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Abstract: In this work, aiming at the problem of cooperative task assignment for multiple unmanned
aerial vehicles (UAVs) in actual combat, battlefield tasks are divided into reconnaissance tasks, strike
tasks and evaluation tasks, and a cooperative task-assignment model for multiple UAVs is built.
Meanwhile, heterogeneous UAV-load constraints and mission-cost constraints are introduced, the
UAVs and their constraints are analyzed and the mathematical model is established. The explo-
ration performance and convergence performance of the harmony search algorithm are analyzed
theoretically, and the more general formulas of exploration performance and convergence perfor-
mance are proved. Based on theoretical analysis, an algorithm called opposition-based learning
parameter-adjusting harmony search is proposed. Using the algorithm to test the functions of dif-
ferent properties, the value range of key control parameters of the algorithm is given. Finally, four
algorithms are used to simulate and solve the assignment problem, which verifies the effectiveness of
the task-assignment model and the excellence of the designed algorithm. Simulation results show that
while ensuring proper assignment, the proposed algorithm is very effective for the multi-objective
optimization of heterogeneous UAV-cooperation mission planning with multiple constraints.

Keywords: cooperative task assignment; multiple UAVs; multi-objective optimization; harmony
search algorithm; opposite-based learning; parameter adjustment

1. Introduction

It is very common to use multiple unmanned aerial vehicles to perform various
tasks [1,2], especially military tasks [3]. UAVs cooperatively patrolling perimeters, moni-
toring areas of interest or escorting convoys have been key research topics [4–6]. Power
inspection, air rescue, large parties and so on are the most common application examples
of Multi-UAV cooperation [7–9]. Therefore, it is an important research aspect to seek an
efficient task-assignment mechanism to solve the task assignment problem of multiple
UAVs [10]. In this context, the problem of multi-UAV cooperative task allocation arises at
the historic moment.

Collaborative task assignment of multiple UAVs is to assign one or more tasks to
UAVs under various constraints in the battlefield environment and determine the sequence
of tasks to be executed by UAVs. Task assignment is an important part of collaborative task
planning of multiple UAVs, and is also the prerequisite for realizing collaborative operation
of UAV groups [11]. In the allocation process, factors such as the type of tasks, timing
constraints among tasks, types of tasks that can be performed by UAVs, combat capabilities
and payloads should be fully considered, and combat tasks should be reasonably assigned
to the UAV fleet with the goal of achieving optimal efficiency of all tasks [12,13]. There-
fore, the collaborative task-assignment problem of multiple UAVs is a non-deterministic
polynomial (NP) problem of combinatorial optimization under multiple constraints [14,15].
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The key to solving this problem is to establish the task assignment model and use the
assignment algorithm.

At present, many general mathematical models have been proposed for multi-UAV
task allocation at home and abroad. The commonly used task-allocation models include
the multiple traveling salesman problem (MTSP) [16] model, mixed-integer linear pro-
gramming (MILP) model [17], the vehicle routing problem (VRP) [18] model, the network
flow optimization (DNFO) [19] model, the cooperative multiple task assignment problem
(CMTAP) [20] model, and the capacitated vehicle routing problem (CVRP) [21] model.
Based on these general multi-UAV task-allocation models, many scholars have established
targeted task-planning models.

However, the current research still has the following problems: (a) In the establishment
of qualified task-allocation models, such as the MTSP model and the CVRP model, the
requirements of the actual battlefield are ignored in order to meet the model standards.
The established model simplifies the objectives of task allocation and battlefield constraints,
which reduces the application effect of research results in actual combat. (b) UAV and
task types in existing task-allocation models are mostly single, lacking consideration of
heterogeneous UAV attributes and multi-task types. Existing UAVs in the formation are
different from each other in terms of purpose, load, combat capability, etc. In actual combat,
multiple types of UAVs are often needed to cooperate to complete a certain task. Therefore,
the task-allocation model based on a single UAV does not support complex tasks.

In solving problem models, there are two main research results: optimization method
and heuristic method. The optimization methods include linear programming, width/depth
preference search, branch and bound, and so on. The optimization method has a high
time and space complexity in solving problems. As the scale of a task-assignment problem
increases, computing power is required and the time consumed is also increased. It is
thus necessary to simplify the model to a large extent, which makes it difficult to apply to
complex problems. The heuristic method of solving a model mainly focuses on the model’s
objective function, which requires less complexity. This can result in a better feasible
solution in a short time, and has practical feasibility for large-scale complex problems.

The harmony search (HS) algorithm not only has the advantages of a meta-heuristic
algorithm, but also own its characteristics [22,23]: (a) HS integrates all the existing harmony
vectors to create a new harmony vector, in contrast to GA, which uses two elderly vectors,
while particle swarm optimization (PSO) only considers the individual optimal position
and the global optimal position of the whole population; (b) HS independently adjusts
each variable via improvisation, unlike PSO, which deals with a solution vector by single
rule. Due to these characteristics, HS has been successfully applied to a wide variety of
optimization problems, such as river ecosystems [24], selective assembly problems [25],
mental health analysis [26], reservoir engineering [27], speech emotion [28] and wireless
network positioning [29].

However, HS suffers from trapping in performing local searches, and a crucial factor
of its performance is the key control parameters, such as harmony memory (HM), harmony
memory size (HMS), harmony memory considering rate (HMCR), pitch adjusting rate
(PAR), bandwidth (bw) and the number of improvisations (G). It is unfortunate that there
are few studies on the mathematical theory of the underlying search mechanisms of HS in
the open literature. S. Das et al. proposed a new algorithm called EHS, after discussing
the relationship between the explorative power of HS and the control parameters through
analyzing the evolution of the population variance of HS [30]. This algorithm has good
exploration, but poor exploitation. Thus, this paper devotes significantly more attention to
the search mechanism of HS and its parameters.

Therefore, the contribution of this paper is the proposal of a new model and a new
method, which aim to: (a) considering the complexity of the actual missions, divide the
missions into reconnaissance, strike and evaluation tasks, and considering the benefits,
costs and constraints of the missions, establish the target allocation model of heterogeneous
multi-UAV missions with different loads; (b) analyze the mathematical theory of the
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underlying search mechanisms of HS to balance exploration and exploitation, establish the
iteration equation of HS and propose an improved HS; (c) use the improved HS algorithm
to simulate and verify a multi-UAV task-allocation combat example.

The remainder of this paper is organized as follows. In Section 2, the modeling of
heterogeneous UAV task-assignment planning is presented in detail. Section 3 is the theo-
retical analysis of harmony search. The proposed algorithm is described in Section 4. The
experiments and their results of the proposed algorithm are presented in Section 5. The
task-allocation simulation experiment is designed and discussed in Section 6. Section 7
discusses related work. Section 8 then makes concluding remarks and indicates future works.

2. Modeling Heterogeneous UAV Task Assignment Planning

Multi-UAV cooperative task assignment is a complex multi-objective optimization
and decision problem. Most current research models assume that the mission attributes
of UAVs are consistent. However, multi-UAV formation is not a linear addition of a
certain number of individual UAVs. Heterogeneous formation disperses the functions
of reconnaissance and surveillance, electronic interference, strike and evaluation into a
large number of single UAVs with low cost and single function. Through the high level
of cooperation and self-organization among a large number of heterogeneous individuals,
the cluster function far exceeds the individual function that can be realized. In addition,
as the multi-UAV formation combat involves various aspects of the combat target and
the task complexity is different, some large tasks need a certain combat sequence, and it
is necessary to deploy and combine UAVs with different functions and characteristics to
complete the corresponding combat task. For the above reasons, this section proposes a
heterogeneous multi-UAV task-allocation model to enhance the antagonism of combat
subjects and achieve higher-formation combat effectiveness in view of future diversified
combat requirements.

2.1. Objective Function of Multi-UAV Cooperative Target Assignment Model

If the UAV formation of our side performs the task U = (U1, U2, U3, . . . , UNUVA), the
target list of the task is T = (T1, T2, T3, . . . , TNTARGET), M = {M1, M2, M3} represents the
task type, NUVA and NTARGET are the number of UAVs in the formation and the number of
targets in the task list respectively, M1 represents reconnaissance, M2 represents attack and
M3 represents evaluation. The essence of multi-UAV formation task assignment is to solve
a target-assignment scheme to maximize target fitness (Tar_fitness). Based on this, the
objective function of a multi-UAV cooperative target-allocation model is given as follows

Definition 1.
Tar_fitnessi(Tj) = Rewardi(Tj)/Costi(Tj). (1)

where Tar_fitnessi(Tj) is the fitness of the UAV numbered i performing the task numbered j,
Rewardi(Tj) is the reward of the UAV numbered i performing the task numbered j and Costi(Tj)
is the cost of the UAV numbered i performing the task numbered j. It can be seen that task fitness
is directly proportional to the reward of performing tasks and inversely proportional to the cost of
performing tasks.

2.2. Task Rewards Modeling

In this paper, the rewards of UAV numbered i performing a certain task numbered j
are mainly determined by three factors:

(1) UAV’s capability to perform specific tasks. The capability of UAV to perform tasks
is quantified by its payload, such as detection device and weapon system, combined with
its own performance, and described in probability based on historical experience (whether
it has performed relevant target tasks in the past).

(2) the worth of enemy targets. The worth of enemy targets is determined in advance
based on the information obtained beforehand, combined with the tactical plan available
for reference. For example, destroying the enemy’s command center can paralyze the
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enemy’s operation, so the worth of the command center is relatively high, while striking
the enemy’s small warehouse has relatively low worth compared to the whole operation.

(3) the defense capability of enemy targets. Combined with the detected battlefield
environment information and advance intelligence information, the enemy targets, such as
surface-to-air missile positions, anti-aircraft gun positions, flight bases and ground radar
are analyzed and quantified.

From the above analysis, the mission rewards of UAV can be defined as follows:

Definition 2.

Rewardi(Tj) =
Worth(Tj)·Pi(Tj)

Defence(Tj)
. (2)

where Rewardi(Tj) is the rewards of a certain task numbered j performed by a UAV numbered i
with a specific load, Pi(Tj) is the completion capability of the UAV numbered i to perform tasks the
task numbered j and Defence(Tj) is the defense capability of the target.

The reward of each UAV mission meets the additivity, and the decision variable of the
mission is introduced as follows:

xij =

{
1, UAVi performs the task j
0, UAVi does not perform the task j

, (3)

Then, the total rewards of multiple UAV formation’s task execution on the target list are:

Reward =
NTARGET

∑
j=1

NUVA

∑
i=1

xijRewardi(Tj), (4)

2.3. Task Cost Modeling

In the course of reconnaissance, attack or evaluation, UAV formation will encounter
confrontational threats and terrain threats. Confrontational threats are mainly radar de-
tection and fire attack by enemy targets during the execution of missions, so the defense
capability of our UAV and the attack capability of enemy targets should be considered in
task allocation. Terrain threats mainly involve the air-range cost of a UAV during its mission,
terrain height and altitude change rate. On some terrain that is difficult to leap over, the
UAV flying too high will consume too much energy, and the UAV climbing too-steep terrain
is likely to impact the terrain and encounter other threats, so it should try to avoid the
distribution results of too-long air-range or steep terrain. Based on the above analysis, the
task-cost modeling in this section includes terrain-cost modeling and loss-cost modeling. At
the same time, terrain cost and loss cost of different dimensions are normalized.

(1) Terrain Cost
The air-range cost of a UAV reflects the duration of the mission, the length of the UAV

and the energy consumption. The Euclidean distance between the UAV and the enemy
target is used in this paper to estimate the air-range cost. This is because the formation
cannot accurately obtain the relevant data before the actual execution of the mission. DisUTij =

√
(Posx(Ui)− Posx(Ti))

2 +
(
Posy(Ui)− Posy(Ti)

)2

DisTTij =
√(

Posx(Ti)− Posx
(
Tj
))2

+
(
Posy(Ti)− Posy

(
Tj
))2

, (5)

where
(
Posx(Ui), Posy(Ui)

)
is the initial position coordinate of the UAV numbered

i,
(
Posx(Ti), Posy(Ti)

)
is the position coordinate of the enemy target numbered

i,
(
Posx

(
Tj
)
, Posy

(
Tj
))

is the position coordinate of the enemy target numbered j. Equation (5)
gives the Euclidean distance between the UAV numbered i and the task target numbered j,
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as well as the Euclidean distance between the task numbered i and the task numbered j. To
facilitate calculation, the matrix Range is established as the distance matrix.

Range =



DisUT1,1 · · ·DisUT1,NTARGET

...
. . .

...

DisUTNUAV,1 · · ·DisUTNUAV,NTARGET

DisTT1,1 · · ·DisTT1,NTARGET

...
. . .

...

DisTTNUAV,1 · · ·DisTTNUAV,NTARGET


(6)

According to the above equation, Range is a matrix of (NUAV + NTARGET)×NTARGET,
which contains the Euclidean distance between UAV and enemy targets and the Euclidean
distance between enemy targets. Thus, the total air-range of the UAV numbered i returning to
its initial position after completing the corresponding task target list can be given as follows:

Lengthi =
N

∑
n=0

Length(i)n,n+1, (7)

where N represents the total number of tasks performed by UAV numbered i. Further
analysis of Equation (7): when n = 0, Length(i)0,1 represents the distance between
the initial position of the UAV numbered i and the mission target numbered 1. When
n = {1, 2, . . . , N− 1}, Length(i)n,n+1 represents the Euclidean distance between the No. n
mission target, performed by the UAV numbered i, and the No.(n + 1) mission target.
When n = N, Length(i)N, N+1 represents the distance of UAV numbered i returning to its
starting point after completing the last mission target.

Considering the impact of terrain height and altitude-change rate on the UAV’s loss,
terrain-steepness factor λ is introduced to the weighted UAV’s track. Assuming that the
battlefield environment can be known in advance before the execution of the mission,
the value of the terrain-steepness factor λ is determined by combining the result of task
assignment with the terrain information known in advance. In this paper, λ ranges from
[1.2, 2.5] according to the complexity of the terrain.

(2) Loss Cost
The loss cost of a UAV is mainly caused by the confrontational threats encountered

by UAV in the execution of tasks. Therefore, the loss cost mainly considers the following
factors: the worth of UAV with specific load, the defensive capability of UAV itself, and the
attack capability of enemy targets. Combined with the significance of loss cost, it can be
concluded from the above analysis:

Definition 3.

LossCostij =
Worth(Ui)·Strike(Tj)

Defense(Ui)
. (8)

where LossCostij is the loss cost of the UAV numbered i when executing the mission target
numbered j, Strike(Tj) is the attack capability of the mission target numbered j, Worth(Ui) is the
worth of UAV numbered i, Defense(Ui) is the defense capability of UAV numbered i.

Thus, it can be concluded that the task cost of multi-UAV formation in task allocation
is as followed:

Cost = TerrainCost + LossCost

= ω1·
NUAV

∑
i=1

λi·Lengthi +ω2·
NUAV

∑
i=1

NTARGET
∑

j=1
xij·

LossCostij
LossCostmax

(9)
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where LossCostmax is the maximal element with the total loss cost of performing all tasks,
λi is the terrain steepness factor reflecting the complexity of different UAV flight paths,ω1
andω2 respectively represent the UAV’s track weight and loss weight and xij is the task
decision variables introduced in Section 2.2.

2.4. Modeling Constraints

(1) Constraints on Task Completion
During the execution of the mission, UAVs involved in such tasks as strike and

reconnaissance must perform all the missions, and there cannot be a situation where some
tasks are not assigned, namely,

NUAV

∑
i=1

NTARGET

∑
j=1

xij = NTARGET, (10)

where, i = {1, 2, . . . , NUAV} and j = {1, 2, . . . , NTARGET} represent the number of UAVs
and the number of assigned tasks respectively.

(2) Constraints on Task Non-Redundancy
During task execution, it must be ensured that each task can only be performed by a

certain UAV, namely,
NUAV

∑
i=1

xij = 1, ∀j = 1, 2, . . . , NTARGET (11)

(3) Constraints on UAV’s Capability
The number of task targets numbered j performed by the UAV numbered i should not

exceed the maximum of its own task capability:

NTARGET

∑
j=1

xij ≤Loadi, ∀i = 1, 2, . . . , NUAV, (12)

where Loadi represents the maximum number of tasks that UAV numbered i can execute.
(4) Constraints on UAV’s Attack Range
When task target assignment is completed, the air-range of the total mission performed

by the UAV numbered i cannot exceed its maximal flight distance, namely:

λi · Lengthi ≤ D(i)max, ∀i = 1, 2, . . . , NUAV, (13)

where λi is the terrain steepness factor, and D(i)max is the maximal air-range of UAV
numbered i.

In order to transform constrained optimization problems into unconstrained problems,
this section introduces the penalty function and designs an outpoint method to punish the
consumption cost of infeasible solutions when infeasible solutions appear in the population.
The constrained optimization method improves the efficiency of the task-assignment model.
Therefore, Equation (1) is further updated, and the final total task fitness is as follows:

Tar_fitness_final =
Reward

Cost
− δ · Pu, (14)

Pu =

{
1, when task assignment meets constraints
0, when task assignment does not meet constraints

, (15)

where δ is a positive number known as the penalty factor, and Pu is the penalty function.

2.5. Task-Assignment Coding

Constructing the mapping relationship between particle and feasible solution of
cooperative-task assignment for multiple UAVs is the key step for the swarm intelligence
algorithm to solve the optimization problem. In the collaborative-task assignment process
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for multiple UAVs, the response of the UAVs to enemy target reconnaissance, attack and
evaluation tasks should be ensured, and the timing of tasks should also be ensured. That
is, an enemy target must be reconnoitered before the attack task, and finally the effect
evaluation, which embodies the double-layer coding meaning of particles on the task-
assignment problem. Referring to reference [31], this paper adopts real vector coding.
Suppose that the dimension of the particle is the number of the task target list, the subscript
of the particle corresponds to the number of tasks, the integer part of the particle position is
rounded up to indicate the number of UAVs and the fractional part of the particle position
corresponds to the task order of UAVs from small to large.

The mapping relationship between particle coding and task target assignment can be
expressed by the following example. Suppose that three UAVs must perform nine tasks,
and the task-assignment coding is shown in Figure 1.
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3. The Theoretical Analysis of Harmony Search

This section analyzes the performance of the HS algorithm from two aspects: explo-
ration performance and iterative convergence performance.

3.1. Exploration Performance

The HS algorithm explores the solution space by improvisation, and its development
is accomplished by updating the operation steps. In reference [30], the exploration ability
of HS is measured by the evolution of the expected population variance with the number of
iterations. However, only symmetric intervals [−a, a], a ∈ R are considered for analyzing
the evolution of the group variables of HS and its exploration performance. Here, this
paper gives results for asymmetric intervals, as shown in Theorem 1.

Theorem 1. Let x = {x1, x2, ···, xm} represent the initial population of HS algorithm,y =
{y1, y2, ···, ym} refer to the population obtained after the improvisation session. The range of the
decision variable xi is [a, b], a, b ∈ R , then

E(var(y)) = (1− 1
HMS ) · [HMCR · E(var(x)) + HMCR · (1−HMCR) · (x)2

+bw2

3 ·HMCR · PAR + 1
12 (1−HMCR) · (a− b)2]

(16)

Proof. when x ∈ [−a, a], a ∈ R, the following result as Equation (17) is obtained, which
had been done by S. Das et al. in literature [30].

E(var(y)) = (1− 1
HMS ) · [HMCR · E(var(x)) + HMCR · (1−HMCR) · (x)2

+bw2

3 ·HMCR · PAR + a2

3 (1−HMCR)]
(17)

where, Equations (18) and (19) are workable from the proof in literature [30].
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E(yl) = HMCR · (1− PAR) · E(xr) + 0.5 ·HMCR · PAR · E(xr + bw · rand)
+0.5 ·HMCR · PAR · E(xr − bw · rand) + (1−HMCR) · E(xnew)

(18)

E((yl)
2) = HMCR · (1− PAR) · E((xr)

2) + 0.5 ·HMCR · PAR · E((xr + bw · rand)2)

+0.5 ·HMCR · PAR · E((xr − bw · rand)2) + (1−HMCR) · E((xnew)
2)

(19)

where E(x) is the mathematical expected value of the variable x. In combination with the
random selection operation expressed as Equation (20) in improvisation, Equations (18)
and (19) are used to deduce the expressions of E(xnew) and E((xnew)

2).

xnew = xmin + rand · (xmax − xmin), (20)

Let R = rand, xmax = b, xmin = a, then

(xnew)
2 = a2 + 2aR(b− a) + R2(b− a)2, (21)

φ(R) =

{
1, R ∈ [0, 1]
0, R /∈ [0, 1]

, (22)

where φ(R) is the probability density function of R. Then Equation (23) is obtained.{
E(R) =

∫ 1
0 R · φ(R)dR =

(
R2/2

)∣∣1
0 = 1/2

E(R2) =
∫ 1

0 R2 · φ(R)dR =
(
R3/3

)∣∣1
0 = 1/3

, (23)

According to Equations (20) and (23), E(xnew) and E((xnew)
2) can be obtained

E(xnew) = a + E(R) · (b− a) = (b + a)/2, (24)

E((xnew)
2) = a2 + 2a · E(R) · (b− a) + E(R2) · (b− a)2 =

1
3
(b2 + ab + a2), (25)

From Equations (18), (19), (24) and (25), it can be concluded that

E(yl) = HMCR · E(xr) + 0.5 · (1−HMCR) · (a + b), (26)

E((yl)
2) = HMCR · E((xr)

2) +
bw2

3
·HMCR · PAR +

1
3
(1−HMCR) · (a2 + ab + b2), (27)

Let E(xr) = x and E((xr)
2) = x2, Equations (26) and (27) become

E(yl) = HMCR · x + 0.5 · (1−HMCR) · (a + b), (28)

E((yl)
2) = HMCR · x2 +

bw2

3
·HMCR · PAR +

1
3
(1−HMCR) · (a2 + ab + b2), (29)

and because the following equations are true

E(var(y)) = E( 1
HMS

HMS
∑

l=1
(yl − y)2) = E(y2)− E(y2)

y = 1
HMS

HMS
∑

l=1
yl

y2 = 1
HMS

HMS
∑

l=1
(yl)

2

, (30)
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Equation (31) can be deduced from Equation (30)

E
(

y2
)

= 1
HMS

HMS
∑

l=1
E(
(
yl)

2)
= HMCR·x2 + bw2

3 ·HMCR·PAR + 1
3 (1−HMCR)·

(
a2 + ab + b2

)
y2 =

(
1

HMS

)2
(

HMS
∑

l=1
(yl)

2 + ∑
l1 6=l2

yl1
·yl2

) (31)

where yl1
and yl2

are independent random variables. Therefore, E(yl1
· yl2

) = E(yl2
· yl1

)
and E(yl) = E(yl1

) = E(yl2
) are true, and then

E(y2) = E(( 1
HMS )

2 · (
HMS

∑
l=1

(yl)
2 + ∑

l1 6=l2

yl1
· yl2

))

= 1
HMS · E((yl)

2) + 1
HMS · (HMS− 1) · (E(yl))

2
(32)

According to Equations (30)–(32), it can be obtained

E(var(y)) = (1− 1
HMS ) · (E((yl)

2)− (E(yl))
2)

= (1− 1
HMS ) · [HMCR · E(var(x)) + HMCR · (1−HMCR) · (x)2

+bw2

3 ·HMCR · PAR + 1
12 (1−HMCR) · (a− b)2]

(33)

This proof is complete. �

3.2. Convergence Performance

If HMCR = 1− ε, ε→ 0, ε > 0 , then Equation (34) can be obtained from Equation (16).

E(var(y)) = (1− 1
HMS

) · [(1− ε) · E(var(x)) +
bw2

3
· (1− ε) · PAR)] + (1− 1

HMS
)ε · 1

12
(a− b)2 + O(ε2), (34)

According to literature [30], bw =
√

k · E(x) is obtained, so

E(var(y)) = (1− 1
HMS

) · (1− ε) · (1 + k2

3
· PAR) · E(var(x)) + (1− 1

HMS
)ε · 1

12
(a− b)2, (35)

Then, the expected variance of the population variable xg in the g-th generation is:

E(var(xg)) = [(1− 1
HMS

) · (1− ε) · (1 + k2

3
· PAR)]

g

· E(var(x0)) + (1− 1
HMS

)ε · 1
12

(a− b)2, (36)

With increasing evolution generations, the increase in expected population variance
gives the algorithm strong exploration ability. However, if only the exploration ability
is considered, the HS algorithm will not converge in the last generation, that is, the HS
algorithm keeps searching for new information, but does not get effective information at the
end of the algorithm. Therefore, the convergence of the algorithm is a very critical problem.
In the following, the convergence of the HS algorithm is analyzed from the expectation of
population variance and expectation of population mean.

Lemma 1. For any initial vector x0 , the iterative equation y = Mx + B converges if and only if
p(M) < 1 , where M represents the iteration matrix and p(M) is the spectral radius of the iteration
matrix M in literature [32].

Theorem 2. Under the premise of Theorem 1 and bw =
√

γ · E(x), the sufficient condition for the
convergence of the iterative equation y = Mx + B is that HMCR = 1− ε, ε→ 0, ε > 0, where



Electronics 2022, 11, 1171 10 of 28

M =

[
(1− 1

HMS ) · ((1− ε) (1− 1
HMS ) ·

γ
3 · (1− ε) · PAR

0 (1− ε)

]
, y =

[
E(var(y))

E(y)

]
, x =

[
E(var(x))

E(x)

]
,

B =

[
(1− 1

HMS ) · ε ·
1

12 (a− b)2

0.5 · ε · (a + b)

]
,

Proof. If bw =
√

γ · E(x) and HMCR = 1− ε, then the following equation is true.

E(var(y)) = (1− 1
HMS

) · ((1− ε) · E(var(x)) +
γ · E(x)

3
· (1− ε) · PAR) + (1− 1

HMS
) · ε · 1

12
(a− b)2, (37)

It can be obtained from Equations (26) and (30):

E(y) =
1

HMS

HMS

∑
l=1

E(yl) = HMCR · E(xr) + 0.5 · (1−HMCR) · (a + b), (38)

Due to E(xr) = E(x) and HMCR = 1− ε,, therefore, Equation (38) becomes Equation (39).

E(y) =
1

HMS

HMS

∑
l=1

E(yl) = (1− ε) · E(x) + 0.5 · ε · (a + b), (39)

According to Equations (37) and (39), y = Mx + B is obtained. After the evolution
of g-th generation, yg = Mgx + (Mg−1 + Mg−2 + ···+ M2 + M) · B can be obtained. Thus,
the characteristic roots of the iterative equation can be obtained as λ1 = (1− 1

HMS ) · (1− ε)
and λ2 = 1− ε < 1. It is clear that λ2 > λ1. Thus, p(M) = λ2 < 1 is true. Therefore, the
iterative equation y = Mx + B converges.

This proof is complete. �

From the proof of Theorem 2, the following conclusions are obtained.
(1) The parameter HMCR is actually the spectral radius of the iteration matrix, which

directly determines the convergence of the iteration equation.
(2) When ε is close to 0 and parameter HMCR is close to 1, the algorithm has a fast

convergence rate, which verifies the rationality of HMCR > 0.9.
(3) In order to find a balance between higher convergence accuracy and better explo-

ration ability, the parameter bw can be adjusted to prevent the algorithm from falling into
local optimal.

4. The Opposition-Based Learning Parameter-Adjusting Harmony Search (OLPDHS) Algorithm

Through the above analysis and discussion, on the one hand, E(var(x)), which is
related to the original HM initialization, is the part of E(var(y)), so it is necessary to find a
better initialization method to explore an effective offspring population for improving the
algorithm’s exploration. On the other hand, adjusting key control parameters’ values is a
good choice to obtain better fine-tuning properties and convergence speed.

The OLPDHS algorithm is proposed. On the one hand, the algorithm improves the
initialization method. On the other hand, the fine-tuning properties and convergence speed
of HS can be improved by adjusting parameter value. What the OLPDHS algorithm has in
common with the classical HS algorithm is that both of them go through four processes:
initializing the parameters involved in the algorithm, initializing the harmony memory,
improvising a new harmony and updating the harmony memory. The difference between
the two is the way of population initialization and the way of control parameter change.
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4.1. The Opposite-Based Learning Strategy for Population Initialization

Opposite-based learning (OBL) was first proposed by Tizhooshin in the literature [33].
The main idea of OBL is to obtain a better approximated solution than the current candidate
solution, by considering both an estimate and another estimate that is opposite to this
estimate, so OBL expands the solution space and reduces the search time [34,35].

Definition 4. Let x = (x1, x2, ···, xn) be a point in the dimensional n coordinate system, where
xi ∈ [ai, bi], i = 1, 2, . . . , n, then, the opposite point x = (x

1
, x

2
, ···, x

n
) of x is completely

determined according to x
i
= ai + bi − xi.

In the original HS algorithm, the initial population is generated in a random way. In
order to improve the quality of the initial harmonic memory warehouse, this paper proposes
a variety of alternative opposite learning strategies, which include five methods based
on opposite learning strategies [36]. Method 1: x

i
= −xi, Method 2: x

i
= ai + bi − xi,

Method 3: x
i

= (1/2) · (ai + bi − xi), Method 4: x
i
= (2 · rand − 1) · ( ai + bi − xi),

Method 5: x
i
= rand( ai + bi)− xi.

4.2. Parameter Adjustment Policy

In order to balance the exploration ability and development ability of the HS algorithm,
it is necessary to adjust the key control parameter bw dynamically during the search process.

According to Theorem 2, the parameter bw (bwj =
√

γ · E(x),x = (1/HMS)∑HMS
i=1 xi)

is dynamically adjusted as follows. To better detail bw, the more general expression for the
average x of the group is given as Equation (40):

xj = (1/HMS)
HMS

∑
l=1

xl,j, j = 1, 2, ···, D, (40)

where j is the jth dimension of the problem, D is the maximum dimension of the problem
and xj represents the average value of the jth dimension variable. Then, get

E(xj) = 1
HMS

HMS
∑

l=1
E(xl,j) = E(xr,j), here xr,j are randomly selected from HM and

P(r = w) = 1
HMS , thus E(xr,j) can be obtained as Equation (41).

E(xr,j) =
HMS

∑
w=1

pw · xw,j =
HMS

∑
w=1

p(r = w) · xw,j =
1

HMS

HMS

∑
w=1

xw,j = xj, (41)

Thus the result of the parameter bw is obtained.

bwj =
√

γ · xj, (42)

It can be seen from Equation (42) that the dynamic adjustment of the parameter
bw mainly depends on the square root of the mean value of the harmony vectors of the
population after each update. In this way, it is easier to realize the actual operation of
dynamic adjustment of the parameter bw. When the new solution is fine-tuned according
to Equation (40) or Equation (41), the information of the current population is carried out
by the parameter bw. The fine-tuning of the new solution has global guiding significance.
However, the fine-tuning solution with the fixed value of the parameter bw does not
consider the current population search situation. Additional calculation E

(
xj
)

after each
evolution is required, which increases the calculation amount of the algorithm.
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5. Simulation Experiments and Analysis of OLPDHS

In order to verify the rationality and effectiveness of the OLPDHS algorithm in this
paper, MATLAB is used to test algorithm performance from different perspectives.

5.1. Influence of the Parameters HMCR, HMS and PAR on OLPDHS

Firstly, the influence of the parameter HMCR on the performance of the OLPDHS
algorithm is analyzed by simulation. The unimodal function Sphere and the multimodal
function Rastrigin are used as the test functions, and the parameters are set as HMS = 5,
PAR = 0.5, bwj =

√
γ · E(x), γ = E(x), the maximum number of evolutions G = 1000, the

dimension of the function is 30, and the HMCR is changed dynamically from 0.1 to 0.99,
proceeding through 0.1, 0.25, 0.5, 0.75, 0.9 and 0.99. MATLAB is used for simulation, and
the relationship between the population variance expectation and the iterations number
is obtained, as shown in Figure 2. It reflects that for the function Sphere and the function
Rastrigin, when the values of parameter HMCR are different, the search capability of the
OLPDHS algorithm changes over iterations. Figure 3 shows the relation between the Sphere
function value and the Rastrigin function value obtained by the OLPDHS algorithm under
different parameter HMCR values with the change of evaluation numbers, reflecting the
influence of different parameter HMCR values on the convergence performance of the
OLPDHS algorithm.
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(a) Sphere: [−50, 100]; (b) Sphere: [−100, 50]; (c) Rastrigin: [−50, 100]; (d) Rastrigin: [−100, 50].
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Figure 3. Convergence of OLPDHS with different HMCR values for Sphere and Rastrigin: (a) Sphere:
[−50, 100]; (b) Sphere: [−100, 50]; (c) Rastrigin: [−50, 100]; (d) Rastrigin: [−100, 50].

As can be seen from Figures 2 and 3, the value of HMCR has a great impact on
the expected population variance and the convergence of the OLPDHS algorithm. With
the increase in the value of HMCR, the smaller the expected population variance and
convergence accuracy, the larger the value of HMCR and the better the convergence rate of
the OLPDHS algorithm.

In addition, when HMCR values are 0.01, 0.25, 0.5, 0.75, 0.9, 0.95, and 0.99, the mean
value and variance results of the two test functions are shown in Tables 1 and 2, respectively.
For the Sphere function, Table 1 shows that the smaller the value of HMCR, the worse the
performance of the OLPDHS algorithm. When HMCR < 0.9, the results obtained by the
OLPDHS algorithm have deviated significantly from the global optimal solution. When
HMCR > 0.9, the OLPDHS algorithm quickly converges to or near the global optimal
solution. For the multimodal function Rastrigin, Table 2 shows that the value of HMCR
has a similar impact on the performance of the OLPDHS algorithm to that in the Sphere
function. According to Tables 1 and 2, the convergence accuracy is better with the increase
in HMCR value.
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Table 1. Numerical results with different HMCR values for Sphere.

Initial Range Index
HMCR

0.01 0.25 0.5 0.75 0.9 0.95 0.99

[−50, 100]
mean 2.3614 × 104 1.5993 × 104 8.3985 × 103 5.7084 × 102 2.5158 × 10−25 0 0

SD 1.8327 × 103 2.5753 × 103 1.3622 × 103 1.6108 × 102 5.2121 × 10−25 0 0

[−100, 50]
mean 2.3294 × 104 1.6440 × 104 8.3378 × 103 5.4782 × 102 1.1731 × 10−25 0 0

SD 2.4008 × 103 1.5064 × 103 1.3824 × 103 2.0766 × 102 3.0618 × 10−25 0 0

Table 2. Numerical results with different HMCR values for Rastrigin.

Initial Range Index
HMCR

0.01 0.25 0.5 0.75 0.9 0.95 0.99

[−50, 100]
mean 2.4092 × 104 1.7223 × 104 8.8618 × 103 8.6880 × 102 3.8905 0 0

SD 2.3756 × 103 1.2709 × 103 1.3189 × 103 2.0211 × 102 7.2482 0 0

[−100, 50]
mean 2.4289 × 104 1.6280 × 104 8.7667 × 103 7.9659 × 102 4.6300 0 0

SD 2.2072 × 103 1.9277 × 103 1.1763 × 103 2.0847 × 102 1.3894 × 10−1 0 0

Then, the influence of parameter HMS and parameter PAR on the OLPDHS algorithm
is analyzed through simulation experiments. Nine functions ( f1 ∼ f9) with different charac-
teristics are selected to study the impact of parameters HMS and PAR on the performance
of the OLPDHS.

f1 = ∑D
i=1 x2

i , xi ∈ [−100, 100], fmin = 0
f2 = ∑D

i=1‖xi‖+ ∏D
i=1‖xi‖, xi ∈ [−100, 100], fmin = 0

f3 = ∑D
i=1 (∑

i
j=1 xj)

2
, xi ∈ [−100, 100], fmin = 0

f4 = ∑D
i=1−xi × sin

√
‖xi‖, xi ∈ [−500, 500], fmin = −418.9829D

f5 = ∑D
i=1 [x

2
i − 10cos(2 ∏ xi) + 10], xi ∈ [−5.12, 5.12], fmin = 0

f6 = (1/4000)∑D
i=1 x2

i −∏D
i=1 cos(xi/

√
i) + 1, xi ∈ [−600, 600], fmin = 0

f7 = 1/4(xi + 1) + 1, xi ∈ [−50, 50], fmin = 0

f8 = ∑n−1
i=1 [(x2

i + x2
i+1)

0.25
(sin(50

(
x2

i + x2
i+1
)0.1

)
2
+ 1)], xi ∈ [−100, 100], fmin = 0

f9 = ∑2
i=1 x2

i + (∑2
i=1 0.5ixi)

2
+ (∑2

i=1 0.5ixi)
4
, xi ∈ [−100, 100], fmin = 0

The dimension of all functions is set to 30, the maximum number of iterations to 20,000,
and each function is set to run 30 times independently. Table 3 lists the mean value and
standard deviation (SD) value of each function while running 30 times independently under
different values of parameter PAR. Table 4 shows the mean value and SD value of each
function while running 30 times independently under different values of parameter HMS.
Figures 4 and 5 visually show the optimization curves of nine functions under different
values of parameters HMS and PAR.
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Table 3. Effects of PAR for nine functions.

PAR Index f1(x) f2(x) f3(x) f4(x) f5(x) f6(x) f7(x) f8(x) f9(x)

0.1
mean 7.96 × 10−90 1.48 × 10−53 685.9444 −12362.6 0 0.009833 0.007098 9.87 × 10−26 21,204.57

SD 4.11 × 10−89 7.89 × 10−53 514.0565 128.0777 0 0.002543 0.019818 2.16 × 10−25 8073.396

0.2
mean 9 × 10−164 2.1 × 10−105 0.081202 −9558.07 0 0.007004 0.059908 6.97 × 10−55 1182.936

SD 0 8.8 × 10−105 0.424572 466.2021 0 0.000739 0.044512 7.96 × 10−55 2167.133

0.3
mean 1.5 × 10−182 1.4 × 10−119 0.002347 −7993.01 0 0.002974 0.072704 3.56 × 10−62 779.3931

SD 0 3.2 × 10−119 0.012182 450.3964 0 0 0.041652 5.33 × 10−62 1491.498

0.4
mean 1.2 × 10−188 3.2 × 10−124 1.14× 10−5 −6934.18 0 0 0.082485 2 × 10−65 370.6182

SD 0 1.7 × 10−123 2.87× 10−5 480.1842 0 0.000247 0.030938 4.27 × 10−65 509.1225

0.5
mean 3 × 10−192 7.1 × 10−127 1.61× 10−5 −6077.32 0 0.00135 0.106701 7.54 × 10−66 390.7553

SD 0 2.8 × 10−126 5.2× 10−5 437.4262 0 0 0.04902 3.13 × 10−65 665.9627

0.6
mean 2.2 × 10−191 1.2 × 10−128 0.000421 −5464.39 0 0 0.115062 6.85 × 10−66 896.9894

SD 0 3.3 × 10−128 0.001731 328.2753 0 0 0.042131 1.53 × 10−65 1310.2

0.7
mean 2.3 × 10−189 4.9 × 10−127 4.04× 10−5 −4854.59 5.92 × 10−17 0 0.120986 3.16 × 10−65 401.8195

SD 0 1.5 × 10−126 9.66× 10−5 419.4351 3.24 × 10−16 0.001129 0.034338 1.22 × 10−64 674.5876

0.8
mean 1.1 × 10−184 4.5 × 10−122 0.00303 −4374.65 0 0.006181 0.148274 8.87 × 10−64 1071.784

SD 0 2.4 × 10−121 0.01554 254.9838 0 0.002133 0.045609 2.22 × 10−63 1331.394

0.9
mean 1.2 × 10−175 5.1 × 10−118 0.05821 −3583.87 1.67668 0.011683 0.170418 7.77 × 10−61 834.9668

SD 0 1.4 × 10−117 0.261077 306.3736 5.133747 0.009833 0.047123 2.79 × 10−60 1154.953

1
mean 6.7 × 10−171 3.8 × 10−119 0.004582 −3597.4 0 0.002543 0.167839 1.8 × 10−60 782.5468

SD 0 7.8 × 10−119 0.013117 327.2936 0 0.007004 0.035659 2.55 × 10−60 1028.296

Table 4. Effects of HMS for nine functions.

HMS Index f1(x) f2(x) f3(x) f4(x) f5(x) f6(x) f7(x) f8(x) f9(x)

5
mean 1.2 × 10−182 2.7 × 10−122 0.000169 −7566.71 5.92 × 10−17 0.00074 0.061816 9.72 × 10−64 277.7771

SD 0 9.5 × 10−122 0.000665 479.2929 3.24 × 10−16 0.002257 0.025266 3.22 × 10−63 405.6994

10
mean 1.01 × 10−98 8.34 × 10−65 9.380667 −8360.2 5.33 × 10−16 0.000821 0.027107 1.45 × 10−31 12,398.39

SD 3.83 × 10−98 1.06 × 10−64 14.24209 374.3772 2.92 × 10−15 0.003125 0.007286 2.92 × 10−31 6517.15

20
mean 1.19 × 10−51 8.68 × 10−34 748.1719 −8909.59 6.045465 0.001397 0.014194 2.34 × 10−15 39,830.05

SD 0 1.42 × 10−33 683.1214 363.7991 9.443056 0.003281 0.005153 3 × 10−15 987.6950

40
mean 1.2 × 10-188 1.43 × 10−17 4649.907 −9324.05 21.20932 0.001137 0.012963 2.98 × 10−7 55,213.7

SD 0 1.24 × 10-17 3231.415 290.8353 15.59811 0.003059 0.005449 1.46 × 10−7 9326.81

80
mean 3 × 10-192 7.41 × 10−9 10,348.01 −9573.82 26.70999 0.00097 0.01582 0.011469 59,363.13

SD 0 2.61 × 10−9 3197.345 322.8402 9.894514 0.002516 0.003128 0.003728 9059.778

100
mean 2.2 × 10−191 5.67 × 10−7 13,876.19 −9370.6 30.70935 0.000403 0.018056 0.062568 59,859.2

SD 0 2.7 × 10−7 3547.672 344.3145 10.11926 0.001584 0.003564 0.019463 5685.164

120
mean 2.3 × 10−189 1.12 × 10−5 15,843.26 −9388.53 36.75415 0.000967 0.021201 0.181106 61,586.09

SD 0 3.52 × 10−6 4620.502 254.8811 13.51672 0.00369 0.005331 0.029841 7329.876

150
mean 1.1 × 10−184 0.000215 18,886.69 −9287.02 39.57804 0.000523 0.02599 0.622355 61,045.64

SD 0 5.96 × 10−5 4051 368.5464 12.15133 0.002706 0.004039 0.117255 6132.338

200
mean 1.2 × 10−175 0.004857 25,336.71 −9019.63 41.69105 0.004459 0.038315 2.236501 58,995.2

SD 0 0.000922 3946.534 349.0453 10.18421 0.001887 0.007615 0.391213 5730.374

500
mean 6.7 × 10−171 1.996803 34,581.73 −8362.23 54.67448 1.202493 5.468026 29.92783 60,399.91

SD 0 0.255739 4976.491 309.6179 8.477906 0.028179 1.426998 2.088327 6872.494
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Figure 4. The optimization curve for different values of the parameter PAR: (a) f1; (b) f2; (c) f3; (d) f4;
(e) f5; (f) f6; (g) f7; (h) f8; (i) f9.
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Figure 5. The optimization curve for different values of the parameter HMS: (a) f1; (b) f2; (c) f3;
(d) f4; (e) f5; (f) f6; (g) f7; (h) f8; (i) f9.
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As observed in Table 3, none of the PAR values performs well for all of the test
functions. When the value of PAR is in the interval [0.3, 0.7], the mean and SD of all the
functions except function f4 and function f7 are relatively good. For function f4, the larger
value of parameter PAR results in poor performance of the OLPDHS algorithm. For function
f7, the values of PAR have little effect on the performance of the OLPDHS algorithm. By
observing Figure 4 and comparing the optimization curves, it can be found that when PAR
is in the interval [0.3, 0.7], the optimization curves of the OLPDHS algorithm are better.
Thus, the value of PAR has an impact on the performance of the OLPDHS algorithm, and
the value is determined based on the analysis of the specific optimization problem.

As can be seen from Table 4, except for the function f4 (when the HMS value is large,
the optimization result is better), the convergence accuracy of other functions deteriorates
as the HMS value increases. As shown in Figure 5, except for function f4, the optimization
curve obtained by other functions is better with the decrease in HMS value. Through
analysis, it can be concluded that the value of HMS is appropriate in the interval [5, 40].

Finally, the parameter value range of the OLPDHS algorithm to obtain better per-
formance can be obtained through the above simulation analysis. The specific values of
parameters should be determined by the optimization problem itself and the optimization
model, which must be tested repeatedly in practice.

5.2. Performance Comparison of the OLPDHS Algorithm and Other HS Algorithms

In order to prove the efficiency of the OLPDHS algorithm, the OLPDHS algorithm is
compared with the recently developed HS algorithm and its improved version (IHS [37],
GHS [38], SAHS [39], SGHS [40], NGHS [41] NDHS [42], EHS [30] and ITHS [43]) by testing
the unconstrained optimization problem. Related parameters are set as follows: (1) HMCR:
SGHS is 0.98, NDHS, EHS, and ITHS are 0.99, OLPDHS is 0.9999, and other algorithms are
0.9; (2) HMS: the value is 50 for EHS, 10 for ITHS and 5 for other algorithms; (3) PAR: HS
and EHS are set to 0.33, GHS, IHS and OLPDHS are set to 0.1 and 0.99, SAHS and ITHS are
set to 0 and 1, NDHS is set to 0.01, 0.99 and SGHS is set to 0.9; (4) bw: HS is 0.01, SGHS
is 0.0005 and (xU − xL)/20, IHS is 0.0001 and (xU − xL)/20, and EHS is 1.17

√
x(var); In

addition, pm = 2/N in NGHS. Among the nine functions, f1, f2, f3 are single peak functions;
f5, f6, f7 are multi-peak functions, and with the increase in the dimension of the problem, the
number of locally optimal solutions increases. The functions f8 and f9 are low-dimensional
functions, which have more local optimal solutions.

Figure 6 shows the convergence properties of 10 algorithms tested by 9 functions with
30 dimensions. In most cases, the OLPDHS algorithm has better convergence than the
other nine HS algorithms. Except for functions f4 and f7, the convergence of the OLPDHS
algorithm is not as good as expected, while SGHS, NGHS and EHS algorithms have a better
convergence trend. For functions f3 and f9, the OLPDHS algorithm has a convergence no
better than the ITHS algorithm, but the OLPDHS algorithm has better performance than
other algorithms. On the whole, the OLPDHS algorithm has faster convergence than other
HS algorithms.
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Figure 6. Cont.
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Figure 6. The evolution of optimum objective function value with 10 algorithms for 9 functions:
(a) f1; (b) f2; (c) f3; (d) f4; (e) f5; (f) f6; (g) f7; (h) f8; (i) f9.

6. Task-Allocation Simulation Experiment Based on OLPDHS

In order to fully verify the effectiveness of the task-allocation algorithm and model
designed in this paper, three unmanned aerial vehicles with different loads were used to
perform eight different mission objectives as a combat example for simulation verification.
In the simulation, four algorithms are used to independently solve the task assignment
model 10 times, respectively. The simulation environment and algorithm parameters are
consistent with the Section 5.

6.1. Initial Information of Simulation

Battlefield space is a 100 km × 100 km square map. According to the description of
the modeling process in Section 2, the terrain-steepness factor is λ = 1.5, track weight
and loss weight are ω1 = 0.5, ω2 = 0.5 and the penalty factor of the constraint term is
δ = 5. At the same time, the maximum number of tasks that each UAV can perform is
set to Loadi = 3, where i represents the number of UAVs. The maximum range of the
UAVs is set to D(i)max= 600 km. According to the task-allocation code in Section 2.5, the
dimension of the allocation model is set to the task target number dim = 8, the scope of
individual search is (0,3), the number of individuals in each algorithm is set to 10, and the
iteration number is 1000. The heterogeneity of multiple UAV formations with different
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loads is directly reflected by the capability value of performing a specific task. The specific
parameters of UAVs and mission targets are shown in Tables 5 and 6.

Table 5. Performance parameters of three UAVs.

Number of UAV Worth Position (km) Defense Target Capacity P(T)

1 0.9 (10,20) 0.3
reconnaissance 0.9

attack 0.2
evaluation 0.8

2 0.7 (30,10) 0.9
reconnaissance 0.3

attack 0.9
evaluation 0.4

3 0.8 (15,9) 0.5
reconnaissance 0.5

attack 0.5
evaluation 0.5

Table 6. Parameters of eight mission objectives.

Number of Mission Type Worth Position (km) Defense Strike

T1 m1 0.4 (80,50) 0.2 0.8
T2 m3 0.5 (60,45) 0.4 0.6
T3 m3 0.9 (80,80) 0.9 0.1
T4 m2 0.8 (90,20) 0.7 0.3
T5 m2 0.9 (50,90) 0.8 0.2
T6 m3 0.5 (60,65) 0.4 0.6
T7 m2 0.7 (40,90) 0.7 0.3
T8 m1 0.6 (70,45) 0.2 0.8

In order to visually display the battlefield environment and task-assignment process,
this paper draws the battlefield environment through Visio 2017 software, as shown in
Figure 7 below.
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Number of UAV Worth Position (km) Defense Target Capacity P(T)  

1 0.9 (10,20) 0.3 
reconnaissance 0.9 

attack 0.2 
evaluation 0.8 

2 0.7 (30,10) 0.9 
reconnaissance 0.3 

attack 0.9 
evaluation 0.4 

3 0.8 (15,9) 0.5 
reconnaissance 0.5 

attack 0.5 
evaluation 0.5 

Table 6. Parameters of eight mission objectives. 

Number of Mission Type Worth Position (km) Defense Strike 
T1 m1 0.4 (80,50) 0.2 0.8 
T2 m3 0.5 (60,45) 0.4 0.6 
T3 m3 0.9 (80,80) 0.9 0.1 
T4 m2 0.8 (90,20) 0.7 0.3 
T5 m2 0.9 (50,90) 0.8 0.2 
T6 m3 0.5 (60,65) 0.4 0.6 
T7 m2 0.7 (40,90) 0.7 0.3 
T8 m1 0.6 (70,45) 0.2 0.8 

In order to visually display the battlefield environment and task-assignment process, 
this paper draws the battlefield environment through Visio 2017 software, as shown in 
Figure 7 below. 

 
Figure 7. The battlefield environment diagram. Figure 7. The battlefield environment diagram.

6.2. Simulation and Analysis

Four intelligent algorithms are used to independently solve the task-allocation model
10 times. The solution results are shown in Table 7, where Tar_fitness_final represents
the final task fitness; the higher the fitness, the better the feasible solution iterated by the
algorithm. P represents the success rate of the algorithm solution, and Mean is the average
of the solution results obtained 10 times for each algorithm.
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Table 7. The results of 10 times obtained independently by two algorithms.

Algorithm Tar-Fitness-Final Time Cost P Algorithm Tar-Fitness-Final Time Cost P

OLPDHS

1.5449 0.0809

100% SAHS

1.4755 0.0635

100%

1.5268 0.0817 1.4381 0.0609
1.5491 0.0824 1.4829 0.0620
1.5491 0.0902 1.4733 0.0593
1.5491 0.0782 1.4733 0.0604
1.5238 0.0810 1.4723 0.0603
1.5231 0.0808 1.4486 0.0623
1.5491 0.0825 1.4435 0.0616
1.5491 0.0799 1.4413 0.0625
1.5238 0.0817 1.4805 0.0627

Mean 1.5388 0.0819 - Mean 1.4629 0.0616 -

Algorithm Tar-Fitness-Final Time Cost P Algorithm Tar-Fitness-Final Time Cost P

NDHS

1.5263 0.0855

100% NGHS

1.5449 0.0786

100%

1.5491 0.0893 1.5102 0.0782
1.4831 0.0857 1.4875 0.0805
1.5449 0.0890 1.4831 0.0843
1.5280 0.0873 1.4755 0.0798
1.5491 0.0864 1.4755 0.0775
1.5028 0.0913 1.4682 0.0774
1.4942 0.0885 1.4682 0.0766
1.4926 0.0885 1.4527 0.0789
1.4834 0.0883 1.4397 0.0825

Mean 1.5154 0.0880 - Mean 1.4806 0.0794 -

Further analysis of Table 7 shows that the solving success rate of each algorithm is
100%, which verifies the effectiveness of the multi-UAV task-allocation model constructed
in this paper. Meanwhile, the average fitness of 10 independent solutions of the OLPDHS
algorithm is 1.5388, which is higher than the average fitness of the other three algorithms.
Therefore, in solving task assignment problems, the optimization algorithm based on
improved chaotic adaptive strategies designed in this paper is superior to the other three
comparison algorithms. Figure 8 shows the fitness convergence process of four algorithms
for solving the task assignment model. It can be seen from the figure that the OLPDHS
algorithm can quickly converge to a relatively excellent fitness value in the early stage,
and the fitness is higher than the other three algorithms in the late iteration, which further
reflects the effectiveness of OLPDHS in solving the task assignment.
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Figure 8. The convergence curves of fitness of two algorithms.

In order to directly reflect the time consumption of the two algorithms, the tic and toc
functions in MATLAB are used to obtain the time-consumption data in Table 8. Based on
the data in the table, the time-consumption graph of the four algorithms after 10 iterations
of independent operation is drawn in Figure 9. It can be seen from the figure that the SAHS
algorithm has the lowest time consumption, while the NDHS algorithm has the highest
time consumption. Although OLPDHS is more time-consuming, OLPDHS improves the
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fitness of feasible solutions of the task-allocation model, so the cost of sacrificing some time
is acceptable.

Table 8. Assignment results of task objectives corresponding to optimal fitness.

Algorithm Tar_Fitness_Final Assignment Results of Task Objectives

OLPDHS 1.5491 UAV1: T8→T1→T4 UAV2: T2→T6 UAV3: T7→T5→T3
SAHS 1.4829 UAV1: T5→T3→T8 UAV2: T2→T1→T4 UAV3: T7→T6
NDHS 1.5491 UAV1: T8→T1→T4 UAV2: T2→T6 UAV3: T7→T5→T3
NGHS 1.5449 UAV1: T8→T1→T3 UAV2: T4→T2 UAV3: T6→T5→T7
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Table 8 shows the target allocation results corresponding to the optimal fitness obtained
by running four algorithms for 10 times. Meanwhile, the allocation results are drawn on
the basis of Figure 7 as shown in Figure 10.
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7. Related Work

There are many researchers dedicated to the study of task allocation, and many
methods have been put forward. This section mainly summarizes the methods of task
allocation in various fields and the achievements achieved in UAV task allocation.

The threshold-based method is used to solve task-allocation problems. In 2005, ex-
treme teams, large-scale agent teams operating in dynamic environments, were on the
horizon. Low-communication approximate distributed constraint optimization (LADCOP),
a distributed threshold-based algorithm, was proposed to solve task-allocation problems
in the domain of simulated disaster rescue. The tasks are perceived by the agents in the
environment [44]. In 2007, swarm generalized assignment problem (Swarm-GAP) was used
to experiment in the RoboCup rescue simulator [45]. In 2010, considering the various actors
in the RoboCup rescue, Swarm-GAP, LADCOP and a greedy method were used to solve
distributed task allocation among teams of agents in a RoboCup rescue scenario [46]. The
results showed that the performance of Swarm-GAP and LADCOP are similar and that they
outperform a greedy strategy. The threshold-based approach is applied to division of labor
control for a robot group [47], but the task ordering is performed by a central command
unit, which generates a significant number of messages. Swarm-GAP was adopted to
deal with this problem and a new method with three algorithm variants was proposed in
2017 [48]. This method effectively prevented some agents from being overloaded with tasks
while others remained idle. The aforementioned researchers aimed at the optimization
of their resource usage applied in the context of static environments. In 2020, Amorim
J C evaluated the performance of three swarm-GAP variants in dynamic contexts, and
extended these algorithms to properly address more realistic dynamic scenarios [49].

The market-based method is applied to task-allocation problems. Task specification
trees (TSTs) as a highly expressive specification language for complex multiagent tasks
were used. Meanwhile, a sound and complete distributed heuristic search algorithm for
allocating the individual tasks in a TST to platforms was proposed in 2010 [50]. A decen-
tralized distributed solution approach based on multi-agent systems (MAS) to manage
emergency vehicles was developed, and a multi-agent architecture to fit real emergency
systems was proposed. A more refined and efficient auction mechanism based on implicit
agents’ coordination was examined to coordinate agents to reach good quality solutions
in a distributed manner [51]. For the multi-robot dynamic task-allocation problem, multi-
objective optimization (MOO) was used to estimate and subsequently make an offer for its
assignment. That is, after task detection, an auction took place amongst robots capable of
executing it. Robots calculated their bid using MOO [52].

There are also other works that propose methods for allocating tasks. ZORLU [22]
considered the UAV load constraints and modeled the problem as a CVRP model with
load constraints. Shima T [53] proposed the CMTAP model for UAVs, which divided the
task types into identification, attack and damage assessment. The time sequence between
tasks, execution time of tasks and multi-UAVs cooperative constraints were added into
the model. Min Yao [54] designed a collaborative multi-task assignment model for UAV
groups that is suitable for multiple UAVs, multi-task targets and multi-task types. Wen
Gu [55] proposed a solution to UAV target allocation problem based on the Hungarian
algorithm, and Jin Zhang et al. [56] extended the Hungarian algorithm to multi-target
allocation. In addition, [57] used the MILP method to solve multi-UAV target allocation,
and other optimization methods include dynamic programming and graph theory.

This current paper considers the type of task, the UAV load constraints, multiple
UAVs, multi-task targets and multi-task types, features that are similar to previous studies
in the literature [21,53,54]. Unlike these studies, this paper builds a model from two aspects
of the rewards and costs of performing tasks.

8. Conclusions

In this paper, the complex task set was decomposed into sub-tasks suitable for a
single UAV, and then the task-allocation problem was described and defined from the
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aspects of task rewards and task cost. The UAV’s own constraints and mission constraints
were defined. The mathematical model of task assignment was established, being more
suitable for actual battlefield environment. The OLPDHS algorithm was proposed through
discussion of exploration performance and convergence performance and its parameter
values (HMCR > 0.9, PAR is in the interval [0.3, 0.7], HMS is appropriate in [5, 40]) were
given via a number of simulation experiments. In comparison with IHS, GHS, SAHS,
SGHS, NGHS, NDHS, EHS and ITHS, the superior performance of OLPDHS was proven
by a number of simulation experiments. A multi-UAV cooperative task-allocation example
was designed to verify the superior performance of OLPDHS (Fitness is 1.5491, time
cost is 0.0819). This is the first application of HS to the multi-UAV cooperative task-
allocation problem. These performance qualities are ideal for helping decision-makers
devise allocation schemes.

In the environment or in the system itself at runtime, real-world scenarios abound with
the aforementioned dynamism. It is necessary for cooperative systems to deal with this
dynamism to keep the execution and results level. Future work must study the dynamic
redistribution problem, which is closer to real-world scenarios, focusing on how to establish
the redistribution problem model in a dynamic environment, so that decision makers can
make effective decisions in the battlefield’s changeable environment.
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