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Abstract: Intersections have attracted wide attention owing to their complexity and high rate of traffic
accidents. In the process of developing L3-and-above autonomous-driving techniques, it is necessary
to solve problems in autonomous driving decisions and control at intersections. In this article, a
decision-and-control method based on reinforcement learning and speed prediction is proposed
to manage the conjunction of straight and turning vehicles at two-way single-lane unsignalized
intersections. The key position of collision avoidance in the process of confluence is determined by
establishing a road-geometry model, and on this basis, the expected speed of the straight vehicle that
ensures passing safety is calculated. Then, a reinforcement-learning algorithm is employed to solve
the decision-control problem of the straight vehicle, and the expected speed is optimized to direct
the agent to learn and converge to the planned decision. Simulations were conducted to verify the
performance of the proposed method, and the results show that the proposed method can generate
proper decisions for the straight vehicle to pass the intersection while guaranteeing preferable safety
and traffic efficiency.

Keywords: autonomous vehicle; intersection; decision and control; reinforcement learning; autoregressive
integrated moving average model

1. Introduction

With the rapid development of automatic-driving technology, many functions of
low-level advanced driver-assistance systems have been implemented in an increasing
number of vehicles. However, for high-level automatic-driving systems, it is imperative
to develop safer and more intelligent decisions and control for automated vehicles under
increasingly complex traffic scenes. As a typical traffic scene with a high incidence of
accidents, unsignalized intersections have been investigated by many researchers for
decision making and control to promote driving safety and efficiency [1,2].

As a classical method, behavior prediction for surrounding vehicles in traffic envi-
ronment has proved to be an efficient way of dealing with decision-making problems.
Zyner et al. [3] leveraged the long short-term memory (LSTM) recurrent neural network
(RNN) to predict the intention of the driver when a vehicle enters an intersection, con-
tributing to the decision making of an autonomous vehicle. A decision-making framework
is proposed by Samyeul in [4] for autonomous vehicles to predict the future trajectory of
observed vehicles and to delineate the potentially dangerous collision area to help navigate
the intersection safely and efficiently. In [5], a motion-planning method for autonomous
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vehicles is introduced via rapidly exploring the random-tree algorithm. To solve motion-
planning problems in environments with dynamic obstacles, the algorithm combines the
RRT algorithm and the configuration-time space to improve the quality of the planned tra-
jectory. Ramyar et al. [6] present a data-driven technology using the Takagi–Sugeno fuzzy
model to simulate and predict driver behavior at intersections, thereby further improving
prediction accuracy.

Model predictive control (MPC) as a commonly used control method has been widely
exploited in decision control of autonomous driving at intersections. In [7], a bilevel MPC
algorithm is established for the coordination of autonomous vehicles at intersections, and
a distributed sequential quadratic-programming (QP) method is leveraged to solve the
intersection-level optimization problem. Zhao et al. [8] developed a collaborative-driving
algorithm for connected and automated vehicles at unsignalized intersections based on
MPC, and a decentralized controller was advanced to control each vehicle to pass through
the intersection smoothly. A probabilistic model was devised to predict the trajectory of
the target vehicle [9], and afterwards was integrated within a collision-avoidance model.
Katriniok et al. proposed a distributed MPC approach that enables multiple vehicles to
pass through an intersection simultaneously with a safe and efficient manner [10]. A
study was conducted concerning the decision-making control in intersections with multiple
surrounding vehicles [11], wherein a robust MPC is responsible for searching security
breakthrough in the studied scene, and meanwhile, planning the optimal trajectory.

In recent years, partial observable Markov decision processes (POMDP) have been pro-
gressively employed for autonomous-driving decisions at intersections. Bouton et al. [12]
defined the traffic problem at unsignalized intersections as a POMDP, and the Monte Carlo
sampling method was adopted to solve the problem. Shu et al. [13] proposed a method
for decision-making control for left-turning intelligent vehicles based on the key turning
points at intersections, and a partially observable Markov model was employed to solve the
optimal speed sequence in the left-turn process. Kye et al. [14] introduced an intent-aware
autonomous-driving decision-making method at unsignalized intersections, where the
intents of traffic participants were modeled as dynamic Bayesian networks, and the intent-
aware decision-making problem was modeled as a POMDP based on the inference results.
Hubmann et al. [15] considered the occlusion generated by static objects and dynamic
objects at the same time, and a general autonomous-driving strategy based on POMDP
was advanced under urban conditions. In [16], a POMDP framework was proposed for
online autonomous driving in different situations.

Machine-learning algorithms, such as reinforcement learning (RL), are also widely
exploited in the field of decision control. Deep RL (DRL) combines the perception ability
of deep learning and the decision-making capability of RL, performing well in solving
continuous motion-control problems [17,18]. Islee et al. [19] investigated the effectiveness
of DRL in dealing with intersection decision-control problems. Through comparison study,
a deep Q network enables the learning of strategies better than common heuristic methods
for different indicators, such as traffic time and traffic rate; however, the generalization
ability is limited. Shi et al. proposed a coordinated control method with proximal policy
optimization in a vehicle-road-cloud integration system, and a policy of the connected
vehicles was learned by RL to across the intersection safely [20]. Chen et al. [21] proposed an
autonomous intersection-management system based on DRL, and a braking safety-control
model was applied to ensure the safety of each autonomous vehicle at the intersection.
Zhou et al. [22] established a vehicle-following model for intelligent vehicles based on RL
to improve driving behavior at intersections. By specifying an effective reward function,
the model can be learned and works well under different conditions to improve fuel
consumption, safety, and driving efficiency.

In view of the research status of autonomous-driving decision making and control at
integrated intersections, planning methods based on state-prediction results of environ-
mental vehicles usually quantify the degree of risk of intersection collisions, and rule-based
strategies are proposed to make decisions for intelligent vehicles. However, rule-based
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strategies exhibit poor generality, and the formulation of rules depends on the practical
experience, greatly affecting the effectiveness of the algorithm. Problems in the decision
and control of intelligent vehicles at intersections are complex and involve multifactor
coupling [23]. Crossing an intersection is a complex driving behavior [24]; thus, it is nec-
essary to simplify the intersection-scene model to a certain extent to make decision rules
depending on the quantified degree of risk, leading to certain differences between the sim-
plified scene and the actual scene [25]. Generally, a POMDP model requires a large amount
of computation. Although Monte Carlo sampling can mitigate this concern, the required
discretization of the motion space will also lead to deteriorated accuracy to some extent [13].
The method based on model prediction strongly relies on the accuracy of the established
model; thus, many factors should be considered comprehensively in the modeling process
to achieve a satisfactory control effect [8]. In contrast to the above methods, a specific
control model is not required in RL due to its model-free characteristic. Decision making
for straight intelligent vehicles at intersections is a continuous action-control problem, and
thus it is well-believed that the decision-making control problem of intelligent vehicles at
intersections can be solved by an RL method.

Motivated by these conditions, in this study, a decision-and-control model based on
RL is designed. The main contributions of this study are as follows. (1) A method is
proposed to judge the priority of crossing the intersection based on a speed prediction
by an autoregressive integrated moving average (ARIMA), and to calculate the expected
speed of an autonomous vehicle. (2) A decision-and-control model is constructed based on
speed prediction and RL. The model incorporates the expected speed guided by the RL
model to converge in the optimal direction, thereby saving the learning time of the agent.
(3) A multiobjective decision-making control-effect-evaluation system is established with
the consideration of success rate, speed punishment, safety, traffic efficiency, and comfort.

The remainder of this article is structured as follows. In Section 2, the geometric model
of the road and the circular model of the vehicle body are established, and a mathematical
analysis of the intersection confluence trajectory data is presented. In Section 3, a decision-
and-control method based on speed prediction, RL, and evaluation methods is introduced
in detail. In Section 4, the simulation and effects validation are addressed. Section 5 draws
the main conclusions of this study.

2. Intersection Confluence Condition Modeling

To better analyze the decision-making process and explain the mathematical model of
the subsequent decision-making control, the road-geometry model of the research object
should be constructed first. When passing through the intersection, a vehicle generally
has three directions to go, as shown in Figure 1a, where a-f represents the possible driving
direction of the vehicle. As shown in Figure 1b, the relationship between two vehicles can
basically be divided into three types: irrelevant (1–4), cross (5–7), and confluent (8,9). The
areas with probability of collision are marked with a yellow box in the figures. Under the
confluence condition, two vehicles will eventually drive into the same lane; therefore, the
potential collision area is longer than in other conditions. This scene not only includes the
decision-making and control problem in the process of two vehicles when passing through
the intersection, but also contains the continuous influence between two vehicles after
confluence. Therefore, this paper selects b and d for subsequent modeling and analysis.

Figure 2 illustrates the road-geometry model under the conditions of two-way single-lane
confluence. Straight and turning vehicles enter the intersection from different junctions and
eventually converge into the same lane. The center lines of the east–west and north–south
lanes at the intersection are labeled as LC1 and LC2, respectively; LS1 through LS4 represent
the stop line at the intersection; and (x′, y′) is the confluence point of the two vehicles.
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2.1. Circular Model of Vehicle Body

The trajectory shown in Figure 2 shows only the centroid movement process of the
straight and turning vehicles without considering the actual geometric size of the vehicle.
In a real driving scenario, the geometric size of the vehicle body cannot be ignored to avoid
the potential risk of collision in the process of two vehicles converging at the intersection.
Therefore, a circular model, which has been widely adopted in studies on vehicle collisions,
is used to represent the vehicle body profile hereinafter, as shown in Figure 3. By this
manner, the radius of the circular model can be calculated by

r =

√
W2 + L2

2
(1)

where W and L denote the width and length of the vehicle, respectively; and r denotes the
radius of the body circle.

Considering the circular model of the vehicle body, the actual motion trajectory of
straight and turning vehicles under the confluence condition at the intersection is shown in
Figure 4. The trajectory of the turning vehicle is assumed to be composed of two straight
lines and a 1/4 arc, in which TR and GS denote the turning section and straight section
of the turning vehicle, respectively; R denotes the radius of the arc; and L′ represents the
chord length of the arc. In the TR phase, the vehicle turns to the right and eventually
merges to the same lane as a straight vehicle. As the two vehicles become closer, the risk of
collision increases; therefore, this is the area that our research is focused on.
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The critical condition of collision judgment can be determined by (2), where (x0, y0)
denotes the coordinate of the straight vehicle and (x′0, y′0) represents the coordinates of the
turning vehicle. √(

x0 − x′0
)2

+
(
y0 − y′0

)2
= 2r (2)

According to (2), we can easily establish areas where collisions may occur during the
confluence of two vehicles, as shown in Figure 5. The CA area in red enclosed by the lines,
which is 2r from the centerline of the trajectories y2 and x1, is the only latent collision area
of the two vehicles before the confluence point (x′, y′), since the distance between the two
vehicles will not be less than 2r outside this area.
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According to the different positions and speeds of the two vehicles in the confluence
process, there are several feasible solutions to (2). Nonetheless, it is difficult to solve all the
vehicle positions where the body circles are tangential, while the important points in the
CA area can be analyzed. We selected the confluence point (x′, y′) and the turning point of
the turning vehicle (x1, y1) for analysis.

By finding the point on the track of the turning vehicle at a distance of 2r from the
merging point, it can be observed that when the straight and turning vehicles are located
around the merging point and end of the GS segment, the body circles of the two vehicles
touch in tangent, as shown in Figure 6. Another important body circle, C2, is obtained by
taking the symmetry position of the merging point (x′, y′) about the straight line x = x1.
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The analysis shows that there will be no collision between the two vehicles before the
straight vehicle reaches the position of the C2 body circle. When any of the two vehicles
reach the position of C3 in advance, the rear vehicle should pass through the intersection
in the vehicle-following mode after the prior one. Hence, the body circles C1, C2, and
C3 represent the key positions in the proposed road-geometry model approximately with
regard to collision avoidance at intersections. A detailed analysis of the three body circles
is presented in the following content.

2.2. Statistical Analysis of Intersection Confluence Trajectory Data

To mimic the actual working conditions in this study, the intersection-trajectory dataset
published by Open ITS [26] was imported to conduct the driving-behavior analysis at
intersections. Open ITS is a traffic-data resource-sharing platform built jointly by different
research institutes and enterprises. Open ITS provides trajectory data of intersections
involving a total of 60 confluence conditions. Figure 7 shows one example of the dataset,
which contains information about the position, speed, and acceleration change with time,
of straight and turning vehicles.

A speed that is too high or too low at an intersection is dangerous, and as such it is
necessary to determine the speed and acceleration threshold of vehicles driving through the
intersection. Grouped statistics are made according to the passing order of vehicles going
straight at intersections, and the statistical results are shown in Figures 8 and 9, where
Figure 8 shows the speed and acceleration distribution of straight and turning vehicles
in the case of a straight vehicle going before a turning vehicle, and Figure 9 sketches the
distribution when the straight vehicle gives way.
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Figure 8. Statistical histogram of track information when the straight vehicle goes ahead: (a) speed of
straight vehicle, (b) acceleration of straight vehicle, (c) speed of turning vehicle, and (d) acceleration
of turning vehicle.

The statistical results reveal that under the two working conditions the velocity and ac-
celeration are mainly distributed in a certain range. The vehicle speed is mainly distributed
in the range of 0 to 8 m/s, and the acceleration is mainly distributed in the range of −2 to
2 m/s2, thereby providing a reference basis for boundary-condition setting.
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3. Decision Making and Control Based on RL and ARIMA Prediction
3.1. Turning-Vehicle Speed Prediction

Owing to the limited space and high risk of collision at the intersection, the state
of vehicles in the surrounding environment should be predicted from the perspective of
safety. Hence, the ARIMA model is considered to predict the future speed of the turning
vehicle. Taking the confluence trajectory data from the first data group in the Open ITS
dataset as an example, the inductive method based on the self-correlation function and
partial self-correlation function is adopted to determine the order of the model [27]. The
self-correlation function and partial self-correlation function are shown in Figure 10. As can
be found, the second-order difference in the speed of the selected track data is a stationary
time series. The blue line in the figure represents the 95% confidence interval. In general,
the determination of the order of the ARIMA model is based on the last point outside the
confidence interval. Therefore, in this study, both parameters of the second-order-difference
ARIMA model of the turning vehicle can be set to 6.

With the established ARIMA speed-prediction model, the future speed of the turning
vehicle can be predicted, providing information for the vehicle to decide to go ahead or give
way to the turning vehicle at the intersection. The sampling step of speed in the data set is
0.04 s. In order to reduce the computing load of on-board processors and maintain accuracy
and predictability, we set the predicted time to 0.2 s to predict the speed after five sampling
steps. Figure 11 shows the result of speed prediction. The mean value of the actual vehicle
speed is 2.331 m/s, while the mean square speed errors of the rolling prediction model in
the next five steps are 0.0243, 0.0325, 0.0370, 0.0410, and 0.0411, respectively. Most of the
mean square errors of speed prediction are approximately within 1%, and the maximum is
less than 2%, demonstrating superior prediction performance.
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3.2. Decision and Control Based on RL

RL is commonly employed to solve problems with complex decisions and control.
In the decision process, the tuples (S, A, R, S′) represent the basic units of each training,
in which S denotes the current state, S′ denotes the new state that transfers from S taken
action A, and a reward R is received according to the actions and states. The proper
state space and action space should be carefully constructed in RL for decision making
by intelligent vehicles. The construction of the state space is mainly based on the position
and speed information of the two vehicles, as shown in (3) to (5). In this paper, the
subscript ego represents the ego vehicle, and the subscript env denotes the turning vehicle
in the environment.

observision =
(
Sego, Senv

)T (3)

Sego =
(
xego, yego, vego

)
(4)

Senv = (xenv, yenv, venv) (5)

where Sego and Senv denote the sequence of state of the straight vehicle and turning vehicle,
respectively, and (x, y, v) denote the abscissa, ordinate, and velocity of the vehicle, respec-
tively. As for the action space, a natural way is to set the action as the throttle percentage and
brake-pedal pressure, which can simplify the design of the tracking controller. However,
the simultaneous output of the above two actions leads to an unreasonable strategy, such
as pressing the throttle and braking simultaneously. Thus, the action space illustrated in (6)
to (8) is constructed to avoid the problem, in which Action_mix indicates the brake-pedal
pressure or throttle opening of the vehicle, and its value range [ Action_min, Action _max]
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is determined by simulation experiment according to the statistical results depicted in
Figures 8 and 9.

Action = Action_mix( Action_min ≤ Action_mix ≤ Action _max) (6)

Throttle =

{
Action_mix
0

Action_mix > 0
Action_mix ≤ 0

(7)

Breakpress =

{
0
Action_mix

Action_mix > 0
Action_mix ≤ 0

(8)

The arrival time required for straight and turning vehicles from the current position
to the three centers (x′, y′),(x2, y2), and (x1, y1) is shown in Figure 6 and can be calculated
according to (9) to (15). For straight vehicles, the minimum time to arrive at the key position
is calculated with the permitted maximum acceleration amax, which is 2 m/s2 in this study.
Here, vpre represents the prediction result of the ARIMA multistep speed-prediction model[

v1
pre, v2

pre, · · · , vl−1
pre , vl

pre

]
, and l denotes the predicted length in five steps. In addition, the

situation when the straight vehicle reaches the maximum speed vmax before arriving at
the key position is considered in (9) and (11), and vmax is set to 8 m/s according to the
conclusion of Section 2.2.

Tego_x′ =
vmax−vego

amax
+

S1−(v2
max−v2

ego)/2amax
vmax

v2
ego + 2amaxS1 > v2

max

Tego_x′ =

√
v2

ego+2amaxS1

amax
v2

ego + 2amaxS1 ≤ v2
max

(9)

S1 = x′ − xego (10)
Tego_x2 =

vmax−vego
amax

+
S2−(v2

max−v2
ego)/2amax

vmax
v2

ego + 2amaxS2 > v2
max

Tego_x2 =

√
v2

ego+2amaxS2

amax
v2

ego + 2amaxS2 ≤ v2
max

(11)

S2 = x2 − xego (12)

Tenv_y1 =
S3

vpre
(13)

S3 = y1 − yenv (14)

vpre =
∑ vpre

l
(15)

If two vehicles driven by humans arrive at an intersection at different times, we should
determine which vehicle should give way according to the “first-in, first-out” rule. If
two vehicles arrive at an intersection at the same time, the traffic regulations stipulate
that the straight vehicle has the right of way. However, due to the limitation of drivers,
it is sometimes difficult for them to accurately judge the order of two vehicles arriving
at the intersection; therefore, both vehicles will usually slow down and pass through
the intersection sequentially, greatly affecting the traffic efficiency of the unsignalized
intersection. Therefore, the following method is proposed to facilitate the safe and orderly
movement of traffic. For security reasons, a straight vehicle should speed up and pass
through the intersection if there is a certainty; otherwise, it should slow down appropriately
to give way.

In this paper, the priority of crossing the intersection that we made is presented as
follows: if the time for the straight vehicle arriving at (x′, y′) is less than that of the turning
vehicle when reaching (x1, y1), then the straight vehicle goes ahead. Otherwise, if the time
for the straight vehicle to arrive at point (x2, y2) is longer than that for the turning vehicle to
arrive at (x1, y1), then the straight vehicle gives way to the turning vehicle. Consequently,
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according to the required time calculated before, the decision-making model should be
established to output the decision of going ahead or giving way, and the RL agent can be
instructed to learn and converge to the planned traffic strategy by calculating the expected
acceleration. The expected speed of the intelligent vehicle can be computed using (16),
where ∆t denotes the step interval between two decisions. The expected acceleration is
calculated by (17), which considers the sequence of the two vehicles reaching the key
position. Here, vmin denotes the lower limit of the vehicle speed, and K1 denotes the
constant term of inverse proportion function—here set as 1—meaning that the acceleration
of the straight vehicle is inversely proportional to the arrival-time difference between the
two vehicles.

vre f = vego + are f ∆t (16)
are f = amin ×

vego−vmin
vego

Tenv_y1 < Tego_x2

are f = min
(

amax, K1
Tenv_y1−Tego_x′

)
Tenv_y1 > Tego_x′ K1 > 0

are f = amin ×
vego−vmin

vego
Tego_x2 < Tenv_y1 < Tego_x′

(17)

The mathematical model of the RL reward function determines the convergence
direction of the agent during learning. To ensure the efficiency and security of crossing
at the intersection, the reward function shown in (18) to (22) is constructed. This reward
function consists of aspects in collision, speed, and the position of whether to reach the
end point. In addition, it also includes the difference between the reference acceleration
calculated by (17) and actual acceleration of the vehicle, which will guide the agent to
converge to the direction of the decision-making model. Compared with other rewards,
the reward of R f is smaller, thereby accelerating the convergence speed of the agent in the
training process, while avoiding limiting the ability of the agent to explore.

RG =

{
5000 xego > xd ∩ xenv > xd

0 xego ≤ xd ∪ xenv ≤ xd
(18)

RC =

{
−5000 collsion = 1
0 collsion = 0

(19)

RS =

{
−5000 vego > vupper ∪ vego < vlower

0 vlower ≤ vego ≤ vupper
(20)

R f =


20

∣∣∣are f − aego

∣∣∣ < 0.4

−10
∣∣∣are f − aego

∣∣∣ > 1

0 0.4 <
∣∣∣are f − aego

∣∣∣ < 1

(21)

Rreward = RG + RC + RS + R f (22)

where RG denotes the reward for reaching the end point, RC denotes the penalty of collision,
RS represents the penalty for speeding or being too slow, and R f is the reward for actual
speed close to reference speed. xd denotes the abscissa of the end point, and vupper and
vlower denote the upper and lower limits of speed, respectively. A deep deterministic policy
gradient (DDPG) algorithm is employed as the training algorithm of RL. The structure of
DDPG is mainly composed of an actor network and a critic network. The actor network
is mainly responsible for outputting actions according to the current state, and the critic
network accounts for outputting the value of the state-action pair. The flowchart of the
decision-and-control model at the intersection based on RL and speed prediction by ARIMA
is shown in Figure 12.
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Figure 12. The flowchart of decision-and-control model at intersection based on RL and speed
prediction by ARIMA.

3.3. Model-Evaluation Method

To analyze the control effect of the quantitative model, five indexes, including success
rate, speed penalty, safety, traffic efficiency, and comfort are considered to evaluate the
performance. The success rate of the intersection is calculated by (23), in which 0 and
100 points are scored according to whether the vehicle finally passes the terminal. The
speed penalty is evaluated by (24), in which ∑ t1 denotes the sum of the duration when the
vehicle speed exceeds and goes below the desired speed range, and ∑ t2 denotes the total
time duration when the last vehicle passes the finish line. The minimum distance between
two vehicles is adopted as the index to evaluate the driving safety of intelligent vehicles.
According to the circular model of vehicle body established in Section 2, the risk of collision
increases with the approach of two body circles. Hence, a distance of 1.5 times the radius
of the body circle is reserved in this study, and is therefore defined as the optimal interval
between the two vehicles. A longer or shorter distance out of the optimum is considered
an unsatisfactory scenario. The maximum distance is defined as the distance between
the initial positions of two vehicles. The assessment of traffic safety at the intersection is
shown in (25), where D is the diameter of the body circle, Lmax is the distance between
the coordinates of the initial positions of two vehicles, and dmin represents the minimum
distance between two vehicles in the running process. In combination with the intersection
simulation scene model, Lmax can be calculated in a straightforward manner according to
(26), in which L is the width of the vehicle model adopted, and L1 represents the distance
from the initial position of straight vehicle to the longitudinal centerline of the intersection,
and L2 represents the distance from the initial position of turning vehicle to the horizontal
centerline of the intersection.

SG =

{
100 goal = 1
0 goal = 0

(23)

SL = 100×
(

1− ∑ t1

∑ t2

)
(24)

SS =


100×

(
1− 1.5D−dmin

0.5D

)
dmin ≤ 1.5D

100×
(

Lmax−dmin
Lmax−1.5D

)
dmin > 1.5D

(25)

Lmax =

√(
L1 +

1
2

L
)2

+

(
L2 −

1
2

L
)2

(26)

The traffic efficiency of vehicles at intersections is usually calculated based on the time
of crossing the intersection. This study evaluates the traffic efficiency of intelligent vehicles
based on Equation (27), where Tmax and Tmin represent the time duration from T = 0 to the



Electronics 2022, 11, 1203 13 of 22

terminal under the condition that the vehicles accelerate or decelerate to the limited speed
with the maximum permitted acceleration or deceleration, as expressed in (28) and (29),
where vini, vupper, and vlower denote the initial speed, upper speed limit, and lower speed
limit, respectively, and S denotes the distance from the initial position to the finish line.

ST = 100×
(

1− T − Tmin

Tmax − Tmin

)
(27)

Tmax =
vini − vlower

amin
+

(
S−

v2
ini − v2

lower
2amin

)/
vlower (28)

Tmin =
vupper − vlower

amax
+

(
S−

v2
upper − v2

ini

2amax

)/
vupper (29)

The vehicle-comfort evaluation is relatively complex. In this study, a test standard
in [28] is adopted to evaluate the degree of comfort for vehicles in the intersection. The
standard stipulates that the root mean square (RMS) value of weighted acceleration is
utilized to evaluate the impact of vibration on human comfort and health. The detailed
calculation can be described as follows. Given the acceleration sequence a(t) in the time
domain, the weighted-acceleration time series aw(t) is obtained through the filtering net-
work of the frequency-weighting function w( f ), as expressed in (31), and the RMS value of
the weighted acceleration can be calculated according to (30).

aw =

[
1
T

∫ T

0
a2

w(t)dt
]2

(30)

where T denotes the analysis time of vibration.
According to [28], the frequency-weighting functions w( f ) at different input points and

directions of vibration are different. In this study, only the vibration caused by longitudinal
acceleration is considered. Thus, the vibration on the seat back is selected as the input point
for comfort study. The standard stipulates that the final result of RMS value of the total
weighted acceleration should consider the weighting of all the directions in the axial system,
of which the calculation is shown in (32). Since the influence of lateral and vertical vibration
is ignored in this study, the RMS value of the total weighted acceleration is simplified to
(33), and kx = 0.8 is obtained by a look-up table. The relationship between the RMS value
of the total weighted acceleration and passenger comfort level specified in [28] is presented
in Table 1. Six levels of comfort scoring that evaluate the comfort level from “no discomfort”
to “extremely uncomfortable” are defined as 100, 80, 60, 40, 20, and 0 points. Accordingly,
the driving comfort of the vehicle is evaluated according to the level of passenger comfort
in Table 1.

wc( f ) =

{
1 (0.5 < f < 8)

8/ f (8 < f < 80)
(31)

avj =
(

k2
xawx

2 + k2
yawy

2 + k2
zawz

2
) 1

2 (32)

av = kxawx (33)

The overall comfort score is calculated by (34), in which SC(i) is the comfort score of
each time period, and SC(max) represents the full score. After the scores of each evaluation
index are calculated, the comprehensive score that evaluates the effect of decision making
for the straight vehicle can be calculated by (35), where ki denotes the weight coefficient
(0.2 in this study). The weight coefficient ki can be adjusted according to the needs of
different scenarios. For instance, if passengers pay more attention to comfort and safety
when crossing the intersection, but with no requirement for passing time, k5, k3 can be
increased and k4 can be reduced.
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SC =

10
∑

i=1
SC(i)

SC(max)
(34)

STotal = k1SG + k2SL + k3SS + k4ST + k5SC
5
∑

i=1
ki = 1 (35)

Table 1. Relationship between the RMS value of the total weighted acceleration and passenger
comfort level in [28].

RMS Value of Total Weighted Acceleration Passenger Comfort Level

<0.315 No discomfort
0.315~0.63 Little discomfort

0.5~1 Some discomfort
0.8~1.6 Uncomfortable
1.25~2.5 More uncomfortable

>2 Extremely uncomfortable

4. Validation and Discussion

In this study, sufficient traffic simulations are conducted to verify the effectiveness of
the proposed method. The RL agent is trained using the proposed method under different
driving conditions of intersections. Then, the simulation is performed to validate the
effectiveness of decision making at the same initial speed. Finally, the overall performance
of the proposed method is evaluated comprehensively with the indices mentioned in
Section 3.3.

4.1. Simulation Validation

To verify the effectiveness of the proposed method, a number of cosimulation tests are
carried out based on Prescan and Matlab/Simulink. In the simulation, Prescan is concerned
with the provision of the intersection-simulation scene, and the vehicle information is
exchanged between the Prescan and Simulink control models via a virtual CAN bus. A
schematic diagram of the cosimulation process is shown in Figure 13.
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Before the cosimulation, the scenario model of the road in the simulation should be
constructed in Prescan, as shown in Figure 14. The specific values of parameters for each
road segment are provided in Table 2.
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The trajectory of the turning vehicle in the cosimulation condition is constructed based
on the Open ITS dataset. The speed curve is shown in Figure 15, the related parameters in
RL are shown in Table 3, and the reward convergence curve during the training process is
shown in Figure 16.
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The decision-making agent for a straight vehicle is obtained after RL training. In this
study, verification experiments are conducted on the trained agents under two conditions
to evaluate the control performance. To compare the effectiveness under different working
conditions, the initial speeds of the agent in the experiments are kept the same. The speed
range of the intersection is set from 0 to 8 m/s, and the initial speed of the vehicle in the
verification experiment takes a middle value of 5 m/s within the allowable speed range.

The simulation results under condition I are shown in Figure 17a–f. The simulation
results show that the straight vehicle slows down and gives way to the turning vehicle if
the turning vehicle reaches the confluence point in advance. However, the straight vehicle
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still drives at a speed that is slightly higher than the lower speed limitation, rather than
braking to stop. After the turning vehicle passes the confluence point on the road, the
straight vehicle accelerates to follow the former vehicle as quickly as possible. In Figure 17a,
the turning vehicle stops at the terminal of the intersection as the end of the trajectory of
the turning vehicle is set at the terminal of the intersection. Figure 17b shows the distances
to the terminal of the two vehicles. After passing the destination, the turning vehicle drives
toward the end of the virtual scene, and this explains the trend of the speed curve that
decreases first and then accelerates to the end. Moreover, no unreasonable strategy that
leads to the conflict operation of the throttle and brake pedal can be found in Figure 17c,d,
and the last two figures show that the acceleration and distance between the two vehicles
are restricted under the limits of the entire process.

Table 3. Related parameters in RL.

Parameter Value

Time duration of simulation 16 s
Simulation step size 0.04 s

Maximum number of training episodes 500
Input-layer size 6

Output-layer size 1
Number of neurons 144

Learning rate 10−3
Discount factor 0.9

Gradient threshold 1
Experience-pool size 106

Batch size 64
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Figure 18 shows the simulation animation of the straight vehicle when it passes
through the intersection under working condition I. The yellow rectangular area of the
figure represents the straight vehicle that passes through the intersection; hence, the traffic
priority of the two vehicles can be exhibited in the simulation animation.

The simulation results under working condition II are shown in Figures 19a–f and 20.
In working condition II, the speed of the turning vehicle is obviously lower than that
of working condition I, and the straight vehicle on a straight road chooses to pass the
intersection first. The simulation results show that the speed and acceleration of the
intelligent vehicle in working condition II are also within the limitations.
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Figure 19. Simulation results of condition II: (a) vehicle speed, (b) distance to destination, (c) throt-
tle percentage, (d) brake-pedal pressure, (e) vehicle acceleration, and (f) distance between two ve-
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Figure 19. Simulation results of condition II: (a) vehicle speed, (b) distance to destination, (c) throttle
percentage, (d) brake-pedal pressure, (e) vehicle acceleration, and (f) distance between two vehicles.
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As can be observed from the above simulation results, compared with the method
proposed in [29] by sequential MDPs with standard or bipotential features, the proposed
method can better smooth the speed curve of vehicles when passing through the intersection
and promote the comfort performance. Since the lower limit of the speed is set, and the
expected speed is leveraged to guide the agent, the parking at the intersection is effectively
avoided, and the stop time at the intersection is also obviously reduced, compared with
results presented in [29], thereby improving the traffic efficiency of the intersection.

4.2. Effect Evaluation

The above analysis verifies that the proposed controller is superior in decision making
for the straight vehicle, and the trained agent can take the appropriate opportunity to pass
the intersection encountering different turning vehicles. Since the simulation durations of
working conditions I and II are inconsistent, the acceleration data from 0 to 10 s are selected
to calculate the RMS value of weighted acceleration for the convenience of comparison.
Owing to the fluctuations in the acceleration results, if the RMS of the weighted acceleration
is calculated for the entire length of driving data, the comprehensive comfort evaluation
concerning local acceleration fluctuation is intractable. Thus, the RMS of the weighted
acceleration is calculated separately with 10 intervals from 0 to 10 s. The calculation results
under the two working conditions are listed in Tables 4 and 5, respectively, and the results
are scored according to the scoring standard established in Section 3.3. The results show that
the passenger comfort of the straight vehicle is worse at the beginning since the necessary
acceleration or deceleration is inevitable to achieve the purpose of going ahead or giving
way. After this stage, passenger comfort improves in the later confluence process.

Table 4. Calculation results of RMS of weighted acceleration when straight vehicle gives way.

Period of Acceleration (s) RMS of Weighted Acceleration Passenger Comfort Score

0–1 0.8890 Some discomfort 60
1–2 0.8131 Some discomfort 60
2–3 0.1932 No discomfort 100
3–4 0.0642 No discomfort 100
4–5 0.0540 No discomfort 100
5–6 0.0641 No discomfort 100
6–7 0.1522 No discomfort 100
7–8 0.0822 No discomfort 100
8–9 0.0194 No discomfort 100
9–10 0.2068 No discomfort 100

Table 5. Calculation results of RMS of weighted acceleration when straight vehicle goes ahead.

Period of Acceleration (s) RMS of Weighted Acceleration Passenger Comfort Score

0–1 0.5836 Little discomfort 80
1–2 0.6878 Some discomfort 60
2–3 0.8845 Some discomfort 60
3–4 0.5815 Little discomfort 80
4–5 0.4682 Little discomfort 80
5–6 0.3745 Little discomfort 80
6–7 0.2100 No discomfort 100
7–8 0.0510 No discomfort 100
8–9 0.6160 Little discomfort 80
9–10 0.2760 No discomfort 100

Table 6 shows the comprehensive and individual scores of the indices of the proposed
controller under the two conditions. For the success rate and speed penalty, in both
conditions, the straight vehicle can successfully reach the ending point within the speed
limit, and thus the scores of both items are 100 out of 100. For security, under working
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condition I, the minimum distance between two vehicles is always longer than the optimal
interval, and they are relatively close. While the minimum distance between two vehicles
under condition II is less than the optimal interval, thus the safety score under condition
II is lower than that for condition I. In terms of traffic efficiency, the acceleration behavior
of the straight vehicle under condition II according to the speed prediction of the steering
vehicle makes the straight vehicle pass through the intersection ahead of the turning vehicle,
which reduces the passage time, and as such it obtains a higher score in traffic efficiency, but
at the expense of comfort. Based on the results above, the simulation results under the two
working conditions can achieve preferable results in the comprehensive score. The results
show that the proposed decision-control strategy can guide the vehicle to pass through an
intersection safely and efficiently under different driving conditions.

Table 6. Comparison of results for decision-control model under two driving conditions.

Working Condition I Working Condition II

Success rate 100 100
Speed penalty 100 100

Security 80.35 70.04
Traffic efficiency 65.65 95.80

Passenger comfort 92 82
Comprehensive score 87.60 89.57

5. Conclusions

To solve the decision-making and control problem at intersections for straight and
turning vehicles, a decision-and-control method based on RL and vehicle-speed prediction
is proposed. The road-geometry model of the intersection is built, and the distribution
of speed and acceleration and the main factors that influence the decision process are
analyzed based on an open-source confluence-trajectory dataset for intersections. Based
on the ARIMA method, the speed prediction of the turning vehicle in the future time
domain is conducted, and a decision-making method for intersections based on RL and
ARIMA is proposed. Cosimulations are performed for the established intersection scene
to validate the effectiveness of the proposed algorithm. The simulation results reveal that
the trained RL agent can make appropriate decisions to pass the intersection safely and
efficiently under two working conditions. Finally, the performance of the proposed method
is evaluated based on the proposed evaluation standard from five indices. The results
manifest that under different working conditions, the proposed method exhibits superior
performance among all indices and comprehensive scores.

However, it is assumed that the sensing of the surroundings is precise and the traffic
information can be received by the vehicle. The influence of errors caused by the per-
ceptual layer should be addressed in the next research step. In addition, considering
the multivehicle as agents, the interaction and game between vehicles also need to be
further investigated.
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