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Abstract: The Industrial Internet of Things (IIoT) deploys massive communication devices for
information collection and process control. Once it reaches failure, it will seriously affect the operation
of the industrial system. This paper proposes a new method for multi-entity knowledge joint
extraction (MEKJE) of IIoT communication equipment faults. This method constructs a multi-task
tightly coupled model of fault entity and relationship extraction. We use it to implement word
embedding and bidirectional semantic capture to generate computable text vectors. At the same
time, a multi-entity segmentation method is proposed, which uses noise filtering to distinguish the
multi-fault relationship of single corpus. We constructed a dataset of communication failures in
power IIoT and conducted experiments. The experimental results show that the method performs
best in tests with the Faulty Text dataset and the CLUENER dataset. In particular, the model achieves
an F1 value of 78.6% in the evaluation of relationship extraction for multiple entities, and a significant
improvement of 5–8% in its accuracy and recall. It enables effective mapping and accurate extraction
of fault knowledge data.

Keywords: knowledge graph; entity recognition; relationship extraction; joint learning; multi-entity
segmentation

1. Introduction

The industrial internet of things (IIoT) deploys a large number of perception and
communication devices [1], which realize the real-time state perception of physical space–
information space interaction and the normal operation of the system. Once a fault occurs,
it is easy to cause problems, such as energy resource scheduling, distribution and out
of control transmission. It will seriously endanger the operation safety of the integrated
energy system [2]. Therefore, it is of great significance to accurately extract equipment fault
information, locate the entity relationship of fault equipment, construct the fault knowledge
graph of IIoT communication equipment [3,4] and realize real-time fault analysis and
efficient troubleshooting of IIoT communication equipment.

Named entity recognition and relationship extraction are two key technologies to real-
ize knowledge extraction [5]. Named entity recognition techniques are divided into three
main approaches in terms of implementation techniques: rule-based, probabilistic graph
and deep learning [6]. Rule-based learning relies more on manual or domain dictionaries,
which not only lack flexibility, but also has poor recognition efficiency. With the develop-
ment of probabilistic graphs, the learning of entity sequence information is carried out
through directed and undirected graphs [7]. It reduces manual involvement and provides
some improvement in efficiency, but generalization capability is poor and the efficiency
of entity recognition needs to be improved [8]. Deep learning techniques build multiple
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models to learn grammatical features through neural networks, which convert text into
vectors covering contextual semantics [9]. It effectively improves on these shortcomings
and greatly enhances the recognition of entities and relationship extraction [10–12]. The
mainstream algorithms for relationship extraction tasks consist of two main types: manual
annotation and remote supervision [13]. The former requires more human involvement
but is also not generalizable, while the latter combines methods, such as deep learning
to improve the accuracy and efficiency of relationship extraction [14,15]. In the process
of domain-oriented knowledge extraction, deep learning greatly improves the generaliza-
tion ability of knowledge extraction algorithms, which facilitates the process of building
knowledge graphs in various domains, such as power [16] and geography [17].

Although the knowledge extraction effect of the current entity relation extraction
model has been improved [18], the pipeline extraction method leads to the lack of rele-
vance between entity extraction and relationship extraction [19,20], resulting in the loss
of information. When facing the text of the fault of the IIoT communication equipment,
because of the complex subordinate relationship between the equipment, confusion and
misjudgment of the relationship between multi-fault entities can easily occur. The main
reasons are: (1) when the traditional word embedding model maps the text, it is easy to
cause the loss of time series information in the text [21]. Therefore, the relationship predic-
tion cannot be well carried out in the follow-up tasks. (2) Most of the existing knowledge
extraction is pipelined operation [22], and most of them establish independent models for
entity extraction and relationship prediction [11–23]. Therefore, when facing the terms
and relationships that appear in the professional field, the relational model cannot be
combined with entity features to predict. This can easily lead to confusion in the labeling
of multi-entity relationships [24–26].

This paper designs a knowledge extraction method for IIoT communication equipment
faults, which can achieve fast and accurate indexing and localization for fault entities with
relationship categories. The main contributions of this paper are as follows.

• We propose the ALBERT fault pre-training model for embedding the fault data, which
solves the loss problem of fault text information.

• We build a joint coding model for fault text. The ALBERT-BilSTM network structure
in the model enhances the coupling between subsystems, which effectively improves
the accuracy of knowledge extraction.

• We have designed a joint extraction method of relationships between multiple entities.
It can be simultaneously extracted on the relationship between multiple entities in
a corpus.

The rest of the paper is organized as follows. Section 2 focuses on reviewing relevant
research. Section 3 shows the system architecture and application scenarios of the joint
extraction model, and the knowledge combination extraction algorithm is expounded,
which is the main contribution of this article. Section 4 is the situational analysis of
experimental simulations. Section 5 is a summary and a prospect for the next steps.

2. Related Work

Knowledge extraction is the basis for the construction of knowledge maps and is also
the basis for knowledge visualization and recommended algorithms. Knowledge extraction
usually contains two sub-tasks: named entity recognition and relationship extraction. In
the above summary, we summarized the advantages and disadvantages and main branches
of existing knowledge extraction techniques. Hereinafter, we focus on the research status of
naming entity identification and relational extraction and discuss the differences between
the algorithms proposed herein and existing algorithms [11,27–29].

In the aspect of named entity recognition, rule-based and statistics-based methods
are mainly used in the early stage, but the portability is poor, and a lot of manpower
is spent on tagging. With the development of machine learning, many existing models
have significantly improved the efficiency of entity recognition, such as perceptron model,
conditional random field model and so on. In recent years, deep learning-based methods
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have become mainstream due to their excellent performance, for example, the bidirectional
LSTM (long-and short-term memory) CRF model proposed by R. Grishman et al. [6]. The
BiLSTM (bidirectional long short-term memory) model proposed by G. Lample et al. [7]
integrates the self-attention mechanism, and CNNs (convolutional neural networks) process
the word vector to identify military entities. The BiLSTM and CRF methods proposed
by J. Li et al. [8] are used to extract entities from clinical symptoms of traditional Chinese
medicine. The BiLSTM-CRF model is used to mark the motor entities sequentially [9]. In
other fields, Kcm B et al. [17] have proposed a novel LSTM framework for short-term fog
forecasting. Y. An. et al. [18] proposed a multi-head self-attention based bi-directional
long short-term memory conditional random field (MUSA-BiLSTM-CRF) model, which is
expected to greatly improve the performance of Chinese clinical named entity recognition.

In the aspect of entity relationship extraction, supervised relationship extraction is
often used in the early stage. It includes the method based on CRF, but it needs a lot of
manual labeling [11]. Y. Gu et al. [12] proposed a multi-instance, multi-label method to
model relationship extraction and extract the situation, in which there may be multiple
relationships in the entity pair. M. Surdeanu et al. [13] proposed the use of a multi-instance,
multi-label and Bayesian network for relationship extraction. Although the effect has been
improved, the number of model parameters has also greatly increased the training scale.
On the other hand, the lightweight ALBERT [14] model proposed by Google can effectively
reduce the number of model parameters, and the effect of knowledge extraction is better.
In applications for power and beyond, S. Wang [15] and W. Shi [16] present new research
ideas in terms of processing frameworks and hierarchical structures. B. Aha et al. [19]
created a biomedical Knowledge Graph using Natural Language Processing models for
relationship extraction. The generated biomedical knowledge graphs (KGs) are then used
for question answering.

The proposed model designed in this paper uses a pre-trained model to reduce the
number of training parameters and improve the representativeness of text information
compared with the traditional model. Meanwhile, parameter sharing and multi-entity
segmentation are used to achieve joint acquisition of fault knowledge. It provides data
support and effective knowledge extraction means for forming fault database or fault
knowledge graph [24]. It helps to assist fault repairers in decision making and rapid fault
localization to improve the efficiency of fault investigation and diagnosis.

3. Multi-Entity Knowledge Joint Extraction Method
3.1. Architecture of Joint Fault Knowledge Extraction for IIoT Communication Devices

As shown in Figure 1, the industrial internet of things uses smart communication
equipment to monitor and perceive the smart grid. Similarly, these communication devices
constitute a power communication network with the power grid as the background. The
power communication network can realize the fault detection and troubleshooting of the
smart grid, which is also an indispensable part of the construction of the industrial internet
of things.
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Figure 1. IIoT power communication equipment application scenario diagram.

The joint knowledge extraction model mainly includes three parts: data analysis, data
processing and knowledge extraction. Among them, the data analysis part is to pre-process
the fault information of IIoT communication devices into a corpus of short texts. The data
processing part is to annotate the faulty entities and the entity relationships in the corpus
to obtain the training set data. The word vector is generated by ALBERT and BiLSTM as
word embedding models. Finally, CRF and entity segmentation are used in the knowledge
extraction part to realize the joint extraction of faulty entities and entity relations. The main
parts of the model are shown in Figure 2.

Figure 2. IIoT communication equipment fault knowledge extraction model diagram.

3.2. Fault Knowledge Text Pre-Training

Due to the various fault information of IIoT communication equipment, it is classified
first. After that, the segmentation fault corpus is obtained by processing the sentence
segmentation, removing the pause words and clauses. Finally, it is stored in the form of
short text to realize the word embedding of the text. In this paper, the ALBERT pre-training
model is used to represent the fault information by word embedding to realize the deep
mining of fault features. The ALBERT model is used as a lightweight language pre-training
model. As shown in Figure 3, it illustrates the pre-training structure of its word embedding
representation in fault text processing.
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Figure 3. Faulty text pre-training structure diagram.

According to the input fault text content, there are three input vectors corresponding
to the word vector, text vector and position vector. The output of the model is the word
vector corresponding to each input word and contains the semantic information of the full
text. The structure of the Transformer is shown in Figure 4, where Inputs represent the text
vectors to be input. Input Embedding and Positional Encoding encode the input faulty text
as a feed to the Transformer. The output of the multi-attention mechanism will be passed
through ADD & Norm layers (ADD layer has the effect of concatenating the residuals of
the two inputs and Norm stands for normalization). The output of this layer is passed to
Feed Forward. Finally, the output of the ADD & Norm layer is again connected to other
Transformer encoders or directly output as a word vector represented by each word of
faulty text.

Figure 4. Transformer structure diagram.

3.3. Parameter Sharing Code for Fault Knowledge Information

Next, in-depth association mining is performed on entities and relationships in the
context of the fault data text. This paper proposes a BiLSTM neural network coding
structure with shared underlying parameters. It enables both tasks to update the shared
parameters through the backpropagation algorithm. The role of this model is to strengthen
the connection between subtasks and solve the problem of error propagation caused by the
pipeline model. The information processing flow of the neurons in the coding layer in the
BiLSTM neural network is shown in Figure 5.
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Figure 5. BiLSTM neural network structure diagram.

As shown in Figure 5, vn of the input LSTM neuron is the word vector matrix of the
fault text. The output is the fault text feature vector yt after deep mining. The calculation
process of the input gate is shown in (1), and the calculation of the output door ot and the
forgetting gate ft is as shown in (2) and (3):

it = σ
(

Wi·
[
y(t−1), vt

]
+ b f

)
(1)

ot = σ
(

Wi·
[
y(t−1), xt

]
+ bo

)
(2)

ft = σ
(

W f ·
[
y(t−1), vt

]
+ b f

)
(3)

At the same time, the forgetting door layer determines whether to transfer the input
information v. The calculation process is shown in (4) and (5), where W is the weight and b
is offset, and the final output hidden layer yt value and its calculation formula are shown
in (6):

C̃t = tan h
(

Wc·
[
y(t−1), vt

]
+ bc

)
(4)

Ct = ft � C(t−1) + it � C̃t) (5)

yt = ot � tan h(Ct) (6)

Through deep context feature extraction and parameter sharing coding, the weights
and bias parameters of the two subtasks of entity labeling and relationship extraction
are shared. This is conducive to the next step of entity sequence labeling and entity
relationship extraction.

3.4. Multi-Entity Knowledge Joint Extraction

Through the pre-training of fault text corpus and the deep feature extraction of the BiL-
STM neural network, a joint knowledge extraction model is constructed in this paper. The
model is mainly divided into two parts: fault entity identification and entity relationship
extraction.

Named entity recognition is used to mark entities through joint extraction of the CRF
layer in the model. Entity relationship recognition uses multi-entity relationship recognition
and the attention mechanism to realize relationship prediction. The frame diagram of the
knowledge joint extraction model is shown in Figure 6.
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Figure 6. Multi-entity knowledge joint extraction framework diagram.

3.4.1. Fault Entity Identification

In order to realize the label prediction of fault entities, the CRF model is used to classify
entity types in entity extraction. The text feature vector matrix yn obtained after ALBERT
pre-training model and BiLSTM feature extraction is used as the input of the model to label
the entity tag. Its structure diagram is shown in Figure 7.

Figure 7. Entity marking algorithm diagram based on CRF.

We treat the fault data as an observation sequence Y (y1, y2, y3, . . . , yn), and each word
in the observation sequence corresponds to a fault entity label L (l1, l2, l3, . . . , ln). P(L|Y)
is the conditional probability distribution of the label sequence L when the observation
sequence Y is known.

Therefore, given the input observation sequence Y, we find the maximum possible
entity label sequence L by scoring the sentence sequences with the CRF model, as shown in
Equation (7).

score(y, l) =
n

∑
i=1

Yi,li +
n+1

∑
i=1

Qli−1,li (7)

where Yi, li represents the score of classifying word yi to the li label. And Qli−1,li represents
the transfer probability from the li to li−1 node. When we predict the label of a word, we
can use the previous labels that have been learned by the model. From Equation (7), it can
be seen that the scoring value of the whole sequence is the sum of the scoring values of
each position. Then, the Softmax layer is used for normalized classification, as shown in
Equation (8):

P(l|y) = exp(score(y, l))
∑l′ exp(score(y, l′))

(8)

Thus, the set with the maximum probability is selected as the final annotation sequence
of the CRF layer. The output y represents the fault entity label corresponding to the final
input word vector.

3.4.2. Multi-Entity Relationship Extraction

This paper proposes a relationship extraction algorithm based on multi-entity seg-
mentation. The algorithm realizes the division of multiple entity relationships in the same
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sentence and solves the problem of multiple entity boundary confusion. The specific
implementation process is shown in Figure 8.

Figure 8. Algorithm diagram of multi-entity segmentation relation extraction.

As shown in Figure 9, the algorithm mainly includes two parts: segmentation input
and relationship extraction. First, make statistics on the input entities. Then the entity
segmentation algorithm is used for corresponding segmentation and extraction, and the
feature vector en of the corresponding entity is obtained. At the same time, the text
feature vector yn and its co-coding are used as the input of the relationship extraction layer.
Finally, in the relationship extraction layer, the Attention mechanism is used to re-measure
the weight of the relationship between different entities and connect the Softmax layer
to classify and predict the fault relationship. The specific algorithms of each layer are
described below.

Figure 9. Average accuracy and loss of joint extraction model learning parameters.

Step 1: The entity segmentation algorithm is used to extract the entity feature vector
pair Tn. The number n of fault entities in the current fault text is counted according to the
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entity prediction label, and each fault entity feature vector is recorded as ei. According to
the combination number calculation formula, a total of C2

n pairs of corresponding entity
feature vectors are extracted and recorded as Ti. It is calculated by Equation (9).

Ti =
(
ei, ej

)
(∀i, j ∈ n and i 6= j) (9)

Step 2: The entity feature pair vectors Ti and Yn are combined respectively, and the
number of fault text feature vectors is C2

n as the input of the relationship extraction layer.
Because the input length of the fault text is limited, the calculation loss is small, and it is
convenient to adjust the weight of entity features in relationship extraction.

Step 3: The input fault text feature vector Ti and Yn are used as the input of the
Attention layer. The Attention layer is used to re-weigh the input feature weight and
weight and output with each time series. Avoid the loss and dilution of semantic vector
sequence information calculated by BiLSTM layer before. Emphasis is placed on the weight
and bias of the relationship between fault entities. The calculation and adjustment is
as follows:

Ci =
T

∑
j=1

aij·hj (10)

aij =
exp

(
eij
)

∑T
k−1 exp

(
eij
) (11)

eij = α
(
si−1, hj

)
(12)

where ci is the semantic coding vector, a is the result of normalization of attention correlation
coefficient eij, hj is the hidden layer output, eij is the attention correlation coefficient, α is a
calculation function and si−1 is the decoder output.

Step 4: The weighted sum vector obtained by the Attention mechanism is used as the
text feature vector of the final relational prediction. Then, the Softmax function is accessed to
predict the relationship. Finally, the entity relationship r in the case of maximum probability
between any entities in the input text is obtained.

4. Experiment Analysis
4.1. Experimental Environment and Data

There are two sets of data sources for this paper. One set is the fault log data from the
operation of the Southern China Power Grid, and also includes the power operation and
maintenance manuals of the equipment and expert cases. It is taken from the alarm and
performance event manual of the OptixOSN7500, a grid communication device. Through
the preliminary manual screening, 15,000 sentences can be used in the experimental data.
It includes 530 entities and 16 failure relationships. The other set is the Chinese dataset
CLUENER, where the comparison experiments are conducted, which includes category
labels for 10 life scenes and has a total corpus sample size of 12,091 items.

The configuration used in this article in the experimental environment is shown in the
following Table 1.

Table 1. Experimental Environment.

Project Environment

Development language Python3.7.5
CPU Intel i5-10210U CPU@2.4 GHz
GPU GEFORCE RTX 2080

Development framework Tensorflow2.0
Running memory 16 GB

Hard disk size 1 TB
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4.2. Data Preprocessing

First, the corpus is segmented, and missing words and blank lines are deleted. After
that, the corpus is segmented and filled to a uniform word length. The word length is set
to 200. Finally, the fault text data characteristics of IIoT communication equipment are
combined. Some entities and relationships are shown in Tables 2 and 3.

Table 2. Fault Entity Corpus Tagging.

Identification Category Example

N Equipment name Ethernet veneer, optical fiber,
pluggable optical module

C Issue cause Aging, shedding, pressure loss
P Failure phenomenon Alarm, interruption, packet loss
M Processing method Check, connect, clean

Table 3. Entity Relation Corpus Tagging.

Identification Category Example

U Include Ethernet veneer with interface board.
S Causality Cause.
T Constellation And.

This article uses the “BIO” label strategy. Mark each element as “B-X”, “I-X” or
“O”. Among them, “B” represents the beginning of the marked entity or relationship, “I”
represents the middle, and “O” indicates that the text does not belong to any type of entity
or relationship. Table 4 shows an example of fault corpus tagging.

Table 4. Training Set Corpus Sample Labeling Example Table.

No. Character Label No. Character Label

1 the O 9 the O
2 frame B-P 10 veneer B-N
3 miss I-P 11 can O
4 alarm I-P 12 easily O
5 in O 13 lead B-S
6 data O 14 to I-S
7 transmission O 15 service B-P
8 from B-S 16 interruption I-P

4.3. Evaluation Index

In this paper, the accuracy P (Precision), recall rate R (Recall) and F1 value (F1-score)
are used as the evaluation criteria for the extraction results of entities and relationships.

P =
TP

TP + FP
(13)

R =
TP

TP + FN
(14)

F1 =
2PR

P + R
(15)

In the above formula, TP (True Positive) indicates the number of positive samples
predicted as positive samples. TN (True Negative) means to predict the number of negative
samples as negative samples. FP (False Negative) means to predict the number of positive
samples as negative samples. Finally, calculate the F1 value according to Equation (15). The
higher the value, the better the classification effect.
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4.4. Model Parameter Training

In terms of experimental parameters, this article chose different parameter settings for
comparison. Finally, we determine the best parameter settings, where the dimension of the
word vector is 200, the size is 256, the number of layers of the BiLSTM model is 2, the value
of dropout is 0.8, the head h of self-attention is set to 6, and the bias variable is set to 10.

In the experimental part, we optimize the joint extraction model by adjusting the
learning rate and the number of iterations. Among them, the learning rate will directly
affect the speed and accuracy of the model convergence. When the learning rate is set
too large, although the model learning speed is fast, it may cause oscillations (A too large
learning rate setting leads to a non-convergence of the training process, and parameters
such as accuracy show large fluctuations during the training process.). If the learning rate
is too small, it may fall into a local optimum (A too small learning rate setting will result
in a recent extreme point in the training process and cannot jump out of the local range
to achieve the overall optimal.). Similarly, the number of iterations represents the entire
process of model training. When the number of iterations is too few, the model training
will not be mature enough, which will lead to a larger loss value, and too many iterations
will cause over-fitting and reduce the accuracy rate. Among them, Acc_train represents the
accuracy of the training set, Loss represents the verification error and Acc_test represents
the accuracy of the test set.

As shown in Figure 9, when the learning rate is 1 × 10−5 and 2 × 10−4, the accuracy
of the model training set is higher, but the prediction effect of the latter verification set
is slightly lower. Similarly, the loss rate of the model is lower when the learning rate is
1 × 10−5 and 1 × 10−4. In the case of taking into account both the accuracy of model
knowledge extraction and the loss rate, 1 × 10−5 is the best learning rate.

As shown in Figure 10, according to the trend of the line chart, the accuracy of the
model improves rapidly in the training processes, and the accuracy is the highest when
the number of iterations reaches 70, and then tends to be stable. The model loss rate varies
with the number of model training iterations. As can be seen from the diagram, the loss
rate of the model decreases rapidly in the iterations. When the number of training is 70,
the loss effect of training set and verification set is better. When the training time is 80, the
loss rate of the training set is the lowest, but the loss of the verification set is larger. The
iterative effect of comprehensive accuracy and loss rate preserves the model parameters
with training times of 70.

Figure 10. Cont.
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Figure 10. Average iterative accuracy and loss of model training.

4.5. Comparative Analysis of Model Results

In order to verify the model experimental effect, four groups of comparison exper-
imental groups are set up in this paper: BiLSTM-CRF [11], LSTM-Attention-CRF [27],
BERT-LSTM-CRF [28] and BERT joint extraction model [29] as knowledge extraction effect
control. The experiments have compared the CLUENER dataset and the Failure Text dataset
of industrial network communication equipment.

Table 5 shows the evaluation results for named entity recognition of device fault text
with the CLUENER dataset by various classical models. As we can see from the table,
the left side shows the evaluation results of named entity recognition for faulty text, and
the performance of the MEKJE model proposed in this paper is on average 3% better in
terms of both accuracy, recall and F1 value compared with models such as BiLSTM-CRF.
Our comparison experiments with the CLUENER dataset on the right side show that
the MEKJE model also performs well, with an average improvement of 5% in F1 values
compared to other models. This also proves that the pre-trained model can produce a
greater help in the named entity recognition accuracy improvement. Although the model
named entity recognition results are similar to the Bert model, the advantage of this model
is the reduction of training parameters and the significant reduction of training cost. This
also shows that the model is not only for the electric power field, but also for other datasets
with good recognition results and strong generalizability.

Table 5. Fault Entity Label Prediction.

No. Model
Fault Text Dataset CLUENER Dataset

P R F1 P R F1

1 BiLSTM-CRF 0.658 0.613 0.634 0.685 0.644 0.673
2 LSTM-Attention-CRF 0.731 0.663 0.695 0.709 0.724 0.711
3 BERT-LSTM-CRF 0.759 0.697 0.726 0.743 0.716 0.721
4 BERT joint extraction 0.779 0.765 0.771 0.858 0.842 0.860
5 MEKJE 0.773 0.756 0.764 0.943 0.916 0.943

As shown in Table 6. The MEKJE model proposed in this paper is higher than other
classic models in relational extraction. Whether in the Fault Text dataset or the CLUENER
dataset, the model’s performance is the best. In particular, it has increased 6.1% and 6.2%
in the precision and recall compared with the optimal BERT joint extraction model, and the
F1 value reached 78.6%. In order to verify the generality of the model, the experiment also
tests on the CLUENER dataset. The experimental results show that the MEKJE model also
achieves the best results on the open-source Chinese dataset. It increased by 8.3%, 6.9%
and 8.3% on the accuracy, recall and F1 score. Experiments show that the MEKJE model
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can deeply explore the relationship between the multi-entity entities, improve the accuracy
of the relationship extraction.

Table 6. Multi-entity Relationship Extraction Prediction.

No. Model Name
Fault Text Dataset CLUENER Dataset

P R F1 P R F1

1 BiLSTM-CRF 0.549 0.498 0.522 0.571 0.537 0.553
2 LSTM-Attention-CRF 0.695 0.603 0.645 0.662 0.548 0.595
3 BERT-LSTM-CRF 0.706 0.591 0.643 0.744 0.714 0.728
4 BERT joint extraction 0.735 0.713 0.723 0.860 0.825 0.842
5 MEKJE 0.796 0.778 0.786 0.894 0.860 0.876

Figure 11 shows the performance of each model in terms of entity and relationship
extraction accuracy, where the solid line represents the entity and relationship extraction
accuracy for the Faulty Text dataset. The dashed line represents the entity and relationship
extraction accuracy for the CLUENER dataset. As can be seen from the graph, the entity
extraction accuracy of the MEKJE model is almost the same as that of the BERT joint
extraction model, while the accuracy of relational extraction is significantly higher than
that of the latter.

Figure 11. Evaluation of MEKJE model in comparison with classical models.

Similarly, it shows the performance of each model in terms of recall rates for entity
and relationship extraction. As can be seen from the graph, the entity extraction recall rate
of the MEKJE model is slightly lower than that of the BERT joint extraction model, while
the accuracy of relational extraction is much higher than the latter.

By calculating the accuracy of the model and the recall rate, a comprehensive assess-
ment of each model can be obtained for F1 values. As shown in Figure 11, the blue line



Electronics 2022, 11, 979 14 of 17

represents the F1 value extracted by the entity, the red line represents the F1 value extracted,
and the green line represents the average F1 value of each model. In the comparison of
the entity relationship with several classic models, this model is optimized by the entity
relationship with several classic models, and improves model application efficiency.

4.6. Analysis of Sample Prediction Results

According to the prediction results in Table 7, the input sample will output the pre-
diction results of the fault entity and relationship after knowledge extraction through the
model. According to the predefined entity relationship label, the number and name of the
faulty entity in the model output text. At the same time, the prediction of the relationship
between the two entities is realized and expressed in the form of combination.

Table 7. Experimental Prediction Results of Joint Extraction Model.

No. Input Corpus Prediction Result

1

There is an error alarm on the service transmission optical
path, which may be caused by the inconsistent
configuration of the time slots bound at both ends, or the
veneer failure caused by the performance degradation of the
service transmission optical path.

{‘Equipment name’:[N1:’ service transmission optical path ‘,
N2:’ veneer ‘, N3:’ time slots ‘], ‘Issue cause’:[C1:’
Inconsistent configuration ‘, C2:’ performance degradation
‘,], ‘Failure phenomenon’:[P1: error alarm ], ‘Causality’:[S1:
(P1, C1),S2: (P1, C2)], ‘Constellation’: [T1: (C1, C2)]}

2

Loose fiber optic connectors, unclean fiber optic connectors,
fiber optic cable failures, and poor contact of components in
optical path transmission, etc., will all cause deterioration of
transmission performance.

{‘Equipment name’:[N1:’ fiber optic connectors ‘, N2:’ optic
cable ‘], ‘Issue cause’: [C1:’ loose ‘, C2:’ failures’, C3:’ poor
contact ‘], ‘Failure phenomenon’:[P1:’ deterioration of
transmission performance ‘], ‘Causality’:[C1: (P1,C1), C2:
(P1,C2), C3: (P1,C3)]}

3
For Ethernet boards with interface boards, replace the
interface boards first. For Ethernet boards without interface
boards, directly replace the alarm boards.

{‘Equipment name’:[N1:’ Interface board ‘, N2:’ Ethernet
boards ‘,N3: ‘ veneer ‘ ,N4:’ alarm boards ‘], ‘Processing
method’: [M1:’ replace ‘, M2:’ replace ‘], ‘Include’:[U1: (N1,
N2), U2: (N1, N3)]}

4
For the ring multiplex section, check from the east-west
fiber connection. For the linear multiplex section, check the
connection of the working protection optical fiber.

{‘Equipment name’:[N1:’ ring multiplex section ‘, N2: ‘
east-west fiber ‘, N3: ‘ linear multiplex section ‘, N4: ‘
working protection optical fiber ‘], ‘Processing
method’:[M1:’ Check ‘]}

5

The multiplex section status indication alarm means that an
event such as fiber disconnection or terminal node failure
has occurred, which may trigger multiplex section
protection switching.

{‘Equipment name’:[N1:’ multiplex section ‘, N2:’ terminal
node ‘], ‘Issue cause’:[C1:’ fiber disconnection ‘, C2:’ failure
‘], ‘Failure phenomenon’:[P1:’ status indication alarm ‘, P2: ‘
protection switching ‘], ‘Causality’:[C1: (P1,P2)]}

6 For the two-fiber ring multiplex section and linear multiplex
section, if fiber disconnection and other failures occur again.

{‘Equipment name’:[N1:’ two-fiber ring multiplex section ‘,
N2:’ linear multiplex section ‘], ‘Issue cause’:[C1:’ fiber
disconnection ‘, C2:’ other failures ‘], ‘Failure
phenomenon’:[P1: ‘ Business interruption ‘], ‘Causality’:[C1:
(C1, P1), C2: (C2,P1)]}

Figure 12 shows the fault knowledge graph constructed from the entities and rela-
tionships of the IIoT communication device faults. The knowledge extraction of the fault
text is performed by means of a federated model, and we will simulate and model the
resulting entities and relations by means of Neo4j. Entities are represented by dots and
relationships are represented by arrow connecting lines between two entities. For example,
pink represents the fault phenomenon, blue represents the fault treatment and orange
represents the cause of the fault.
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Figure 12. Fault knowledge graph of IIoT.

When an equipment fault occurs, the maintenance worker can refer to the power
knowledge map to search for fault handling cases and the relationships between related
equipment to locate the cause of the fault as quickly as possible. Thus, the knowledge map
shows the correlation between equipment more vividly, which is helpful for fault handling.

5. Conclusions

The construction of fault knowledge graph of IIoT communication equipment has
significant development potential and application value for realizing the stable operation
of integrated energy system. In order to realize fault knowledge extraction, this paper
proposes a joint fault knowledge extraction method based on the fault data of existing IIoT
communication equipment. The model is based on the ALBERT pre-training model and
BiLSTM neural network to embed text words to generate text vectors. Secondly, the entity
prediction label and multi-entity segmentation algorithm based on CRF layer realize the
joint extraction of fault entity and entity relationship. The experimental results show that
the F1 value of this method reaches 78.6%, which increases the prediction accuracy by 2%
and the recall rate by 3.8% compared with classical BERT-LSTM-CRF and other models.
Through comparison experiments on the CLUENER dataset, it is directly demonstrated
that the method can achieve more accurate label prediction of equipment fault entity
relationships. It provides a data extraction method for establishing a more complete
knowledge graph of industrial IIoT communication equipment faults, which can effectively
improve the automated operation and maintenance of energy integrated systems.
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