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Abstract: In the era of Internet of Things (IoT), the problem of the privacy leakage of sensitive
relationships is critical. This problem is caused by the spatial–temporal correlation between users in
location-based social networks (LBSNs). To solve this problem, a sensitive relationship-protection
algorithm based on location-visiting characteristics is proposed in this paper. Firstly, a new model
based on location-visiting characteristics is proposed for calculating the similarity between users,
which evaluates check-in features of users and locations. In order to avoid an adversary inferring
sensitive relationship privacy and to ensure the utility of data, our proposed algorithm adopts a
heuristic rule to evaluate the impact of deduction contributions and information loss caused by
data modifications. In addition, location-search technology is proposed to improve the algorithm’s
execution efficiency. The experimental results show that our proposed algorithm can effectively
protect the privacy of sensitive data.

Keywords: social networks; privacy protection; sensitive relationships; location-visiting characteristics;
data utility

1. Introduction

With the development of critical technologies in the Internet of Things (IoT), IoT
applications have become widely used throughout the world. As a result, human behavior
has been extended by the development of technology [1]. Along with the rapid growth
of IoT applications and devices, data security and privacy has become a critical issue
due to the existence of many attackers. In addition, such attacks will become faster and
more complicated, and consequently, potential threats will increase [2,3]. IoT exchanges,
communicates and manages data from GPS, RFID and other information-sensing devices.
Among these, GPS check-in data contain users’ spatiotemporal information, leading to a
high risk of privacy leakage.

IoT joins devices of varying strengths [4]. Environment sensors or smart hand-held
devices are generating data at an unprecedented rate within the era of an Internet of
Things (IoT)-driven world [5]. Many social networks (for example, Gowalla and Brightkite
applications) support check-in services, and check-in data contain the spatiotemporal
characteristics of the user [6]. A sensitive relationship mainly refers to a relationship
between two users that is unwilling to be known by other people. Users with sensitive
relationships usually have similar spatiotemporal behavior due to intimacy or similar
interests, which makes two users show spatiotemporal correlation and similarity in check-
in data. Therefore, attackers can deduce sensitive relationships based on background
knowledge and related technologies [7]. For example, based on the background knowledge
of the structure of the published social network graph and the check-in data of a user’s
corresponding node, attack technology with the co-check-in model [8] and EBM [9] models
can deduce sensitive relationships with spatiotemporal correlation. It is insufficient to
protect privacy information by simply removing the sensitive edges of two users in a social
network before publishing data.

Electronics 2022, 11, 1214. https://doi.org/10.3390/electronics11081214 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11081214
https://doi.org/10.3390/electronics11081214
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11081214
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11081214?type=check_update&version=1


Electronics 2022, 11, 1214 2 of 18

The motivation of this research is to offer a method for sensitive-relationship privacy
protection by modifying operations on social network and spatiotemporal data with a
novel protection model. In general methods, some researchers focus on the co-check-in
model, which takes the proportion of co-check-ins in a check-in set it as the protection key
and proposes a protection method via check-in suppression. However, this method does
not fully consider the impact of the check-in location on sensitive relationships, which leads
to high information loss and the risk of disclosing protection results.

Taking the example in Figure 1a, 〈u1, u2〉, 〈u1, u3〉 and 〈u2, u3〉 are regarded as sensitive
relationships. Under the co-check-in based model, 〈u1, u2〉 and 〈u2, u3〉 may become
inferred relationships that need protection because their corresponding check-ins have
the same location. In addition, as shown in Figure 1b, 〈u1, u3〉 and 〈u2, u3〉 have the same
number of check-ins. Therefore, they have the same probability of having an “existing
sensitive relationship”. However, according to Figure 1c, it is obvious that there are few
visitors appearing at location l5, which means l5 has a high degree of privacy, while l2 is a
popular place, such as a subway station or a supermarket. This means users with check-ins
at l2 have a higher probability of having relationships with each other, but current methods
do not fully consider this.
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Figure 1. Social network and user location check-in record graph: (a) G; (b) G′; (c) User location
check-in distribution diagram.

For example, l1 has a higher privacy degree than l8, and check-ins of u1 and u2 at l1
have a greater contribution than at other locations. Therefore, compared with removing u2’s
check-in at l8, removing u2’s check-in at l1 is more reasonable. However, state-of-the-art
efforts do not fully consider the impact of the degree of location privacy on the algorithm’s
performance, which means that check-ins at l1 and l8 have the same contribution to sensitive-
relationship processing. In this way, if the check-ins at l8 and l1, which contribute little to
sensitive relationships, are removed, more information may be lost. Secondly, omitting
the check-in at l1 leads to sensitive-relationship leakage. It can be seen that this protection
model has defects in deducing the relationship between users.

To solve the above problems, this paper proposes a sensitive-relationship protection
model based on location-visiting characteristics. The basic idea is to evaluate the privacy
degree of each location li according to the number of users that visit li. In this way, our
proposed model can obtain a vector of users’ location-visiting characteristics and can
combine the number of users’ check-ins into an evaluation of the sensitive relationship.
We further propose a sensitive-relationship privacy-protection method based on location-
visiting characteristics. It removes and adds check-in data to prevent the disclosure of
sensitive relationships based on our proposed model. It can evaluate which check-ins
could be added (or removed) based on their importance. In this way, the problems of
sensitive-relationship privacy leakage and low data availability can be solved. Above all,
the contributions of this paper are as follows:
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1. We define a sensitive-relationship privacy-protection model based on location-visiting
characteristics. It considers the impact of privacy degree at different check-in locations
on sensitive relationships;

2. We propose a sensitive-relationship protection algorithm based on users’ visiting
characteristics to protect sensitive relationships. It considers both information loss
and privacy leakage via a heuristic rule;

3. We design a check-in location search technology to make our privacy-protection algorithm
more efficient, meanwhile preserving both trajectory utility and its original shape.

The rest of the paper is organized as follows. Related works are outlined in Section 2.
Preliminary studies and problem definition are proposed in Section 3. Section 4 discusses
our algorithm in detail. The experimental results and performance of the proposed method
are given in Section 5. Section 6 concludes the article with future directions of research.

Problem Statement:Given social network graph G(V, E, C), sensitive edge set S, and
user similarity threshold α, our target is to find an inference secure graph PG with sensitive-
relationship privacy protection on the premise of minimal information loss.

2. Related Work

At present, research on the privacy protection of user information and user relationship
information is divided into several aspects. The authors in [10,11] study the defense
strategy of link inference attacks for graph-structured data. However, these studies ignore
the privacy leakage of sensitive relationships caused by spatiotemporal information in
location-based social networks. Some other studies use relationship information to protect
users’ location privacy in location-based social networks. Chen Weihe et al. [12] proposed
the L-intimacy privacy protection model, which protects users’ privacy according to their
intimacy level with friends. Alrayes et al. [13] analyzed the possible privacy threats
caused by users sharing location over LBSN and designed a feedback system based on
privacy threat level. Ahuja et al. [14] focused on the common location privacy in social
networks. They proposed a common location protection model to prevent attackers from
users’ common location based on social relationships and designed a privacy-protection
mechanism. Shirani et al. [15] proposed an extensible framework named PLACE and
proposed three novel privacy-protection bases, including location proximity, co-occurrence
vector and following degree.

Pham et al. [9] proposed a Shannon-entropy-based location model (EBM) to mea-
sure the popularity of the location and then used this model to measure the influence of
position entropy on relationship deduction. In [16], the authors proposed a time–place-
tracking model (TLFM) based on visiting time delay and individual visiting coincidence.
Furthermore, they proposed a method to evaluate the impact of individual location vis-
iting on the privacy of other relationships in social networks. Backes et al. [17] assessed
the effectiveness of some basic protective mechanisms in preventing friendship inference
through co-existence. Camilli et al. [18] studied the potential security risks caused by the co-
existence of multiple users in the same location when users post content on location-based
social networks. Furthermore, they designed a privacy-protection strategy pertinently
without affecting the normal operation of major services. Li et al. [8] established a sensitive-
relationship inference model based on check-in data and adopted the method of deleting
check-in data to reduce user similarity.

Feng et al. [19] proposed a service framework and personalized the dynamic privacy
model to detect user-relational privacy risks. However, this cannot provide specific protec-
tion measures. Qian et al. [20] used admissible text to confuse content and automatically
generate social behaviors to create indistinguishable edge connections. The goal of this is
to prevent privacy reasoning attacks and to design a defense mechanism deployed on the
user’s local computer.

In order to enhance readability, the state-of-the-art schemes are summarized in Table 1.
In conclusion, there are few protection schemes with a specific algorithm, and the existing
specific methods do not fully consider the privacy degree of location nor the impact that
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co-checking-in at different locations has on different deduction contributions to sensitive
relationships. This problem may not only cause the omission of important check-ins, which
leads to privacy leakage, but may also cause large information losses. This paper proposes
a location-based sensitive-relationship protection algorithm for social networks.

Table 1. State-of-the-art schemes.

Scheme Advantages Disadvantages References

Sensitive relation Deduce
model

High accuracy of deduction,
Short running time Lack of protection methods [9,16]

Graph structure-based
protection method

Simple implementation, Short
running time

Lack of protection against
background knowledge

attacks
[10,11]

Privacy leakage alert scheme Low time cost, High
applicability

Privacy protection degree
uncertain, High risk. [12,13,17,19]

Protection framework High innovation, applicability
and flexibility

Lack of specific
implementation methods. [14,15,18]

Protection Scheme with
specific model

High degree of privacy and
service quality

High precomputing overhead
and time cost, Service requires

specific optimization.
[8,20]

3. Preliminary Studies

In this paper, the social network is modeled as a graph G(V, E, C), where V is the set
of vertices, E is the set of edges and C is the set of check-in data. We define each vertex in
set V as a user in a social network. The edge (u, v) in set E indicates that vertices u and v
have a relationship. The check-in data in set C are represented as <u,t,l>, where u is the
user ID, t is the check-in time, and l is the check-in location.

Definition 1. Location Frequency–Inverse User Frequency (short for LF-IUF): this is defined as
the product of location frequency (LF) and inverse user frequency (IUF), in which LF and IUF can
be calculated by Equations (1) and (2), respectively. Given user u, the check-in data set Cu and the
total check-in data set Cu of u at location l, the location frequency (LF) of user u at l is defined as
Equation (1):

LFu,l =
|Cu,l |
|Cu|

(1)

Given location l, user set U and a subset Ul , whose check-in points are located at l, the inverse
user frequency (IUF) of location l is defined as Equation (2). Semantically, this Equation indicates
the degree of location privacy. The lower the user check-in frequency at location l, the higher the
privacy degree of l.

IUFl = log(
|U|
|Ul |

) (2)

The product of these two parts equal to u′s visiting characteristic at l is calculated as Equation (3):

LF− IUFu,l = LFu,l · IUFl =
|Cu,l |
|Cu|

· log(
|U|
|Ul |

) (3)

Definition 2. Visiting Characteristics Vector: Given u’s LF− IUFu,l at location set L(L1, L2 . . . , ln),
the visiting characteristics vectors of a user u are calculated using Equation (4).

−→u = (LF− IUFu,l1 , LF− IUFu,l2 , . . . , LF− IUFu,ln) (4)

Assuming the number of elements in set U is 100, the location-visiting characteristic of
u1 is calculated as LF − IUFu1,l1 = 3/8 · log(100/2) ≈ 1.066. Similarly, u1 visiting charac-
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teristics vector is obtained by calculating the LF − IUF of u1 at other locations, where −→u1 =
[1.066, 0.0, 0.0, 0.0, 1.778, 0.0, 0.0, 0.877].

Definition 3. User Similarity: Given users’ visiting characteristics vector of 〈u, v〉, the similarity
of 〈u, v〉 is defined as the cosine similarity of u and v.

In order to facilitate calculation, the vectors in this paper are all normalized, on which basis
the cosine similarity of the two vectors can be calculated through the dot product, as shown in
Equation (5).

Sim(u, v) = Cos(−→u ,−→v ) =
−→u · −→v

||−→u | × |−→v ||
=

n

∑
i=1

Nu(li) · Nv(li) (5)

Definition 4. Inference Secure: Given social network graph G(E, V, C), sensitive-relationship set
S and similarity threshold α, if ∀(u, v) ∈ S, (u, v) 6∈ E and Sim(u, v) < α, then G satisfies the
Inference Secure parameter.

Definition 5. Visiting Pattern: Given user’s check-in number at location set L(L1, L2 . . . , ln), the
visiting pattern of user u is defined as Equation (6).

P(u) = (|Cu,l1 |, (|Cu,l2 |, . . . , (|Cu,ln |) (6)

To facilitate subsequent calculation, subsequent visiting patterns in this paper are calculated
using Equation (7).

PN(u) = (
|Cu,l1 |
|Cu|

,
|Cu,l2 |
|Cu|

, . . . ,
|Cu,li |
|Cu|

) (7)

Definition 6. Information Loss: Given the original social network graph G and inference-secure
graph PG, the information loss between G and PG is defined as per Equation (8). Here, U refers to
the user set based on G. Semantically, it measures the changes in users’ visiting patterns before and
after protection.

Los(G, PG) =
|U|

∑
i=1

√√√√ |L|

∑
j=1

(
|Cui,l j|
|Cui|

−
|C′ui,l j|
|C′ui|

)2 (8)

4. Proposed Scheme

This section proposes a sensitive-relationship privacy-protection algorithm (short
for LVCPP) based on location-visiting characteristics to prevent sensitive-relationship
inference attacks. Section 4.1 proposes the main algorithm LVCPP, Section 4.3 introduces
heuristic rule, and the other Sections introduce sub-algorithms. In Appendix A, we explain
the proposed algorithm’s process with the example in Figure 1.

4.1. The LVCPP Algorithm

The main idea of the LVCPP algorithm is as follows: Firstly, a sensitive relationship is
deleted from social network graph G, and then we use algorithm DSD (will be discussed
later) to judge the sensitive relationship in set S. Next, we generate a sensitive-relationship
set S0, which needs to be protected. Then, the DeleteCandidate algorithm is invoked
to suppress check-ins under the protected rules constraint. From then on, we invoke
algorithm AddCandidate, which adds dummy check-ins according to the accessibility of
spatiotemporal constraints. This can better protect sensitive relationship privacy and
reduce the loss of information based on the heuristic rule without causing other sensitive
relationships to leak. Finally, privacy protection of sensitive relationships is completed.

As shown in Algorithm 1, it first deletes the sensitive relationship from graph G and
then finds the sensitive-relationship set S0, which should be protected by algorithm DSD
(line 2–3). Then, we construct a candidate check-ins list Q based on the check-in suppression
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algorithm (line 4). During the construction, we also calculate the score of each check-in,
which is calculated by a heuristic function. This measures the joint influence of deductive
contribution and information loss of the suppression operation. The higher the Score,
the higher the deductive contribution after suppression and the smaller the information
loss. The suppression with the maximum Score value is executed repeatedly until the
similarities of all sensitive relationships are below the threshold or the operation candidate
list is empty (lines 5–9). After that, on the premise that protected sensitive relationships
are not leaked, the AddCandidate algorithm will continue to be executed. Then, the list of
candidate dummy check-in addition operations P is obtained through the AddCandidate
algorithm (line 10). The addition with the largest Score value is executed repeatedly until
S0 is empty, which means all sensitive relationships are protected (lines 11–15). Finally, the
algorithm returns the safety-deduction graph PG (line 16).

Algorithm 1: Location-visiting-characteristics-based privacy-protection algorithm
Input : Graph G,Sensitive-relationship set S, Similarity threshold α
Output : Inference secure graph PG

1 CDel = ∅, CAdd = ∅;
2 E(G) = E(G)\S ;
3 S0 = DSD(G, S, α) ;
4 Q = DeleteCandidate(S0, CDel) ;
5 while S0 6= ∅ and Q 6= ∅ do
6 Select opdel from Q,which its Score(op) is max;
7 Operate opdel to Delete;
8 Update S0 and CDel and Q;
9 end

10 P = AddCandidate(S0, CDel) ;
11 while S0 6= ∅ and P 6= ∅ do
12 Select opadd from P,which its Score(op) is max;
13 Operate opadd to Add;
14 Update S0 and CAdd and P;
15 end
16 return PG

4.2. The Algorithm DSD

As shown in Algorithm 2, algorithm DSD takes social network graph G, sensitive-
relationship set S and user similarity threshold α as input and outputs a sensitive-relationship
set S0 to be protected.

Algorithm 2: Determine Sensitive Data algorithm
Input : Graph G,Sensitive-relationship set S,Similarity threshold α
Output : Sensitive-relationship set S0

1 S0 = ∅ ;
2 for each (u, v) in S do
3 for each li in L do
4 Calculate LF− IUFu,li and LF− IUFv,li ;
5 end
6 if Sim(u,v) >α then
7 Insert (u, v) into S0 ;
8 end
9 end

10 return S0
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Firstly, the sensitive-relationship set S is judged in the algorithm, and the users’ visiting
characteristics vectors corresponding to the user in each pair of relationships and their
similarity are calculated (lines 2–5). If the similarity of the sensitive relationship is higher
than the threshold α, the sensitive relationship will be added to set S0 (lines 6–9). Finally,
algorithm DSD returns a set of sensitive relationships S0 (line 10).

4.3. Check-In Operation Metrics

In this section, heuristic rlue and metrics of check-in operation will be introduced.
Op =< u, L > is used to represent a check-in operation (suppression or addition). To
measure the joint influence of check-in operation and the user visiting patterns on the
similarity of sensitive relational users and to maximize the effect of the check-in operation,
this paper designs heuristic rule, as shown in Equation (9), to measure the impact of a
check-in operation. Semantically, it indicates ratio of deductive contribution to information
loss. The higher the score is, the better the effect is.

Score(op) =
Ic(op)

Cost(op)
(9)

The upper part represents the change in the similarity of the sensitive relationships
after the check-in operation compared with before, which can be measured by the difference
before and after an operation. The definition of deductive contribution IC(OP) is shown in
Equation (10). The lower part represents the information loss of the user’s visiting pattern.
The larger the value of IC(op) is, the larger the similarity changes. The smaller the loss of
information due to the check-in operation is, the better data utility is. The information loss
is shown in:

Ic(op) = Cos(
−→
u′ ,
−→
v′ )− Cos(−→u ,−→v ) (10)

Equation (11) represents the change in the user with a sensitive relationship and the
original visiting pattern after the check-in operation. This can be obtained by calculating the
Euclidean distance between the original and existing visiting patterns of the two users.

Cost(op) =

√√√√ |L|

∑
i=1

(
|C′u,li|

C′u
−
|Cu,li|

Cu
)2 +

√√√√ |L|

∑
i=1

(
|C′v,li|

C′v
−
|Cv,li|

Cv
)2 (11)

Take the example in Figure 1, if the check-in of suppression u1 at location l1 is C1,
Sim(u1, v1) = 0.404, then Ic = 0.087, Cost = 0.985 and Score = 0.0883.

4.4. The Algorithm DeleteCandidate

The DeleteCandidate algorithm takes social network graph G and sensitive relation
set S as input and outputs a suppression operation list Q in descending order of Score. It
comprehensively measures the influence of the check-in-suppression operation on deduc-
tive contribution and information loss through the heuristic rules. Since removing check-in
will change part of the trajectory shape and increase the probability of leakage, in order
to keep the trajectory in its original shape as much as possible and to reduce the risk of
privacy leakage, this part will not remove the check-in with the greatest influence at the
beginning and end of the trajectory.

As shown in Algorithm 3, it performs a heuristic search on the common check-in
locations of sensitive relationships to ascertain whether check-ins at each location can be
removed. If only one user’s check-in at the given position can be suppressed in a sensitive
relationship, the check-in-suppression operation op of this user at this position is generated
and the Score value is calculated (lines 2–10). If all the users in the sensitive relationship
can be suppressed at this location, the check-in-suppression operations opu and opv are
generated. Then, their Score values are calculated, and the check-in operation with a larger
Score value is regarded as op (line 12–15). Next, it inserts op and the corresponding Score
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into list Q (line 16). Finally, the algorithm returns a candidate list of suppressed operations
Q (line 19).

Algorithm 3: DeleteCandidate algorithm
Input : Graph G,Sensitive-relationship set S0
Output : Check-in to remove candidate list Q

1 Q = ∅ ;
2 for each (u,v) in S0 do
3 for each co-check-in location li of u and v do
4 if ∃cku in Cu at li is not the first or the last check-in in its origin trajectory and

∀ckv is, then
5 Generate op = (u,li) ;
6 Calculate < Score, op >;
7 end
8 if ∃ckv in Cv at li is not the first or the last check-in in its origin trajectory and

∀cku is, then
9 Generate op = (v,li) ;

10 Calculate < Score, op >;
11 end
12 if ∃ckv and ckv at li are both not the first or the last check-in in its origin

trajectory then
13 Generate opu = (u, li) and opv = (v, li) ;
14 Calculate < Score, op > = max( Score( opu ), Score( opv ));
15 end
16 Insert <op, Score> into Q;
17 end
18 end
19 return Q ;

4.5. The Algorithm AddCandidate

In this section, the check-in-addition algorithm is proposed to an addition operation
list P in descending order of Score. The check-in addition process is constrained by two
additional conditions: spatiotemporal accessibility and user visiting pattern. The user-
visiting-pattern condition means that the dummy can only be added at locations the users
have visited.

Definition 7. Spatiotemporal accessibility: Between two locations, if the user is reachable in a
certain period of time with the maximum average moving speed Vmax, spatiotemporal accessibility
is satisfied, as shown in Equation (12):

dist(li, li−1)

(ti − ti−1)
6 Vmax,

dist(li+1, li)
(ti+1 − ti)

6 Vmax

(12)

li−1 and li+1 represent two locations before and after the location candidate in the trajectory.
dist(Li−1, li), dist(li, li+1) represents the Euclidean distance between the candidate location. Vmax
represents the average maximum moving speed of the user. If this set of inequalities is true, then
location li satisfies the spatiotemporal accessibility, and Equation (13) can be derived to represent
the range of check-in times ti at location li. ti represents the range of check-in times of the candidate
dummy check-in.

ti−1 +
dist(li, li−1)

Vmax
6 ti 6 ti+1 −

dist(li, li+1)

Vmax
(13)
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Figure 2 shows the structure of the candidate spatiotemporal index, which shows the
process of addition candidate generation. Figure 2a shows the distance matrix obtained
from pre-calculated data, and Figure 2b,c shows the index of distance and time of the
dummy check-in location.
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Figure 2. Distance matrix and location D-index and T-index: (a) the distance matrix between locations,
with the distance unit being km; (b) the index of distance between candidate location and others;
(c) the index of the optional adding time for each candidate dummy check-in location.

Definition 8. Candidate spatiotemporal index: Given a candidate location l, the distance index of
this location from other locations is defined as a list, represented by d.D. The stored elements in list
d.D are the distances between location l and other locations. All elements in d.D are arranged in
order of ascending distance. The elements in the time index t.D are the candidates of the dummy
check-in time. It stores the length of the trajectory and the user ID. All elements in t.D are arranged
in descending order according to the length of trajectory.

Algorithm 4 takes graph G, sensitive-relationship set S0, deleted check-in set Cdel and
added check-in set Cadd as input. It outputs a candidate list of check-in-addition operations
P. Through Algorithm 4, information loss can be effectively reduced, more sensitive
relationships can be protected and the corresponding similarity of sensitive relationships
can be reduced.

Firstly, Algorithm 4 obtains the distance index list t.D of each point within the range
of spatiotemporal accessibility via searching (lines 1–5). Then, it iterates through each
trajectory to judge whether the location can be a candidate. If two consecutive locations
are spatiotemporally accessible to location l, l can be a candidate for the dummy check-in.
Then, according to the equation for calculating waiting time, the candidate location and
trajectory length is added into t.D (line 6–7). For a trajectory, the information loss caused
by the addition operation is measured according to the length of the candidate addition
trajectory. The longer the trajectory, the smaller the information loss within a single check-in
operation. Therefore, the check-in for each location in t.D with the maximum trajectory
length will be the most suitable candidate. Then, operation op is generated and its Score
value is calculated (line 8–10). The algorithm inserts op and the corresponding Score into
list P (line 11). Finally, it returns P (line 12).
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Algorithm 4: AddCandidate algorithm
Input :Graph G,Sensitive-relationship set S0,Check-in deleted Set CDel ,Check-in

added Set CAdd,max moving distance dmax
Output : Add Check-in candidate list P

1 P = ∅ ;
2 t.D = ∅, l.D = ∅ ;
3 for each (u,v) in S0 do
4 for each location li in trajectory of u and v do
5 Perform a traversal search at location li until the distance is longer than

dmax, generate l.D.;
6 end
7 Calculate time of each dummy candidate in l.D, generate t.D.;
8 end
9 for candidate location l ∈ t.D do

10 Generate op = (u, l, t) ;
11 Calculate Score = Score(op) ;
12 Insert (op, Score) into P ;
13 end
14 return P ;

4.6. Complexity Analysis

Definition 9. Co-location Check-in set: Given two users u and v at the location l, where they both
checked-in. The joint check-in set of u and u at l is defined as the co-location check-in set Col . Co
represents the collection of Col at each co-check-in location.

Assuming the maximum set of co-check-in locations of user pairs is L, Tr represents
the maximum trajectory set of a user, and C represents the maximum check-in set of a user.
Co is defined as the maximum co-location check-in set.

In the complexity analysis, each sub-algorithm is analyzed first, and then the complex-
ity of scheme is analyzed.

In algorithm Dsd, the calculation of LF− IUF needs |S||L| times; the complexity of
this part is O(|S|||L). In the DeleteCandidate algorithm, in the worst case, complexity
of one suppression operation is O(|S||L|). It can remove |S||Co| check-in in most cases,
which means the suppression operation can be performed |S||Co| times. The complexity
of this part is O(|S|2|L||Co|). In the AddCandidate algorithm, the complexity of selecting a
candidate is O(|S||L|). One user can add |C| − |Tr| check-ins at most. The largest number of
check-ins that can be added in total is |S||C|, so the complexity of this part is O(|S|2|L||C|).
As a result, the overall complexity is O(|S|2|L||Co|+ |S|2|L||C|). In addition, |Co| < 2|C|,
so the overall complexity in the worst case is O(3|S|2|L||C|).

5. Experimental Evaluation
5.1. Experiment Settings

This section analyzes and evaluates the performance of the proposed sensitive-relationship
privacy-protection algorithm. To verify the effectiveness of the algorithm, two real datasets,
Brightkite and Gowalla, were used in the experiment, which were published by the Stanford
Network Analysis Platform (SNAP). The Brightkite dataset contains 58,228 users’ check-ins
from April 2008 to October 2010, with 4,490,000 check-ins and 214,078 friend relationships.
In the Gowalla dataset, 196,591 users checked in from February 2009 to October 2010, with
6.44 million check-ins and 950,327 friend relationships. Table 2 shows the relevant statistics for
the two datasets.
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Table 2. Specific metrics for Brightkite and Gowalla datasets.

Metrics Brightkite Gowalla

Users 58,228 196,591
Check-ins 4,491,143 6,442,892

Relationships 214,078 950,327
Max Moving Speed (km/min) 1.23 1.13

In this paper, two versions of the LVCPP algorithm are implemented: R-LVCPP and
H-LVCPP. In the process of protection, R-LVCPP and H-LVCPP select deleted objects
by randomization and heuristic rules, respectively. The comparison algorithm is the Li
algorithm [18], which adopts heuristic rules to protect sensitive relationships and reduces
information loss by deleting check-ins and edges. This paper implements and modifies the
Li algorithm and redefines the success rate of protection and information loss.

This paper tests the execution time, information loss and protection success rate of the
algorithms. In the test, the similarity threshold ranges from 0.1 to 0.5. Different numbers
of sensitive relationships were randomly selected in the experiment for protection, and
the number of protected sensitive edges k was 50, 100, 150, 200 and 250. The software and
hardware environment of this experiment is as follows:

(1) Computer hardware configuration: Intel Core I5 2.5 ghz, 8 GB DRAM;
(2) Operating system: Windows 10;
(3) Programming environment: Python language, PyCharm development platform.

5.2. The Performance Evaluation

The running time evaluation. We first evaluate changes in the algorithm’s running
time with the similarity threshold α and the number of sensitive edges k. The experimental
results are shown in Figures 3 and 4.

(a) (b)

Figure 3. Running time evaluation under different α: (a) Brightkite; (b) Gowalla.

Figure 3 shows the variation in running time of the three algorithms under different
α, where k = 50. We find that the running time gradually decreases with the decrease in
α. When threshold α increases, the number of sensitive edges that should be protected
decreases, plus the relationship can be protected with reduced check-in operations, so the
runtime decreases. Li has the lowest runtime because the similarity change caused by the
check-in operation is greater. As the similarity calculation method is different, Li can delete
less check-ins to bring the similarity under the threshold. H-LVCPP runtime is less than
that of R-LVCPP because more check-ins need to be deleted when the threshold is small in
the random selecting rule. The more check-ins that need to be deleted, the more efficient
H-LVCPP will be because the heuristic strategy adopted by H-LVCPP can accurately select
operation candidates with the most contributions.
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Figure 4 shows the running time of these three algorithms under different k. The
parameter α is set to 0.5. We find that, with the increase in k, the number of sensitive edges
that should be protected increases. We also find that the running time cost of H-LVCPP is
higher than the Li and R-LVCPP algorithms. The Li algorithm has the best performance
with the lowest time cost, and the runtimes of R/H-LVCPP are higher than that of Li.
The reason is the similarity change caused by the check-in operation is greater in Li, and
the complexity of Li is much lower than LVCPP. When k < 50, the runtime of H-LVCPP
is lower than R-LVCPP because the heuristic strategy adopted by H-LVCPP considers
the global impact of each operation, which will take time to more accurately select the
most-contributing candidate. The more sensitive edges need to protected, the more efficient
H-LVCPP will be. Thus, H-LVCPP is more efficient than R-LVCPP when the α is small.

(a) (b)

Figure 4. Runtime varies with parameter k: (a) Brightkite; (b) Gowalla.

The information loss evaluation. Next, we evaluate the information loss of algo-
rithms under different α and K. The information loss indicators adopted in this paper
include (1) the number of deleted check-ins and (2) the average visiting pattern loss. The
experimental results are shown in Figures 5–7.

The check-in loss evaluation. We evaluate the check-in loss under different α when
k = 150. As depicted in Figure 5, when α decreases, the number of sensitive relationships
that need protection decreases, which causes the number of deleted check-ins to gradually
decrease. Li has the best result, and H-LVCPP is better than R-LVCPP. The change in
similarity caused by the check-in operation is greater in Li, as it can delete less check-ins for
protection. R-LVCPP adopts a randomization method, so the contribution of deleted check-
ins is uncertain, which may cause it to delete more check-ins than is ideal. By adopting the
heuristic rule, H-LVCPP chooses the candidate with the most contributions and deletes
fewer check-ins than R-LVCPP.

(a) (b)

Figure 5. Check-in loss evaluation under different α: (a) Brightkite; (b) Gowalla.
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As shown in Figure 6, the total number of deleted check-ins increases with K, Li has
has the best performance, R-LVCPP is the worst and H-LVCPP is better than R-LVCPP and
not far from Li. It is obvious that the number of lost check-ins with the H-LVCPP and Li
algorithms using heuristic algorithms is much lower than that of R-LVCPP. The results in
Figures 5 and 6 have some similarities, and the number of sensitive relationships that need
protection increases, which increases the number of check-ins that need to be deleted. The
efficiency of H-LVCPP is better than that of R-LVCPP but slightly lower than Li.

(a) (b)

Figure 6. Check-in loss evaluation under different k: (a) Brightkite; (b) Gowalla.

Pattern loss evaluation. The pattern loss of the user visiting mode is shown in Figure 7.
R-LVCPP with randomization method causes the largest pattern loss, while in H-LVCPP, it
is smaller. From the previous experimental results, we can see that the number of check-ins
deleted by Li is far less than LVCPP, so Li causes the lowest pattern loss. The heuristic rules
adopted by H-LVCPP will select candidates with small pattern loss, so the result is more
acceptable than that with R-LVCPP.

(a) (b)

Figure 7. Pattern loss evaluation under different α: (a) Brightkite; (b) Gowalla.

The protection success rate evaluation. In this section, we define the success rate R
in Equation (14), where S is the sensitive-relationship dataset and Sd is a subset after the
protection of S, which contains protection-failure relationships under the location-visiting-
characteristics’ protection model.

R =
|S| − |Sd|
|S| (14)

The experimental results are shown in Figures 8 and 9.
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(a) (b)

Figure 8. Protection success rate evaluation under different α: (a) Brightkite; (b) Gowalla.

The protection success rate varies with α, as shown in Figure 8 when k = 150. The
success rate changes little, R-LVCPP has the highest protection success rate, H-LVCPP is
slightly lower and Li is the worst. The reason is that both H-LVCPP and R-LVCPP adopt
the location-visiting-characteristics’ protection model, while Li does not. The conditions
of R/H-LVCPP for the protection completed are more stringent than Li, so they delete
more check-ins and the protection effect is better. Meanwhile, in order to retain the
original trajectory shape, H-LVCPP has more constraints, which will reduce the number
of candidates, so the success rate is slightly lower. With the increase in α, there are fewer
check-ins deleted by Li, and the remaining check-ins cause the decrease in the protection
success rate.

(a) (b)

Figure 9. Protection success rate evaluation under different k: (a) Brightkite; (b) Gowalla.

The protection success rate varies with k, as shown in Figure 9 when α = 0.5. With
decreasing k, the protection success rate of these three algorithms has little change. The
result and reason for this is similar to Figure 8, in that Li is the worst, and due to the
reason that H-LVCPP is subject to more constraints, the success rate of its protection is
slightly lower than the best effect of R-LVCPP. Meanwhile, parameter k has little effect
on the success rate, so the result line is more smooth. It is obvious that the Li algorithm,
which does not consider the degree of location privacy, has a smaller running time and
information loss in protecting sensitive relationships. However, compared with the other
two algorithms, its success rate is the lowest, resulting in a greater risk of privacy leakage.
In the tested algorithms, the comprehensive performance of H-LVCPP is the best.

In the following parts, the comparison of the proposed method with state-of-the-art
methods will be fully discussed in several aspects. The result is shown in Table 3, and the
conclusions of the comparison are shown in Table 4.

In Tables 3 and 4, we compare and conclude the performance of the proposed method
LVCPP with four other state-of-the-art schemes, including Li [8], EBM [9], Liu [10] and
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Chen [12]. These schemes represent different ideas of current state-of-the-art protection
methods. EBM represents schemes focused on detecting sensitive relationships, Liu rep-
resents Graph-structure-based protection methods, Chen represents the Leakage alert
method and Li represents other spatiotemporal-feature-based methods that protect privacy
by check-in operation. We have implemented these four algorithms and made correspond-
ing modifications for comparison. In this part, parameter k is 150 and parameter α is 0.5. In
the following tables, “-” means the effect is uncertain, “×” means there is no corresponding
ability, “X” means corresponding effect is well, and “XX” means the effect is outstanding.

Table 3. Comparison of the proposed method with state-of-the-art methods.

Pattern Loss Protection Success Rate Time

EBM - - 19.61 s
Liu 1 0.12 14.34 s
Li 0.21 0.39 34.87 s

Chen - - 18.33 s
LVCPP 0.33 0.88 214.21 s

Table 4. Conclusion of Comparison.

Representative
Scheme

Specific
Protection

Method

High Privacy
Security

Low Information
Loss

High Time
Efficiency

Sensitive relation
Deduce model EBM × × X X

Graph-structure-
based protection

method
Liu X × × X

Leakage alert
method Chen × - X X

Other
spatiotemporal-
feature-based

method

Li X × XX X

Proposed method LVCPP X XX X ×

As shown in Table 3, in the information loss aspect, the pattern information loss of
EBM and Chen are uncertain because no specific protection method is proposed. Liu does
not consider the spatiotemporal features of sensitive relationships, and the node operation
will delete all user check-ins, so its pattern loss is the worst. Li and LVCPP adopt heuristic
rules, which will obviously reduce the number of check-ins deleted; thus, their pattern losses
are small. In the success rate aspect, Liu has lowest rate because it only deletes the nodes
and relationships in a common neighbor model, which will lead to few relationships being
protected. Although its heuristic rules delete many check-ins, it does not fully consider spatio-
temporal characteristics, so its success rate is not high. In the protection model of Li, the
similarity of many leaked privacy relationships in the LVCPP model is below the threshold,
so there are few protected sensitive relationships. LVCPP has the highest score because it
considers the location-visiting characteristics; thus, many sensitive relationships that cannot
be deduced by other protection models are protected under this model. In terms of running
time, LVCPP is the worst because it sacrifices high complexity for a high success rate and
low information loss. Chen and EBM both have a low running time because they focus on
relationship deduction and alert without specific protection operations. The Liu method
has the second best result because it only protects privacy under the graph structure. The
result of Li is slightly higher because it adopts a heuristic algorithm.

In conclusion, as shown in Table 4, many state-of-the-art methods are focused on
deducing the leakage of sensitive-relationship privacy and creating an alert in such a case.
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Some schemes propose specific methods, but few schemes are based on spatiotemporal
operation. As shown in the results, though the state-of-the-art schemes based on spatiotem-
poral features perform well in terms of efficiency and information loss, they have a high
risk of privacy leakage. Our proposed method, LVCPP, has the best performance because
of its high privacy security and its loss of information being within the acceptable range,
though it takes much more time to run.

6. Conclusions

This paper proposes a sensitive-relationship-protection algorithm to prevent sensitive-
relationship leakage. According to heuristic rules, the algorithm deletes check-ins and adds
fake check-ins to protect sensitive relationships. The results based on real social network
data show that the proposed algorithm (LVCPP) can effectively protect the privacy of
sensitive relationships.

In the future, we plan to reinforce our approach with a dynamic social network that
is caused by changes during communication. In another aspect, forms of data in IoT
applications are gradually increasing, and we will conduct further research to improve the
similarity measure.
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Appendix A

In this section, we will use the example in Figure 1 to explain the proposed algorithm.
Assuming the number of users set in the example is 100, the threshold is 0.40 and the
sensitivity relationship is 〈u1, u2〉, the situation of 〈u1, u2〉 before protection is shown in
Table A1:

Table A1. Protection Example.

User Check-In Vector LF-IUF Vector Visiting Pattern Vector

u1
−→u1 = [3, 0, 0, 0, 5, 0, 0, 3]

[1.066, 0.0, 0.0, 0.0, 1.778,
0.0, 0.0, 0.877]

[0.272, 0.0, 0.0, 0.0, 0.45,
0.0, 0.0, 0.272]

u2
−→u2 = [3, 2, 0, 0, 0, 2, 0, 2]

[1.304, 0.71, 0.0, 0.0, 0.0,
0.779, 0.0, 0.715]

[0.333, 0.222, 0.0, 0.0, 0.0,
0.222, 0.0, 0.222]

In addition,
−→
Ul = [2, 4, 3, 3, 2, 3, 2, 4], and Ul represent the number of users who have

check-in at location l.
Determine Sensitive Data algorithm: Firstly, 〈u1, u2〉 is deleted in G, and the DSD

algorithm judges whether the relationship needs protection. According to Equation (13),
user similarity of 〈u1, u2〉 is 0.49 > 0.40. Then, 〈u1, u2〉 is added S0.

DeleteCandidate algorithm: Then, the DeleteCandidate algorithm searches for qual-
ified candidates, generates the suppression operation op and calculates the Score value.
Assuming each location is qualified for candidate, the scores of candidates are shown in
Table A2:

http://snap.stanford.edu/data/loc-Gowalla.html
http://snap.stanford.edu/data/loc-Brightkite.html
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Table A2. Score in DeleteCandidate.

User Score Vector

u1 [0.088,0,0,0,−0.066,0,0,0.0310]
u1 [0.044,−0.031,0,0,0,−0.037,0.050]

The algorithm chooses the candidate with the highest score, which is the check-in of
u1 at l1. It operates opmax to delete the check-in and updates S0, CDel and Q. After that, the
similarity of 〈u1, u2〉 is 0.4045.

AddCandidate algorithm: After, the AddCandidate algorithm searches for qualified
candidates that satisfy spatiotemporal accessibility, generates check-in-addition operation
op and calculates Score value. Assuming each location is qualified for a candidate (except
u1 at l1), the Score vector of candidates is shown in Table A3:

Table A3. Score in AddCandidate.

User Score Vector

u1 [x,−0.050,0.004,0.004,0.051,−0.059,0.005,−0.026]
u1 [−0.005,0.034,0.008,0.008,−0.184,0.039,0.011,−0.040]

Next, the algorithm adds a dummy check-in of u1 at l5 and updates S0, CDel and List
P. Then, the similarity is 0.352 below the threshold α. 〈u1, u2〉 is removed, and S0 is ∅.

Finally, the LVCPP algorithm ends and returns the inference secure graph PG.
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