (MLP) containing 2048-dimensional
hidden layers, which are activated by ReLU. The output of the separator and the combiner
is also connected to a ReLU layer, while the output of the discriminator is not connected to
any activation function. The classifier is a fully connected network plus a softmax layer.
The dimensionality of both content and style features was 512 dimensions. All modules
were optimized with Adam [26], and the learning rate was 0.0001 from the beginning to
end and with β1 = 0.9 and β2 = 0.999.

4.2. Comparison with SOTA Methods on BCC

Results on BCC are reported in Table 1. Eight latest domain adaptive methods are
transplanted to the BCC dataset, but the best performing ETD only had an average accuracy
of 72.3%. This is because none of these methods consider separating the content and style
of visual features, so the features used in their classification are still impacted by the style
information. In contrast, the proposed method outperforms all other methods on the BCC
dataset due to the design and application of content and style separation, surpassing the
second place by 1.5% on the H→A task, 3.2% on the H→A task and 2.9% on average, which
demonstrates its leading position and fully illustrates its great effectiveness.



Electronics 2022, 11, 1254 7 of 14

Table 1. Accuracy (%) on BCC (ResNet-101).

Method H→A H→O Average

DAN [27] 55.6 59.2 57.4
DANN [4] 58.8 63.7 61.3
ADDN [8] 60.7 64.5 62.6

CoGAN [28] 64.1 67.9 66.0
CDAN [12] 66.3 70.8 68.6

CAT [29] 65.6 69.7 67.7
ETD [30] 70.1 74.5 72.3
LWC [31] 69.0 74.6 71.8

ISN (ours) 72.6 77.7 75.2

4.3. Comparison with SOTA Methods on Other Datasets

Results on Digits [8] are reported in Table 2. The proposed model achieves 96.5%, 96.7%
on tasks of MNIST→USPS and USPS→MNIST, respectively, which outperforms the state-
of-the-art (SOTA) methods. Although in the task of SVHN→MNIST, it is outperformed
by the best method CAT [29] by 0.3% , the average performance of the method in all tasks
still is the best among all methods. The reason why our method is unable to significantly
outperform other methods is that the individual tasks on the Digits dataset are relatively
simple, and even the most unsophisticated method can achieve high accuracy, while many
methods, including ours, have already achieved accuracy of 95%+, which is thought to the
problem making it difficult to improve performance on that dataset again.

Table 2. Accuracy (%) on Digits dataset.

Method M→U U→M S→M Average

DAN [27] 80.3 77.8 73.5 77.2
DRCN [32] 91.8 73.7 82.0 82.5

CoGAN [28] 91.2 89.1 - -
ADDA [8] 89.4 90.1 76.0 85.2

CyCADA [33] 95.6 96.5 90.4 94.2
CDAN [12] 93.9 96.9 88.5 93.1

MCD [5] 94.2 94.1 96.2 94.8
CAT [29] 90.6 80.9 98.1 89.9
TPN [34] 92.1 94.1 93.0 93.1
LWC [31] 95.6 97.1 97.1 96.6
ETD [30] 96.4 96.3 97.9 96.9

ISN (ours) 96.5 96.7 97.8 97.0

Results on VisDA-2017 [18] are reported in Table 3. The proposed method did not
achieve the highest performance in this dataset, but it was only 0.7% lower than the highest
BSP [35]. However, it had more balanced performance than other methods and did not
have very low precision in some categories. For example, in the category of trucks, our
method achieved the highest precision of 44.5%, which was 6.1% higher than the second
place BSP, while the precision of DANN [4] in this category was only 7.8%. This is a strong
indication that the method is able to balance all categories better, which is the reason its
overall performance is still comparable to that of BSP [35].
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Table 3. Accuracy (%) on VisDA-2017.

Method Plane Bcycl Bus Car Horse Knife Mcycl Person Plant Sktbrd Train Truck Mean

ResNet101 [2] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DAN [27] 87.1 63.0 76.5 42.0 90.3 42.9 85.9 53.1 49.7 36.3 85.8 20.7 61.1
DANN [4] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
MCD [5] 87.0 60.9 83.7 64.0 88.9 79.6 84.7 76.9 88.6 40.3 83.0 25.8 71.9
BSP [35] 92.4 61.0 81.0 57.5 89.0 80.6 90.1 77.0 84.2 77.9 82.1 38.4 75.9

ISN (ours) 83.6 77.1 82.3 63.9 86.8 78.7 83.8 75.0 81.6 66.3 79.4 44.5 75.2

Results on Office31 [19] are reported in Table 4. The proposed method achieved the
highest accuracy on three tasks of Webcam→D, Amazon→DSLR and DSLR→Amazon,
respectively, and also achieved the second highest accuracy on the task DSLR→Webcam,
just 0.4% lower compared to the first place. More importantly, its average performance
exceeds all methods as the first method with an average accuracy over 89%, which fully
illustrates the superiority of our method. Moreover, the same set of parameters were
used for all tasks. As a matter of fact, if we do not use the same set of parameters, we can
achieve an accuracy of 100.0% on the DSLR→Webcam task. While many methods adjust
the hyperparameters according to different tasks, our method does have to, which further
illustrates its stability [36].

Results on Office-Home [20] are reported in Table 5. The proposed method achieved
the highest accuracy on four tasks of Ar→Pr, Ar→Rw, Pr→Ar and Rw→Pr, respectively,
and the second highest accuracy on three tasks of Ar→Cl, Rw→Ar and Rw→Cl, respec-
tively. Our method also achieved the second highest average performance on this dataset,
just 1.0% lower than GVB [37] and on par with BNM [38], while greatly outperforming
other methods. It is worth noting that, in so many tasks, the method also uses only the
same set of hyperparameters, eliminating the complicated tuning process, which fully
demonstrates its strong generalization ability.

Results on ImageCLEF-DA [21] are reported in Table 6. The proposed method achieved
the highest accuracy on four tasks of I→P, P→I, C→P and P→C, respectively, and the
second highest accuracy on two tasks of I→C and C→I, respectively. On this dataset, our
method achieved the highest performance on average due to either the highest or second
highest performance in all tasks, which is a good indication that it can be adapted to all
tasks with good generalizability and excellent performance.

Table 4. Accuracy (%) on Office31.

Method A→W D→W W→D A→D D→A W→A Average

ResNet50 [2] 68.4 96.7 99.3 68.9 62.5 60.7 76.1
DAN [27] 80.5 97.1 99.6 78.6 63.6 62.8 80.4
DANN [4] 82.6 96.9 99.3 81.5 68.4 67.5 82.7
ADDA [8] 86.2 96.2 98.4 77.8 69.5 68.9 82.9
CAT [29] 91.1 98.6 99.6 90.6 70.4 66.5 86.1
ETD [30] 92.1 100.0 100.0 88.0 71.0 67.8 86.2
DWL [7] 89.2 99.2 100.0 91.2 73.1 69.8 87.1

CDAN [12] 94.1 98.6 100.0 92.9 71.0 69.3 87.7
TAT [39] 92.5 99.3 100.0 93.2 73.1 72.1 88.4

TADA [40] 94.3 98.7 99.8 91.6 72.9 73.0 88.4
SYM [11] 90.8 98.8 100.0 93.9 74.6 74.6 88.4
BNM [38] 92.8 98.8 100.0 92.9 73.5 73.8 88.6

ALDA [41] 95.6 97.7 100.0 94.0 72.2 72.5 88.7
MDD [42] 94.5 98.4 100.0 93.5 74.6 72.2 88.9

ISN (ours) 92.7 99.6 100.0 94.1 74.6 73.5 89.1
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Table 5. Accuracy (%) on Office-Home.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet50 [2] 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
MCD [5] 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1
TAT [39] 51.6 69.5 75.4 59.4 69.5 68.6 59.5 50.5 76.8 70.9 56.6 81.6 65.8

ALDA [41] 53.7 70.1 76.4 60.2 72.6 71.5 56.8 51.9 77.1 70.2 56.3 82.1 66.6
SYM [11] 47.7 72.9 78.5 64.2 71.3 74.2 63.6 47.6 79.4 73.8 50.8 82.6 67.2

TADA [40] 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
MDD [42] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
BNM [38] 56.2 73.7 79.0 63.1 73.6 74.0 62.4 54.8 80.7 72.4 58.9 83.5 69.4
DANN [4] 45.8 63.4 71.9 53.6 61.9 62.6 49.1 39.7 73.0 64.6 47.8 77.8 59.2
CDAN [12] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
GVB [37] 57.0 74.7 79.8 64.6 74.1 74.6 65.2 55.1 81.0 74.6 59.7 84.3 70.4

ISN (ours) 56.4 74.8 80.0 60.1 73.5 73.6 66.0 50.4 80.2 72.9 60.1 85.3 69.4

Table 6. Accuracy (%) on ImageCLEF-DA.

Method I→P P→I I→C C→I C→P P→C Average

ResNet50 [2] 74.8 83.9 91.5 78.0 65.5 91.2 80.7
DAN [27] 74.5 82.2 92.8 86.3 69.2 89.8 82.5
DANN [4] 75.0 86.0 96.2 87.0 74.3 91.5 85.0
JAN [43] 76.8 88.0 94.7 89.5 74.2 91.7 85.8

HAFN [44] 76.9 89.0 94.4 89.6 74.9 92.9 86.3
CAT [29] 76.7 89.0 94.5 89.8 74.0 93.7 86.3
ETD [30] 81.0 91.7 97.9 93.3 79.5 95.0 89.7

ISN (ours) 81.1 92.2 96.6 92.9 80.0 96.1 89.8

4.4. Visualization Experiments

Figure 2 depicts the t-SNE [45] visualizations of content features learned in the pro-
posed method on the task of MNIST→USPS. With the increase of training epochs from (a)
to (d), it can be observed that the aggregation of similar features in the source and target
domains was getting better. At the 100th epoch, the content features generated by the
target domain were almost completely wrapped in the content features generated by the
source domain. This is because the content features in the visual features of the source and
target domains should be exactly the same, except for the different style features. Therefore,
when the content features are separated, it is only logical that they should be in the same
distribution. The visualization of the content features also shows why the method is able to
obtain such high accuracy on the task of MNIST→USPS.

(a) (b) (c) (d)

Figure 2. The t-SNE visualizations of content features generated by the proposed method with the
increse of the epoch on MNIST→USPS. Red and blue points indicate the source and target samples,
respectively. (a) Epoch:0, (b) Epoch:25, (c) Epoch:50, (d) Epoch:100.

4.5. Hyperparameter Analysis

The two hyperparameters for adjustment, λ1 and λ2, are mainly discussed here.
Hyperparameter λ1. The effect of λ1 is evaluated and shown in Figure 3. It can be

observed that the best results were achieved on the BCC and Digts datasets when λ1 was
set to 1. This is because λ1 controls the adversarial loss and determines how well the
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content and style features are separated. When it is too small, the content features and
style features cannot be completely separated, leading to a decrease in accuracy. When
this hyperparameter is too large, the weight of classification loss is relatively small, and
although content and style features can be well separated, the model cannot guarantee that
the separated content information is useful for the classification process, which also leads
to the decrease of model accuracy. As a result, it is reasonable to set λ1 to 1.
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Figure 3. The effect of hyperparameter λ1 on BCC and Digts datasets. (a) BCC, (b) Digts.

Hyperparameter λ2. The evaluation of the effect of λ2 is shown in Figure 4. λ2 controls
the reconstruction loss, which can ensure that the separated content features and style
features contain all the information of the original visual features as much as possible,
greatly enhancing the quality of the content features. If it is too small, it is difficult to ensure
that the content features can contain all the content information of the original features,
which leads to the decrease of accuracy. Be that as it may, it is still a classification task
in nature, and the reconstruction loss, as a regularization loss, should not be too large,
otherwise it is bound to bring down the performance of the classification task. In summary,
the hyperparameter λ2 set to be 0.01 is most effective for all datasets.
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Figure 4. The effect of hyperparameter λ2 on BCC and Digts datasets. (a) BCC, (b) Digts.

4.6. Ablation Experiments

The results of the ablation experiments are shown in Table 7. Comparing the first and
second rows of Table 7, the addition of the adversarial loss gives the proposed model the
ability to separate content information from style information in visual features, greatly
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improving its ability to adapt across domains. With performance improvements of 33.4%,
29.6%, 29.7%, 9.2%, 19.5% and 6.2% in the six datasets, respectively, the information
separation network’s superior information separation capability is fully illustrated.

Table 7. The results of the ablation experiment using the average accuracy as a reference.

LBSC LRe BCC Digts VisDA-201 Office31 Office-Home ImageCLEF-D

40.5 65.5 53.6 77.3 48.5 82.6
X 73.9 95.1 73.3 86.5 68.0 88.8

X 60.8 77.7 62.4 80.9 53.1 84.4
X X 75.2 97.0 75.2 89.1 69.4 89.8

Comparing the second and fourth rows of Table 7, by adding the reconstruction loss
as a regularization, greatly increased the quality of the content and style features, indirectly
improving the performance of the model. Essentially speaking, this loss can be seen as a
self-supervised loss [46–48], and this type of loss can help the model to automatically mine
the potential knowledge in the data. After adding this loss, the accuracy performance of
the model on six datasets improved by 1.3%, 1.9%, 1.9%, 2.6%, 1.4% and 1.0%, respectively.

4.7. Limitations Discussion

The backbone of our introduced method is usually pre-trained on top of ImageNet,
even on the BCC dataset, with a huge handwritten Bai text dataset for pre-training. There-
fore, if in some application scenarios it is not possible to collect a large dataset for pre-
training, or if its classification target is far from ImgaeNet, then the performance of the
network will be greatly affected. This is because the visual features drawn from the back-
bone contain little information at this point and the style and content features are more
likely to be confused together, thus limiting our approach.

5. Conclusions and Future Works

A domain-adaptive Bai text dataset is constructed with the help of the existing hand-
written Bai text dataset and the collected ancient (offset) Bai text dataset, and various
domain adaptation methods are reported for this dataset. Meanwhile, an information
separation network, which can effectively separate content and style information in visual
features is designed, so that images with different domains are eventually sorted out with
the same content features, eliminating the influence brought by different domains. What
is more, the proposed cross-reconstruction method provides a strong guarantee for the
success of information separation. Finally, experiments on multiple datasets and rich
ablation, visualization experiments and hyperparameter analysis show that the proposed
method can be equal or even superior to existing methods.

Currently, although our network aims to separate style information from content
information in visual features, the accuracy improvement is limited on many datasets, so
the style information in visual features is not completely stripped out, or in other words,
the content features still contain some style information. In future work, we will take this
as the goal and continue to investigate how to better separate style and content information
in visual features.
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