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Abstract: Green networking is currently becoming an urgent compulsion applied for cellular network
architecture. One of the treatments that can be undertaken to fulfill such an objective is a traffic-aware
scheme of a base station. This scheme can control the power consumption of the cellular network
based on the number of demands. Then, it requires an understanding of estimated traffic in future
demands. Various studies have undertaken experiments to obtain a network traffic prediction with
good accuracy. However, dynamic patterns, burstiness, and various noises hamper the prediction
model from learning the data traffic comprehensively. Furthermore, this paper proposes a prediction
model using deep learning of one-dimensional deep convolutional neural network (1DCNN) and
gated recurrent unit (GRU). Initially, this study decomposes the network traffic data by RobustSTL,
instead of standard STL, to obtain the trend, seasonal, and residual components. Then, these
components are fed into the 1DCNN-GRU as input data. Through the decomposition method using
RobustSTL, the hybrid model of 1DCNN-GRU can completely capture the pattern and relationship
of the traffic data. Based on the experimental results, the proposed model overall outperforms the
counterpart models in MAPE, RMSE, and MAE metrics. The predicted data of the proposed model
can follow the patterns of actual network traffic data.

Keywords: network traffic prediction; base station; green networking; RobustSTL; machine learning

1. Introduction

The implementation of green networking architecture nowadays attracts attention.
That is, the base station architecture must be power saving. About 70% of the power in
the cellular network infrastructure is burned by base station units [1]. Hence, the first
undertaking is to predict future network traffic of the base station. A network traffic
prediction can bring significant information for understanding traffic patterns [2]. Through
such prediction, the base station may actively control its power demands by reducing
the bandwidth capacity during low traffic to lower the energy consumption of the base
station. However, nonlinearity and intricacy in traffic data are the main issues in network
prediction [3].

Generally, the effort of network traffic prediction is categorized into two schemes,
i.e., model driven (parametric) and data driven [4]. The first scheme works based on the
practicality of the theoretical assumptions, such as autoregressive integrated moving aver-
age (ARIMA) model, and the second scheme deals with machine learning by interpreting
and learning the data, such as artificial neural network (ANN). Various models have been
applied in network traffic prediction studies. Zhang et al. [5] presented an improved long
short-term memory (LSTM) with wavelet transform to decompose the original internet
network traffic. This model can successfully reduce the prediction error in the network
traffic prediction problem. In Ref. [6], a method integrated with fuzzy clustering and the
weight exponential to improve LSTM and adaptive neuro-fuzzy inference system (ANFIS)
in series models was proposed. From the results, this proposed method can increase the
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prediction accuracy rate by enhancing the reliability of the preprocessing stages. Wavelet
neural network (WNN) with seeker optimization algorithm (SOA) based on the dynamic
adaptive search step was proposed to optimize the prediction accuracy by overcoming
poor local search and adaptive adjustment ability of traditional SOA [2]. This model can
catch the trend of the traffic data signal and has the validity of the prediction accuracy, but
this model may not be robust for long-term prediction. Zheng et al. proposed a method for
4G network base station prediction by combining the v support vector regression (vSVR)
algorithm with the optimization of a symbiotic organisms search (SOS) [7]. The obtained
optimal prediction result takes a lot of experiments in the input optimization.

However, the existing research in network traffic data faces challenges affecting the
prediction accuracy. The main challenges are complicated characteristics and dynamics
patterns. Zhang et al. [5] designed a model of network traffic prediction by utilizing
wavelet transform to decompose the original data into multiple components with different
frequencies as the input of the model. These components can bring significant trends of
time granularity to learn the changing rules of the traffic. In Ref. [8], a seasonal and trend
decomposition using Loess (STL) was performed to address noises of the network traffic.
STL decomposes the network traffic into seasonal, trend-cycle, and remainder components.
The result of these components is then utilized as input for the GRU model. Another study
combined LSTM and Gaussian process regression (GPR) to accurately predict single-cell
cellular [9]. First, it extracts the periodic components of data traffic using Fourier transform
fed into the LSTM cell, while GPR predicts the residual random components. This proposed
method can successfully increase prediction accuracy compared to the traditional method.

Although some models have reached well the prediction of the network traffic with
dynamic traffic patterns, they still need to improve in identifying abrupt changes, traffic
burstiness, and outliers in future demands. Furthermore, this study proposes deep learning
of base station traffic prediction with the reliability of traffic burstiness and outliers. To
obtain the comprehensive pattern of traffic load from the base station, this study first
decomposes the original traffic data using RobustSTL method, instead of the standard
STL. RobustSTL not only decomposes seasonal, trend, and remainder or residual compo-
nents but can also further decompose the remainder component into a spike and white
noise [10]. The resulted components are synchronously fed into a hybrid model of one-
dimensional convolutional neural network (1DCNN) and gated recurrent units (GRU).
Through this hybrid model, 1DCNN can catch and extract features of the components [11],
and GRU can capture the rules and relationships among the components to improve model
performance [12]. Although there is a study in the load forecasting field proposing 1DCNN-
GRU [13], it does not utilize decomposition. Furthermore, we enhance their proposed
model that not only proposes the hybrid model of 1DCNN and GRU but also utilizes the
decomposition of RobustSTL in the beginning stage.

Through the above analysis, this paper focuses on designing a deep-learning method
for base station traffic prediction by combining RobustSTL and 1DCNN-GRU. The primary
contributions of this paper can be summarized as follows:

1. We propose a single traffic load prediction model of the base station based on Robust-
STL and 1DCNN-GRU. This method can extract dynamics patterns of traffic data and
more accurately predict the base station traffic;

2. The main contribution is the hybrid model of the decomposition of time series data
using RobustSTL technique, instead of the standard STL, with 1DCNN-GRU;

3. The proposed model can give the reference for sleeping control operation in the base
station by estimating the future internet traffic.

The remaining sections of this paper are organized as follows. In Section 2, this paper
gives a background on our materials and the methods used in this study. Section 3 presents
the experimental results of base station traffic prediction and discusses these results. In
Section 4, we put forward the conclusions of this study and highlight the directions of
future research.
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2. Materials and Methods
2.1. RobustSTL and 1DCNN-GRU

As we mentioned above, we use the combination model of RobustSTL and 1DCNN-
GRU to predict base station traffic. Figure 1 shows that a raw input is decomposed by
RobustSTL to reveal the underlying insights of base station traffic. After obtaining three
decomposed components, i.e., the trend, seasonality, and residual components, these are
simultaneously fed into 1DCNN. 1DCNN can help a better understanding of traffic patterns
and spatial features. The 1DCNN architecture here consists of convolution, pooling, and
fully connected layers. The number of inputs in the 1DCNN model from one raw input
is 3 (three), obtained from the decomposition result. Then, these 1DCNN inputs are fed
to the convolutional layer, which has 32 filters. The outputs of the convolutional layer are
carried to the pooling layer to minimize the dimension. The last layer in the 1DCNN is the
fully connected layer where the input is from the pooling layer.
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The outputs from the 1DCNN block are put into the GRU block. Through the GRU
operation, the traffic characteristic and rules can be learned to improve the accuracy of
the prediction result. The number of GRU cells is the same as the number of 1DCNN
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outputs. Then, the outputs of GRU are flattened with the fully connected layer to obtain
the final output.

2.2. Standard STL

STL is a statistical method for decomposing a time series data into three elements, i.e.,
seasonality, trend, and residual components. Trend is a systematic pattern that changes
over time, does not repeatedly happen, and indicates the general tendency of the data to
increase or decrease during a period. Seasonality is a component that repeatedly changes
over time and represents data fluctuation. Meanwhile, remainder is a non-systematic
component besides trend and seasonality components within the data. Suppose yt is time
series data, STL decomposes the time series data into seasonality st, trend τt, and residual
rt [14] as follows:

yt = st + τt + rt, for t = 1 to T. (1)

The standard STL decomposition consists of two loops, i.e., inner loop and outer
loop [15]. The inner loop upgrades seasonal and trend components in each of the passes.
Then, the residual component is calculated. The outer loop will be adjusted by the Loess,
when an anomaly is detected.

2.3. RobustSTL

In standard STL, we assume that all components contained in the time series data
besides trend and seasonality are residual components. In contrast, RobustSTL proposed
by Wen et al. [10] and adopted in this study claims that residual components can be further
extracted into two terms, i.e., spike and noise. Moreover, RobustSTL can accurately and
precisely decompose the time series data despite containing a long seasonality and high
noise [10]. This method can handle fractional and shifted seasonality components over
a period.

Data collected from the management unit frequently contain various noises. To obtain
the exact trend and seasonality components, such noises initially need to be removed. Here,
RobustSTL proposes a bilateral filtering to remove various noises. Then, RobustSTL utilizes
the least absolute deviations (LAD) with L1 norm regularizations to extract the trend com-
ponent and non-local seasonal filtering to obtain the seasonality component. Given a data
of time series, Algorithm 1 shows the decomposition summary of the RobustSTL method.

Algorithm 1: RobustSTL decomposition summary.

Input: yt, parameter configuration
Output: st, τt, rt
1: Denoise the network traffic data yt by bilateral filtering to obtain denoised data y′t
2: Obtain the relative trend τr

t and apply this equation y′′ t = y′t − τr
t to denoised data

3: Perform the seasonality extraction to y′′ t using non-local seasonal filtering to obtain
st value

4: Obtain trend, seasonality, and residual components
τt = τr

t + τ1, st = st − τ1, rt = yt − st − τt
5: Repeat steps 1–4 to obtain more accurate estimation

2.4. 1DCNN

In the proposed model architecture, we introduce one-dimensional convolutional
neural network (1DCNN) for the component of the base station traffic prediction model.
1DCNN can extract the morphological features of the traffic data to enhance the under-
standing of traffic patterns [11]. 1DCNN architecture generally consists of convolutional
layer, pooling layer, and fully connected layer.

2.4.1. Convolutional Layer

This layer in 1DCNN overcomes the regular neural network by a faster convergence.
This layer contains a set of time series maps, kernels, filters, strides, and neurons. This
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layer connects each neuron to the neighbor neurons. A convolutional operation calculates
the dot product between corresponding convolution filters and the input time series maps.
Through the kernels, this can learn a characteristic of the input maps. The time series input
is first fed to the input layer. Then, the output of the convolution process is calculated
as follows:

yl
m = bl

m + ∑i∈Lm
conv1D(wl−1

im , ŷl−1
i ), (2)

where yl
m and bl

m are the output and the bias of the mth neuron at layer l. wl−1
im is kernel

weight of the ith neuron at layer l − 1, and ŷl−1
i is the input to the mth neuron at layer l from

the ith neuron at layer l − 1. Lm denotes a selection of input maps. Then, conv1D refers to
the convolution operator.

2.4.2. Max Pooling Layer

Pooling operation in the 1DCNN model refers to the resampling process, i.e., a trans-
formation of multiple cells into one cell. This operation has advantages such as minimizing
the computational cost while retaining the significant information. Besides, this operation
can also avoid an overfitting model [16]. In this study, we select a max pooling model,
which takes a maximum value of an array.

Figure 2 shows an example max pooling operation of time series data. Initially, the
total element of the time series map is (15), and the max pooling with a stride of three
(3) divides them into five (5) groups denoted by various colors. Then, we can obtain the
smaller size of the time series map maintaining the discriminant information through the
following equation:

p = max(yR), (3)

where p is the output of max pooling operation, and yR is the elements of corresponding
pool area R.
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2.4.3. Fully Connected Layer

The fully connected layer receives the outputs of the pooling layer. First, they are
typically flattened to be converted into a one-dimensional array, then connected to a layer
where each input is linked to outputs with a weight. This layer has a similar structure to
regular ANN, and a neuron in this layer can be calculated as follows:

uk = ∑m
i=1 ωi,k pi + bk, (4)

where uk is an output value at the kth neuron, and ωi,k is a weight value of ith input at the
kth neuron. Meanwhile, pi is the ith input value, and m is the number of inputs. Then, bk is
the bias value at the kth neuron. After we obtain the output of the fully connected layer, this
layer is followed by an activation function, such as rectified linear unit (ReLU) or linear
activation function.
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2.5. GRU

The GRU architecture is a simpler model compared to the LSTM architecture because
the GRU is without memory cells. However, it has a low computational cost but the same
performance result as LSTM performance [17]. GRU architecture consists of two cells,
i.e., update gate and reset gate. The update gate determines the past information of time
series to be remembered or forgotten for the current prediction need. Then, the reset gate
determines the amount of information to be remembered. Figure 3 depicts the architecture
of GRU.
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Initially, the current input xt and the previous output ht−1 are concatenated to be
the input for the update gate and the reset gate. Furthermore, each value of all cells or
components in GRU can be obtained as follows:

zt = σ(Wz·[ht−1, xt] + bz), (5)

rt = σ(Wr·[ht−1, xt] + br), (6)

ht = tanh(Wh·[rt·ht−1, xt] + bh), (7)

where zt, rt, and ht are the outputs of the update gate, the reset gate, and the candidate
hidden layer. σ and tan h are the activation functions. Then, Wz, Wr, Wh and bz, br, bh
are, respectively, weight matrix and bias vectors of the update gate, the reset gate, and the
candidate hidden layer. Finally, we can obtain the output ht of the tth GRU as follows:

ht = (1− zt)× ht−1 + zt × ht. (8)

3. Numerical Results and Performance Analysis
3.1. Preparation Stage

The dataset used in the experiment stage is received from Italy cellular network activity
from Kaggle [19]. In this dataset, there is base station internet traffic from lots of locations.
Each location is represented in the cell id in the dataset as instances. Here, we take internet
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traffic in three locations. They are cell 3350, cell 5060, and cell 5864. Figure 4 shows a closer
view of the internet network traffic over an hourly period in the selected base station.
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Before we go into the training process, the training dataset is processed with a nor-
malization to lead to stability, especially in the datasets containing various noises [20]. The
normalization formula of Min–Max Scaler is presented in the equation below:

x̃ =
x− xmin

xmax − xmin
, (9)

where x is the original data, while xmin and xmax are the minimum value and the maximum
value of the dataset. Then, x̃ is the normalized data.

3.2. Training Process

The input data window used in the proposed model to predict the next hour traffic xt
is 3 h data before, i.e., xt−1, xt−2, and xt−3. We set the historical data from 80 to 120 h to
predict internet traffic activity from 10 to 25 h. In performing the training stage, we use the
90% of the dataset for the training step and the remaining data for the testing step because
the size of the dataset is not too big. For the validation set, we select 10% of the training
dataset. We set the epochs by 1000 and use mean square error (MSE) as the loss function in
training process. We also present the loss instance of training and validation of each epoch
to reflect on the performance of our proposed model during the training process as shown
in Figure 5. The learning curve of the training and validation loss is high at the beginning.
Then, it gradually decreases upon adding training examples, and it flattens. This means
the proposed model is not overfitting.



Electronics 2022, 11, 1223 8 of 11

Electronics 2022, 11, x FOR PEER REVIEW 8 of 11 
 

 

because the size of the dataset is not too big. For the validation set, we select 10% of the 
training dataset. We set the epochs by 1000 and use mean square error (MSE) as the loss 
function in training process. We also present the loss instance of training and validation 
of each epoch to reflect on the performance of our proposed model during the training 
process as shown in Figure 5. The learning curve of the training and validation loss is high 
at the beginning. Then, it gradually decreases upon adding training examples, and it flat-
tens. This means the proposed model is not overfitting. 

 
Figure 5. Training and validation losses. 

3.3. Evaluation Metrics 
To evaluate and know the quality of the proposed model, we present mean absolute 

percentage error (MAPE), root mean square error (RMSE), and mean absolute error (MAE) 
as evaluation metrics in the predicted data and the original data during the testing process 
as follows [21]: 


=

−
=

T

t ad

adpd

v
vv

T
MAPE

1

%100
, (10)


=

−=
T

t
adpd vv

T
RMSE

1

2)(1
, (11)


=

−=
T

t
adpd vv

T
MAE

1

1
, (12)

where adv  and pdv  denote the actual data and the predicted data, while T is the amount 
of data. 

3.4. Results and Analysis 
To verify the proposed model, we present other benchmark models as a comparison 

to our base station traffic prediction model. Here, the experimental stage is performed in 

Figure 5. Training and validation losses.

3.3. Evaluation Metrics

To evaluate and know the quality of the proposed model, we present mean absolute
percentage error (MAPE), root mean square error (RMSE), and mean absolute error (MAE)
as evaluation metrics in the predicted data and the original data during the testing process
as follows [21]:

MAPE =
100%

T

T

∑
t=1

∣∣∣∣vpd − vad

vad

∣∣∣∣, (10)

RMSE =

√√√√ 1
T

T

∑
t=1

(vpd − vad)
2, (11)

MAE =
1
T

T

∑
t=1

∣∣∣vpd − vad

∣∣∣, (12)

where vad and vpd denote the actual data and the predicted data, while T is the amount of data.

3.4. Results and Analysis

To verify the proposed model, we present other benchmark models as a comparison
to our base station traffic prediction model. Here, the experimental stage is performed in
the internet traffic of three base stations. The compared benchmark models are ARIMA,
LSTM, LSTM–1DCNN, Wavelet-LSTM, and Standard STL-GRU. We present ARIMA as the
traditional model and LSTM as the single model in time series analysis to be compared.
LSTM–1DCNN as the hybrid model initially takes the input maps from the dataset to the
LSTM cell, then the outputs are utilized as input to the 1DCNN model. Then, Wavelet-
LSTM and standard STL-GRU models have a similar process to the model proposed. That
is, these models initially decompose the time series signal into several components then are
used as input data.

Furthermore, the prediction result of base station traffic is evaluated using MAPE,
RMSE, and MAPE. We perform the testing stages five times for each cell and calculate the
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average of the results to represent the prediction result of the models in each cell. The result
of traffic prediction of the proposed model and benchmark models in three cells is shown
in Tables 1–3.

Table 1. The comparison results of traffic prediction in cell 3350.

Model MAPE RMSE MAE

ARIMA 18.96% 0.026 0.023
LSTM 15.04% 0.031 0.031

LSTM–1DCNN 11.53% 0.025 0.021
Wavelet-LSTM 15.52% 0.030 0.026

Standard STL-GRU 15.43% 0.029 0.025
The Proposed Model 12.10% 0.024 0.021

Table 2. The comparison results of traffic prediction in cell 5060.

Model MAPE RMSE MAE

ARIMA 25.59% 0.899 0.755
LSTM 11.73% 0.589 0.480

LSTM–1DCNN 17.28% 0.800 0.784
Wavelet-LSTM 16.77% 0.744 0.625

Standard STL-GRU 16.80% 0.736 0.632
The Proposed Model 11.02% 0.564 0.455

Table 3. The comparison results of traffic prediction in cell 5864.

Model MAPE RMSE MAE

ARIMA 14.50% 0.200 0.160
LSTM 13.94% 0.239 0.200

LSTM–1DCNN 13.86% 0.237 0.199
Wavelet-LSTM 27.03% 0.450 0.402

Standard STL-GRU 15.32% 0.261 0.214
The Proposed Model 17.62% 0.277 0.230

Based on the tables above, the proposed model obtains the optimal result. The pro-
posed model result in the base station of cell 3350 is an excellent model with the best
result and the lowest values of RMSE of 0.024 and MAE of 0.021. Then, the proposed
model also obtains the optimal result with the lowest values of MAPE of 11.02%, RMSE of
0.564, and MAE of 0.455 in the base station of cell 5060. Then, the proposed model cannot
outperform the ARIMA model in the base station of cell 5864, obtaining the lowest values
in RMSE and MAE. However, the proposed model overall achieves outstanding results in
the experimental results. The decomposition using RobustSTL outperforms the wavelet
and standard STL decomposition in extracting the time series components, especially in
the base stations of cells 3350 and 5060.

The decomposition of time series data proves better achieving the accurate prediction,
especially using RobustSTL. This decomposition method in our proposed model can extract
dynamic patterns of traffic data despite containing some burstiness and outliers. Figure 6
shows that the predicted data of the proposed model in the base station of cell 5060, as an
instance, matches the actual data with the low error. The actual data in the red line and the
predicted data in green have similar patterns.
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4. Conclusions

Base station traffic prediction plays a vital role in green networking architecture in
describing the future demands as references to apply sleeping control. The main challenges
in base station traffic prediction are the dynamic and complicated patterns. Besides, some
burstiness and outliers appear in the traffic. The decomposition process can increase the
understanding of traffic rules and relationships. The decomposition using RobustSTL
indicates the optimal result compared to counterpart schemes in the time series extraction.
The combination of RobustSTL and 1DCNN-GRU generally obtains the optimal accuracy
with the lowest values of MAPE, RMSE, MAE metrics in base station traffic prediction
outperforming the other models. The proposed model can detect noises and outliers of
traffic. For the next study, we hope the proposed model can be applied to a greater dataset
with more features and a long series to evaluate the proposed model more comprehensively
in the experimental stage.
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