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Abstract: The SSL/TLS protocol is widely used in data encryption transmission. Aiming at the
problem of detecting SSL/TLS-encrypted malicious traffic with small-scale and unbalanced training
data, a deep-forest-based detection method called DF-IDS is proposed in this paper. According to the
characteristics of SSL/TSL protocol, the network traffic was split into sessions according to the 5-tuple
information. Each session was then transformed into a two-dimensional traffic image as the input of
a deep-learning classifier. In order to avoid information loss and improve the detection efficiency,
the multi-grained cascade forest (gcForest) framework was simplified with only cascade structure,
which was named cascade forest (CaForest). By integrating random forest and extra trees in the
CaForest framework, an end-to-end high-precision detector for small-scale and unbalanced SSL/TSL
encrypted malicious traffic was realized. Compared with other deep-learning-based methods, the
experimental results showed that the detection rate of DF-IDS was 6.87% to 29.5% higher than that of
other methods on a small-scale and unbalanced dataset. The advantage of DF-IDS was more obvious
in the multi-classification case.

Keywords: network intrusion detection; encrypted malicious traffic; SSL/TLS; deep forest

1. Introduction

With the improvement in people’s network security awareness, more and more web-
sites and applications choose to encrypt their network traffic. Nowadays, the Secure Socket
Layer/Transport Layer Security (SSL/TLS) protocol is the most frequently used encryption
protocol. The intention of traffic encryption is to protect users’ information from leakage,
but an attacker can also encrypt their malicious data to carry out an attack secretly. Tradi-
tional intrusion-detection technologies have difficulty dealing with encrypted traffic, which
means the attack activity can bypass the detection engine.

Traditional traffic classification methods are mainly port-based, payload-based, or
statistic-based [1,2]. The port-based and payload-based methods are unable to detect
encrypted malicious traffic [3]. As for the statistic-based method, its detection accuracy
depends heavily on the design of its statistical features, so improper features will limit the
detection accuracy [4].

In recent years, deep neural network (DNN)-based model such as the convolutional
neural network (CNN) and recurrent neural network (RNN) have achieved great success
in the fields of image classification and natural language processing [5,6], and have been
applied in the field of cryptanalysis. By automatically extracting features from traffic, these
methods can avoid the problem of selecting artificial features, and achieve good detection
performance. However, a DNN relies on large-scale and high-quality training data to
achieve good performance. When training samples are insufficient, it is difficult to build
an effective detection model. So, when a new type of attack appears, since the number of
labeled samples is small at that time, it is difficult to train a detection model with good
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performance. In addition, for the multiclassification case, since the number of training
samples of each class will be less, a detection model based on a deep-learning method
will face the same problem. Deep forest is a multilayer model based on a decision tree
ensemble that has been used in the field of image classification, and has proved suitable for
small-scale and unbalanced data detection [7,8]. Therefore, aiming at the high-precision
detection of SSL/TLS-encrypted malicious traffic, we proposed a DF-IDS method based on
deep forest for small-scale and unbalanced data.

The scope of this paper is detection of network intrusion. The purpose of the proposed
work was to solve the existing deep-learning models’ problem due to a lack of data. The
main contribution of this paper was to propose a deep-forest-based anomaly-intrusion
detection framework named DF-IDS for small-scale and unbalanced SSL/TLS encrypted
malicious traffic. In this framework, firstly, according to the characteristics of SSL/TLS-
encrypted malicious traffic, the original traffic was split into sessions and converted to a
traffic image as the input of the detector. Then, based on deep-forest technology, and consid-
ering both the detection accuracy and efficiency, an improved gcForest framework named
CaForest was designed. This framework could integrate various type of base classifiers,
and the depth of model could automatically adjust according to the data. DF-IDS realized
high-precision encrypted malicious traffic detection on small-scale and unbalanced data.

The remainder of this paper is organized as follows. Section 2 introduces work
related to encrypted traffic detection. Section 3 presents our DF-IDS method, including the
data-preprocessing method and the design of the detection model. Section 4 presents the
experiments and results to evaluate our method, and we compare our method with other
works. Section 5 closes with our conclusions and plans for future work.

Table 1 shows all acronyms used in this paper.

Table 1. Summary of acronyms in this paper.

Acronym Definition

SSL Secure Socket Layer
TLS Transport Layer Security

CNN Convolutional neural network
SAE Stacked autoencoder

LSTM Long short-term memory
1D One-dimensional

DNS Domain name system
HTTP HyperText Transfer Protocol
CART Classification and regression tree
K-NN K-nearest neighbors

IDS Intrusion detection system
SNI Server name indication

SVM Support vector machine
RF Random forest

2. Related Work

With the development of deep-learning technology, many researchers have applied
it to encrypted traffic classification. Most studies currently available were focused on the
classification of benign network traffic, such as video flow, chat flow, file flow, and so
on. Lotfollahi et al. [9] used a stacked autoencoder (SAE) and a 1D convolutional neural
network (1D-CNN) to detect encrypted benign traffic. They extracted the first 1500 bytes
starting from the IP header of each packet, masked the IP address and port number, then
applied SAE or 1D-CNN to train the classifiers. In this work, a single packet was used
as the input sample, so the sequential correlation of the entire flow was not well utilized.
Vu et al. [10] extracted the head of a packet starting from the IP layer and the first n bytes
of payload, and utilized long short-term memory (LSTM) as the classification model; this
method achieved a high F1 score of 0.98. However, since different types of encrypted
traffic have specific IP addresses and port numbers in the head of network packets, the



Electronics 2022, 11, 977 3 of 18

classification results may have been affected by these factors [9]. Wang et al. [11] proposed
an end-to-end encrypted traffic-classification method based on 1D-CNN. They extracted
the first 784 bytes of each flow or session as the input, and achieved a precision of 85.8% and
a recall of 85.9% in a 12-classification experiment. Zou et al. [12] proposed a cascade model
of CNN and LSTM. They used any three consecutive packets in a session and extracted
the first 784 bytes of each packet starting from the IP layer, then reshaped these data into
a 2D image as the input. Here, CNN was used to extract spatial features, and LSTM was
adopted to find the temporal relevancies of the spatial features. Using the same dataset as
a reference [11], the average precision and recall were increased by 5%. Lopez-Martin et al.
proposed a classification model named gaNet-C [13] by using hyperbolic tangent (tanh)
layers as the final layer of each “building block”, adding a sigmoid fully connected (FC)
layer prior to any network output, and applying a log loss instead of a quadratic loss as the
cost function. Experiments on an unbalanced dataset showed that the accuracy of gaNet-C
could achieve 94%, the recall was 60%, and the precision was 85% in binary classification.
Zeng et al. [14] proposed a framework called deep-full-range (DFR), in which 1D-CNN,
LSTM, and SAE were employed. They extracted the first 900 bytes of each data file as the
input. The experiments on the ISCX VPN-non VPN traffic dataset showed that the model’s
performances based on 1D-CNN and LSTM were better than that of SAE.

At present, the features used for encrypted malicious traffic detection are mainly based
on statistical characteristics. Prasse et al. [15] combined byte-related features, time-related
features, and domain name features to train an LSTM-based classifier. Their experiments
showed that the performance of the detector with combined features was better than that
of the detectors using a single type of feature. In their method, the domain name was
used; however, since the domain name is easier to be modified or forged by attackers, a
detector trained with this information may be easily fooled. Anderson et al. [16] consid-
ered that different software had different preference when using protocols such as TLS,
domain name system (DNS) and Hypertext Transfer Protocol (HTTP), so they used not
only statistical features, but also TLS handshake metadata, DNS contextual flow linked to
the encrypted flow, and the HTTP headers of the HTTP contextual flow. The experiments
showed that their work effectively reduced the false-alarm rate. This work proved that
the SSL/TLS handshake metadata was useful in detecting SSL/TLS-encrypted malicious
traffic. In addition, Anderson et al. [17] extracted 22 standard features for TLS-encrypted
session traffic based on Williams’ work [18], and enhanced them to obtained 319 enhanced
features. Six common machine-learning algorithms, such as support vector machine (SVM),
random forest (RF), and decision tree, were used to build models. The experiments on
two large-scale datasets showed that, with the enhanced features, the performance of the
classifiers were improved, and models based on a decision tree or RF had better classifica-
tion accuracies. Shekhawat et al. [19] proposed to use byte-related features, time-related
features and SSL/TLS-protocol-related features. They conducted classification with SVM,
RF, and XGBoost, and achieved accuracies of 91.22%, 99.8%, and 99.88%, respectively, in
binary classification. Their experiments showed that the decision tree ensemble model
performed better than SVM. This work also proved that SSL/TLS protocol information
is useful for classification. Stergiopoulos et al. [20] selected the size of packet, the size of
payload, the size ratio of payload to packet, the size ratio of current packet to previous
packet, and the interarrival time as features. They used a classification and regression tree
(CART) decision tree and the K-NN (k-nearest neighbors) algorithm as classifiers, and
achieved an accuracy of 94.5% in a binary-classification experiment. However, in the case
of small-scale data, the accuracy dropped to 88.8%.

A summary of related works and ours are shown in Table 2. It can be seen that
most studies were focused on the classification of benign application traffic in end-to-end
mode, or benign and malicious binary classification in feature-based methodology. Only
a few studies aimed at malicious multiclassification in end-to-end mode. At the same
time, although many studies realized classification of encrypted traffic based on a deep-
learning method, which proved the effectiveness of the deep-learning method in the task
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of encrypted traffic classification, these works were all based on a large number of samples.
Since the main characteristic of a deep-learning-based classifier is its reliance on a large
number of training samples, when the number of training samples is insufficient, such
as 1000 samples or less, a model based on deep learning can easily fall into overfitting,
making it difficult to obtain a high detection accuracy. In view of this problem, we designed
a novel deep-forest-based algorithm for encrypted malicious traffic with small-scale and
imbalanced data.

Table 2. Summary of related work.

Paper Concerns Methodology Inference Task
Deep-Learning or
Machine-Learning

Family
Input Unit Feature Dataset

Size

Lotfollahi et al. [7] TC End-to-End MCC SAE and 1D-CNN Packet - M
Vu et al. [8] TC End-to-End MCC LSTM Packet - S

Wang et al. [9] TC End-to-End MCC 1D-CNN Flow/Session - L
Zou et al. [10] TC End-to-End MCC CNN + LSTM Session - L

Zeng et al. [13] TC and
MTD End-to-End MCC CNN + LSTM + SAE Flow - M

Prasse et al. [14] MTD Feature-based BC LSTM - BR, TR, and O L
Anderson et al. [15] MTD Feature-based BC L1-LR - BR, TR, and PR L
Anderson et al. [16] MTD Feature-based BC SVM, RF, DT, and O - BR, TR, and PR L
Shekhawat et al. [18] MTD Feature-based BC SVM, RF, and XGB - BR, TR, and PR L

Stergiopoulos et al. [19] MTD Feature-based BC CART and K-NN - BR and TR L
Ours TC and

MTD End-to-End MCC DF Session - S

Abbreviations: TC, traffic classification; MTD, malicious traffic detection; BC, binary classification; MCC, multiclass
classification; CNN, convolutional neural network; 1D-CNN, one-dimensional CNN; SAE, stacked autoencoder;
LSTM, long short-term memory; CART, classification and regression tree; K-NN, k-nearest neighbors; SVM,
support vector machine; RF, random forest; XGB, XGBoost; L1-LR, L1-logistic regression; DT, decision tree; O,
others; BR, byte-related; TR, time-related; PR, protocol-related. For the dataset size (the number of samples in the
minimum category): S, less than 1000; M, 1000–10,000; L, more than 10,000.

3. Proposed Method

Aiming at the problem of detecting SSL/TLS encrypted malicious traffic with small-
scale and unbalanced training data, a deep-forest-based detection method named DF-IDS
was designed in this study. The workflow of DF-IDS is shown in Figure 1.
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Figure 1. Flow of DF-IDS.

At first, the raw traffic was split according to the characteristics of the SSL/TSL
protocol, then the traffic image was generated as the input of the detector. Based on the
deep-forest framework, an improved classifier named CaForest was constructed to detect
encrypted malicious traffic.

3.1. Preprocess of Network Traffic

Figure 2 shows the flow of processing of traffic.
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3.1.1. SSL/TLS-Encrypted Traffic Splitting

SSL/TLS is a protocol that is widely used for encrypted transmission. SSL/TLS uses a
mixture of symmetric encryption and asymmetric encryption technology. When using the
SSL/TLS protocol, the client side and server side must first finish the handshake process,
and then transmit encrypted application data to each other. In the handshake stage, the
traffic contains unencrypted data such as the protocol version, authentication information,
and key exchange information. Some studies showed that this information could help to
identify encrypted malicious traffic effectively [16,19,21].

Usually, the captured raw traffic can be split into basic units in terms of packet,
flow, or session for detection. Considering that the session contains all of the useful
information [11,12], the session was adopted as the basic traffic unit in this study. The
raw traffic was split according to session using 5-tuple information: source IP, source port,
destination IP, destination port, and transport layer protocol.

An example of part of a session is shown in Figure 3; the red boxes denote handshake
information.
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3.1.2. Traffic Processing

After the traffic was split according to the 5-tuple information, in order to avoid
some special information interfering with the classification, further processing was needed.
Firstly, the packet header was removed, and only the traffic payload was kept in order
to avoid the effects caused by the IP address, port number, etc. This information may
cause overfitting of the model. Then, considering that some Hypertext Transfer Protocol
Secure (HTTPS) sessions contain an unencrypted server name indication (SNI) field in the
handshake data, which states the domain name to be visited, and might interfere with the
classification result, this field was removed as well. Finally, since some researchers have
shown that they are sufficient for a deep-learning-based classifier [9,11,12], the first n bytes
in a session also were extracted.

3.1.3. Traffic Image

Deep-learning classifiers usually use a two-dimensional image as input, and automati-
cally extract the nonlinear features hidden in the image through a deep neural network to
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achieve end-to-end classification. A deep-forest model can use both two-dimensional and
one-dimensional input data. Considering the need for comparison experiments, here, the
traffic was converted to a two-dimensional image called the traffic image.

The raw traffic captured by tools such as Wireshark is essentially a sequence of bytes.
A byte is a binary hexadecimal number, and its corresponding decimal value range is 0–255,
which are just the intervals of a pixel’s gray value. Therefore, each byte in traffic can be
converted into a pixel in a grayscale image. According to the route (from top to bottom and
from left to right) in Figure 4, the traffic is converted to a two-dimensional image as shown
in Figure 5, and is then used as the input for the deep-learning classifier. In this process,
there is no loss of information in the original data.
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Figure 5. Example of traffic image.

3.2. Detection Model
3.2.1. CaForest-Based Classifier

Deep forest (DF) was proposed by Zhou in 2017 [22]. It is unlike the traditional deep-
learning method, which stacks neural networks, while DF stacks forest models. In contrast
to most DNNs whose model complexity is fixed, gcForest adaptively decides its own
model complexity by terminating training when adequate. This enables its applicability
at different scales of training data, so it is not limited to large scales. The implementation
framework of DF proposed by Zhou is called gcForest, which has proved suitable in the
classification of small-scale and unbalanced data [23]. Compared with a model based on a
DNN, gcForest has fewer hyperparameters and better robustness [24].

There are two main parts in the gcForest framework: multi-grained scanning and
cascade forest [22]. The first part is similar to the convolutional layer in CNN. It uses a
sliding window to scan the input image and extract the texture feature. The cascade forest
utilizes a stacking algorithm. As is shown in Figure 5, the traffic image has no typical image
texture, since the entropy of the encrypted data is very high [25]. In addition, unlike the
usual image, the traffic image does not contain much redundant information, and each
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pixel in the image represents a certain byte in the traffic [16]. Extracting texture features
might cause information loss. Meanwhile, considering that multigrained scanning will
greatly increase the time and memory costs in the training period, only the part of cascade
forest in the gcForest framework was kept when building the detection model in this study.
This simplified framework was named CaForest. The structure of CaForest is shown in
Figure 6.
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The gcForest framework can integrate various type of base classifiers, and allows user
to freely design the types and numbers of base classifiers. The depth of cascade forest
can automatically adjust during the training process. In CaForest, each layer of cascade
forest realizes an ensemble of base classifiers. Some researchers have proved that the
combination of tree ensemble models, such as gcForest, random forest, Extra Trees and
XGBoost, is effective [16,24]. This can overcome overfitting by bootstrapping, pruning and
feature-sampling strategies.

The output of each base classifier is called the class vector, which is a probability vector.
The dimensions of the class vector are equal to the number of classes, and the value of
each dimension is the probability that the sample belongs to the corresponding class. In
the process of forward propagation, the class vectors generated by the base classifiers are
concatenated with the original input and are the input of the next layer. In the last layer,
a mean class vector of all the class vectors generated by base classifiers is calculated, and
then the model chooses the class with the highest probability as the predicted label of the
input sample.

3.2.2. Random Forest (RF)

Random forest is a bagging model that contains many decision-tree models. In
random forest, each tree is trained and makes prediction independently. The final decision
is determined by a voting mechanism. In random forest, two random subsets—a random
subset of the original training set and random subset of the original feature set—are
introduced to guarantee the diversity of the base classifier and avoid overfitting.

Assuming that a random forest contains N decision trees, the original training set is D,
and the feature set is V. Through a bootstrapping algorithm, random forest constructs N
subsets of D:{D1, D2, D3 . . . DN}. N decision trees are generated independently with the
N subsets. Node splitting is an important part in the growing of a decision tree. In random
forest, instead of searching the whole feature set V for node splitting, each decision tree
randomly selects a subset Vsub of V to search for the best splitting feature. When each tree
is trained, random forest obtains a final prediction by voting. Let Tk denote the prediction
result of tree k, and the final prediction of sample xi is obtained through Equation (1):

ŷi = argmax
y

N

∑
k=1

I(Tk(xi) = y) (1)
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where:

I(Tk(xi) = y) =
{

1, i f Tk(xi) = y
0, i f Tk(xi) 6= y

(2)

Random forest usually uses a classification and regression tree (CART) decision tree as
the base classifier. The CART algorithm adopts the Gini index to evaluate the information
gain of a splitting feature and its value. Assuming that there are K classes, and the
probability of the k-th class is pk, the Gini index then is calculated as follows:

Gini(p) =
K

∑
k=1

pk(1− pk) = 1−
K

∑
k=1

pk
2 (3)

If the sample set D is split into D1 and D2, the value of feature A is equal to a, and the
Gini index of set D is defined as:

Gini(D, A = a) =
|D1|
|D| Gini(D1) +

|D2|
|D| Gini(D2) (4)

3.2.3. Extra Trees

Extra Trees is also a bagging model. Unlike random forest, it uses a complete training
set D to train each tree. In the process of node splitting, it uses a random subset of the
feature set, and selects the splitting-feature value randomly.

Extra Trees also adopts a CART decision tree as the base classifier. In random for-
est, for any feature A, the model traverses every possible value ai of A, and calculates
Gini(D, A = ai), then chooses a∗i , which minimizes the Gini(D, A = ai) as the best splitting
value of feature A. However, in Extra Trees, the best splitting value a∗i of feature A is not
obtained only by calculating, but also by randomly selecting.

3.2.4. XGBoost

XGBoost takes advantage of a boosting algorithm to reduce bias to improve the
performance of the model. The XGBoost model also consists of a CART decision tree, and
can be described by Equation (5):

ŷi =
K

∑
k=1

fk(xi) (5)

where fk represents the k-th tree. Trees in XGBoost are generated iteratively. Each tree fits
the residual of previous model; that is:

fK = yi −
K−1

∑
k=1

fk(xi) (6)

where yi is the actual value of sample xi. When XGBoost generates a new tree ft in the t-th
round, the objective function of XGBoost is given as Equation (7):

obj(θ) =
n

∑
i

l(yi, ŷi
(t−1) + ft(xi)) + γT +

1
2

λ
T

∑
j=1

w2
j + C (7)

where T is the number of leaf nodes, wj is the output value of the j-th leaf node, and γ and
λ are weights. The first term of the objective function is the loss function of the model,
and the second and third terms are the regularization terms, which are used to restrict the
complexity of the tree and prevent overfitting. XGBoost generates a new tree by minimizing
the objective function. A second-order Taylor’s expansion is performed on Equation (7)
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when ft(xi) = 0. After simplification, the calculation of output value wj of leaf node and
the final objective function Obj∗ are obtained:

w∗j = − Gj
Hj+λ

Obj∗ = − 1
2

T
∑

j=1
w∗j + γT

(8)

XGBoost grows new trees iteratively based on Equation (8).

3.3. Training Process of CaForest

The initial number of layers in CaForest was 0. At the beginning of the training process,
the first layer was trained with the original training data. Then, the output of the first
layer was concatenated with the original input, which was used to train the second layer.
When the training of one layer was completed, the algorithm automatically determined
whether to add the next layer according to the improvement in the classification accuracy.
If the accuracy of the model had no obvious improvement, the training ended. The model
training process was shown in Algorithm 1.

Algorithm 1: Training process of CaForest model

Input: training set D0 =
{

x1, x2, x3 . . . . . . x|D|
}

;
Output: model M = ∑|M|i=1 Mi ; where ∑ represents cascading;
Parameters: |D| is the number of sample; N is the number of classes; K is number of base classifiers in each layer; |M| is the
depth of model; Mi is the i-th layer of the model; ⊕ represents cascading;
do:

M 6= ∅; |M| = 0; i = 0;//Initialization
while(1)

if M 6= ∅: //Output Model
calculate the accuracy of M through cross-alidation.
if the accuracy of the model has no obvious improvement in the q–th round (q = 3)
output M;
break;

else: //Training
|M| + 1; i + 1; training Mi with Di−1; M = M⊕Mi ;

for xd in Di−1:
Mi outputs K N-dimention class vectors of xd , concatenates them with xd , obtains vector xi

d ;
obtains new training set Di =

{
xi

1, xi
2, xi

3 . . . . . . xi
|D|

}
;

4. Experiments and Results
4.1. Dataset, Evaluation Metrics, and Experimental Environment
4.1.1. Dataset Description

Three real-life datasets were used in this paper:
Dataset 1: In this dataset, the encrypted traffic was collected from the MCFP dataset [26].

Referring to the research of other scholars [20,27], and considering the proportion of
SSL/TLS sessions to all the sessions and the integrity of the captured sessions, eight types
of malicious traffic (Nos. 1, 8, 25, 46, 50, 83, 110, and 140) were selected from the MCFP
dataset. Since the dataset did not provide the name of the attack, they were named M1 to
M8 here. The normal traffic was undersampled from the ISCX VPN-nonVPN [28] dataset,
which contained 14 types of nonmalicious encrypted traffic. The number of sessions of
each class is shown in Table 3.

Table 3. Sample numbers of Dataset 1.

M1 M2 M3 M4 M5 M6 M7 M8 Normal

#N 500 2000 1900 72 800 800 900 1000 3368
#P 4.41% 17.6% 16.8% 0.62% 7.05% 7.05% 7.94% 8.81% 29.7%

Dataset 2: In this dataset, the encrypted ransomware traffic was collected from the
following three websites: http://www.malware-traffic-analysis.net (accessed on 15 March
2021), https://packettotal.com (accessed on 15 March 2021), and https://app.any.run (ac-

http://www.malware-traffic-analysis.net
https://packettotal.com
https://app.any.run
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cessed on 15 March 2021). Three types of ransomware were selected: cerber, cryptowall, and
gandcrab. The normal traffic came from the Monday subset of the CICIDS2017 dataset [29].
The number of sessions of each class is shown in Table 4.

Table 4. Sample numbers of Dataset 2.

Cerber Cryptowall Gandcrab Normal

#N 569 1161 4172 20,000
#P 2.2% 4.48% 16.1% 77.21%

Dataset 3: In this dataset, three types of malicious traffic, named 2020 Emotet, 2020
TA551, and 2019 Ursnif, were collected from https://malware-traffic-analysis.net/index.
html (accessed on 15 March 2021). Compared with Datasets 1 and 2, the types of attack were
newer. The normal traffic was from the 2017 CTU-Normal-32 dataset [30]. The number of
sessions of each class (#N) is shown in in Table 5. Here, #P represents the proportion of the
number of sessions of each class in the total number of sessions.

Table 5. Sample numbers of Dataset 3.

Emotet TA551 Ursnif Normal

#N 191 325 790 4499
#P 3.29% 5.59% 13.6% 77.5%

It can be seen that the amounts of some samples in these datasets were small, such as
M4, Cerber, and Emotet. The distribution of samples in these datasets was unbalanced.

4.1.2. Evaluation Metrics

The accuracy (ACC), detection rate (DR), and false-alarm rate (FAR) were used as the
evaluation metrics:

ACC = TP+TN
TP+FP+TF+FN × 100%

DR = TP
TP+FN × 100%

FAR = FP
FP+TN × 100%

(9)

where TP is the number of instances correctly classified as positive, TN is the number of
instances correctly classified as negative, FP is the number of instances incorrectly classified
as positive, and FN is the number of instances incorrectly classified as negative.

4.1.3. Experimental Environment

The experiments were conducted on a Dell T630 server with an Ubuntu 18.04 64-bit
OS and 32 GB of RAM. An NVIDIA GTX 1080Ti GPU with 11 GB of VRAM was used
for acceleration.

4.2. Experimental Results
4.2.1. Experiment on Input Size

The purpose of this experiment was to verify the impact of the first n bytes extracted
from a session (i.e., the size of traffic image) on the detection result. This experiment
was executed on Dataset 1; the dataset was divided into a training set, validation set,
and test set at proportions of 60%, 15%, and 25%, respectively, and each tree ensemble
model (XGBoost, random forest, and Extra Trees) in CaForest consisted of 10 decision trees.
Tables 6 and 7 show the experimental results of the binary classification and nine-class
classification, respectively. In the tables, M-DR and M-FAR are the mean values of DR and
FAR, respectively.

https://malware-traffic-analysis.net/index.html
https://malware-traffic-analysis.net/index.html
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Table 6. Results of binary classification with different input sizes.

Input Size ACC DR FAR

16 × 16 97.46% 98.00% 3.94%
28 × 28 98.41% 98.95% 3.02%
32 × 32 97.97% 99.15% 5.13%
48 × 48 97.72% 98.45% 4.21%
64 × 64 96.96% 97.95% 5.65%
96 × 96 96.56% 97.65% 6.32%

128 × 128 96.45% 97.35% 5.92%

Table 7. Results of nine-class classification with different input sizes.

Input Size ACC M-DR M-FAR

16 × 16 92.07% 83.71% 1.11%
28 × 28 93.30% 92.14% 0.91%
32 × 32 93.81% 92.53% 0.85%
48 × 48 93.66% 92.28% 0.87%
64 × 64 93.19% 92.17% 0.93%
96 × 96 92.83% 92.30% 0.98%

128 × 128 92.14% 90.43% 1.09%

As can be seen in Tables 6 and 7, in the binary-classification experiment, when the
input size was 28 × 28, the ACC was the highest, at 98.41%, and the FAR was the lowest,
at 3.02%. When the input size was 32 × 32, the DR was the highest, at 99.15%. In the
nine-class classification experiment, when the input size was 32 × 32, the ACC, M-DR,
and M-FAR were all the best (93.81%, 92.53%, and 0.85%, respectively). When the image
size was larger than 32 × 32, the ACC and DR/M-DR in both the binary and nine-class
classification experiments decreased, while the M-FAR in the nine-classification experiment
increased. Therefore, 32 × 32 (i.e.,1024 bytes) was selected as the size of the input image for
the detection model in subsequent experiments.

Moreover, from this experiment, it could be seen that the detection performance of
the model decreased with an increase in the input size. This showed that the handshake
information in SSL/TLS plays a more important role in encrypted traffic detection.

4.2.2. Experiment on CaForest Structure

The type of base classifiers in each layer of CaForest are the main factors that influence
the performance of the detector. The purpose of this experiment was to choose the base
classifiers, and to seek the optimal number of decision trees. This experiment was executed
on Dataset 1.The results of the binary classification and nine-class classification experiments
are shown in Tables 8 and 9, respectively. In the tables, X, R, and E represent the XGBoost,
random forest, and Extra Trees classifiers, respectively; q represents the number of decision
trees in each base classifier; and M-DR and M-FAR represent the mean values of DR and
FAR, respectively, in the multiclass classification experiments.

Table 8. Results of binary classification with different CaForest structures.

q = 5 q = 10 q = 15 q = 20

ACC DR FAR ACC DR FAR ACC DR FAR ACC DR FAR

X 97.4% 97.7% 3.55% 97.7% 98.6% 4.47% 98.0% 98.7% 3.55% 98.2% 99.1% 4.08%
R 98.8% 99.3% 2.5% 98.9% 99.3% 2.11% 98.8% 99.3% 2.37% 99.0% 99.3% 1.84%
E 98.5% 99.1% 2.89% 98.8% 99.5% 3.16% 98.3% 99.3% 4.34% 98.6% 99.5% 3.68%

X + R 97.9% 98.8% 4.47% 98.0% 98.9% 4.47% 98.4% 99.3% 3.95% 98.4% 99.4% 4.08%
X + E 97.8% 98.3% 3.68% 98.3% 98.7% 2.89% 97.9% 98.9% 4.87% 98.0% 98.8% 4.34%
R + E 98.6% 99.2% 3.03% 98.8% 99.4% 2.5% 99.0% 99.4% 1.97% 99.1% 99.5% 1.97%

X + R + E 97.6% 98.6% 5.00% 98.0% 99.2% 5.13% 98.2% 98.7% 3.16% 98.5% 99.3% 3.55%
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Table 9. Results of nine-class classification with different CaForest structures.

q = 5 q = 10 q = 15 q = 20

ACC M-DR M-FAR ACC M-DR M-FAR ACC M-DR M-FAR ACC M-DR M-FAR

X 93.4% 92.5% 0.92% 93.6% 91.9% 0.90% 94.3% 92.9% 0.80% 94.2% 92.8% 0.82%
R 93.1% 89.5% 0.97% 93.8% 90.9% 0.85% 94.3% 93.4% 0.77% 94.5% 93.6% 0.75%
E 88.0% 79.6% 1.80% 89.9% 82.7% 1.47% 89.6% 83.7% 1.52% 90.0% 84.9% 1.45%

X + R 93.3% 92.5% 0.94% 93.4% 92.1% 0.90% 94.5% 93.4% 0.76% 94.4% 93.3% 0.77%
X + E 93.4% 92.8% 0.90% 93.7% 92.4% 0.87% 94.5% 93.2% 0.75% 94.5% 93.3% 0.76%
R + E 93.1% 90.7% 0.97% 94.3% 94.2% 0.77% 94.2% 93.8% 0.80% 94.9% 94.4% 0.70%

X + R + E 93.6% 92.4% 0.88% 93.8% 92.5% 0.85% 94.3% 93.3% 0.77% 94.3% 93.3% 0.78%

It can be seen in Table 8 that the ACC and DR of R + E were the highest when q = 20,
at 99.1% and 99.5%, respectively. When q = 10 and q = 20, the DR of E was the highest, at
99.5%. When q = 20, the FAR = 1.84% of R was the lowest. In addition, it can be seen in
Table 9 that in the nine-class classification experiment, the combination of random forest
and Extreme Trees, which consisted of 20 decision trees, achieved the best detection result,
and the three indices of ACC, M-DR, and M-FAR were all the best, at 94.9%, 94.4%, and
0.70%, respectively. Therefore, random forest and Extreme Random Trees, which consisted
of 20 decision trees, were selected as the base classifiers in each layer of the CaForest model
in the following experiments. So, in the hyperparameters of our model, the number for
random forest was 1, the number for Extreme Random Tree was 1, and the number of
forests was 20.

4.2.3. Comparison Experiments of Binary Classification

To validate the effectiveness of the proposed model in the binary-classification case,
a 1D-CNN proposed in [9], a CNN + LSTM (later called CN-TM) proposed in [10],
GoogLeNet, ResNet [31], and DenseNet [32] models were compared with our DF-IDS
detector. The experiment results of the binary classification of Dataset 1 are shown in
Figures 7 and 8.
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As can be seen in Figure 7, the ACC and DR of DF-IDS were the highest, and its FAR
was only higher than CN-TM. In addition, it can be seen in the ROC curve in Figure 8 that
DF-IDS had the best performance.

The amounts of RAM occupied by these models were also compared, and the results
are shown in Figure 9.
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It can be seen that the amount of RAM occupied by the DF-IDS model was larger than
that of DenseNet and GoogLeNet, but was smaller than other models.

In this experiment, the training time of DF-IDS was 19.39 s, and the testing time was
3.67 s.

4.2.4. Comparison Experiments of Multiclass Classification

To further validate the effectiveness of the proposed model in the multiclassification
case, 1D-CNN, CNN + LSTM, GoogLeNet, ResNet, and DenseNet models were compared
with DF-IDS using three datasets. The experiment results of multiclassification using
Datasets 1, 2, and 3 are shown in Tables 10–12.

Table 10. Performance of multiclassification model using Dataset 1.

(a) DR Results

Model M1 M2 M3 M4 M5 M6 M7 M8 Normal M-DR

DF-IDS 92.9% 84.1% 93.5% 100% 97.5% 94.4% 97.6% 90.6% 98.9% 94.4%
CN-TM 38.9% 100% 96.2% 5.26% 95.5% 95.0% 91.6% 90.4% 100% 79.2%

1D-CNN 11.9% 79.2% 80.9% 15.8% 96.0% 74.6% 71.7% 77.7% 94.5% 66.9%
GoogLeNet 8.7% 55.7% 52.5% 10.5% 95.0% 72.1% 75.7% 74.5% 88.0% 59.2%

ResNet 33.3% 84.5% 71.1% 89.4% 96.5% 76.0% 96.4% 77.6% 96.1% 80.1%
DenseNet 56.1% 87.3% 79.5% 92.6% 97.3% 77.7% 74.4% 82.7% 94.2% 82.4%

(b) FAR Results

Model M1 M2 M3 M4 M5 M6 M7 M8 Normal M-FAR

DF-IDS 0.67% 0.65% 0.65% 0.00% 0.00% 0.96% 1.75% 0.96% 1.11% 0.70%
CN-TM 0.59% 0.29% 3.49% 0.12% 0.75% 0.79% 0.79% 0.71% 0.05% 0.84%

1D-CNN 0.27% 8.99% 6.14% 0.00% 0.73% 1.52% 1.81% 2.88% 5.78% 3.13%
GoogLeNet 1.92% 14.42% 13.75% 0.00% 1.44% 1.51% 5.30% 4.50% 3.96% 5.20%

ResNet 0.77% 1.85% 1.27% 0.00% 0.13% 0.69% 9.16% 0.81% 5.46% 2.24%
DenseNet 2.60% 6.41% 1.14% 0.03% 0.22% 1.10% 1.91% 3.24% 3.17% 2.21%
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Table 11. Performance of multiclassification model using Dataset 2.

(a) DR Results

Model Cerber Cryptowall Gandcrab Normal M-DR

DF-IDS 92.1% 92.9% 98.6% 99.9% 95.9%
CN-TM 77.1% 84.9% 98.8% 99.9% 90.1%

1D-CNN 56.1% 83.9% 96.4% 99.9% 84.1%
GoogLeNet 73.6% 92.4% 97.6% 99.7% 90.8%

ResNet 81.5% 88.2% 97.3% 99.7% 91.6%
DenseNet 85.1% 93.3% 97.9% 100% 94.0%

(b) FAR Results

Model Cerber Cryptowall Gandcrab Normal M-FAR

DF-IDS 0.13% 0.04% 0.48% 0.53% 0.29%
CN-TM 0.07% 0.26% 1.15% 0.18% 0.42%

1D-CNN 0.08% 0.57% 1.07% 3.59% 1.33%
GoogLeNet 0.07% 0.61% 0.88% 0.36% 0.48%

ResNet 0.33% 0.40% 0.74% 0.81% 0.57%
DenseNet 0.07% 0.32% 0.39% 0.97% 0.44%

Table 12. Performance of multiclassification model using Dataset 3.

(a) DR Results

Model Emotet TA551 Ursnif Normal M-DR

DF-IDS 91.6% 95.1% 100% 100% 96.7%
CN-TM 0% 0% 27.6% 95.2% 30.7%

1D-CNN 97.6% 38.7% 99.5% 100% 83.95%
GoogLeNet 77.08% 93.9% 99.49% 100% 92.62%

ResNet 0% 0% 0% 100% 25%
DenseNet 97.9% 95.1% 100% 100% 98.25%

(b) FAR Results

Model Emotet TA551 Ursnif Normal M-FAR

DF-IDS 0.28% 0.21% 0.08% 0% 0.14%
CN-TM 0% 0% 5.7% 82.5% 22.05%

1D-CNN 3.48% 0.07% 0% 0.75% 1.07%
GoogLeNet 0.43% 0.73% 0% 0.3% 0.37%

ResNet 0% 0% 0% 100% 25%
DenseNet 0% 0% 0% 1.5% 0.37%

It can be seen that DF-IDS had the highest M-DR and the lowest M-FAR when using
Datasets 1 and 2. When using Dataset 3, the M-DR of DF-IDS was only 1.55% lower than
that of DenseNet, and the M-FAR was still the smallest. As can be seen in Table 10, the DR
of DF-IDS was higher than 90% in most classes, while the DRs of other models were lower
than 50% in some classes.

Compared with the experimental results for binary classification, in the multiclassifi-
cation case, due to the number of training samples for each class being further reduced,
the distribution of samples became more imbalanced, which led to a significant decline in
the performance of the deep-learning base models, since they rely on a large amount of
balanced training data. However, DF-IDS still maintained a good performance. In Table 11,
it can be seen that the DR of DF-IDS in each class was higher than 92%. Although the
average DR of DenseNet was the highest, its DR for the Cerber class was only 85.1%. As
shown in Table 12, the DR of DF-IDS in each class was higher than 91%. Although the
M-DR of DenseNet was the highest, the M-FAR of DF-IDS was the lowest. In summary, in
the case of multiclassification, DF-IDS performed much better than the other methods.
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4.2.5. Comparison Experiments with Smaller-Scale Dataset

To test the robustness of DF-IDS, in this experiment, the samples of each subset in
Dataset 1 were divided into a training set, validation set, and test set at proportions of 30%,
15%, and 55%, respectively. So, the number of training samples was very small in some
subclasses in the multiclassification experiment: there were only 150 training samples for
M1, and only 22 training samples for M4. Figures 10 and 11 show the results for the binary
classification, while Table 13 shows the DR and FAR results for the multiclass classification.
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It can be seen in Figure 10 that in the binary-classification experiment, the FAR of all
models increased significantly due to the reduction in the training samples. However, the
FAR of DF-IDS was still the lowest, and the ACC and DR were still the highest. The ROC
curves in Figure 10 also show that DF-IDS had the best performance.

Table 13, part (a) shows the comparison results for DR. It can be seen that the M-DR
of all models decreased due to the reduction in samples. However, the DR of DF-IDS still
reached 89.69%, which was the highest among all the methods. In particular, the DR of
other models in some classes was less than 30% or even 10%. As can be seen in Table 13,
part (b), the M-FAR of DF-IDS was only 0.34% higher than that of CN-TM, and was much
lower than that of other methods.

This experiment further demonstrated that DF-IDS had a strong robustness to small-
scale and unbalanced data.
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Table 13. Performance of multiclassification model with smaller-scale dataset.

(a) DR Results

Model M1 M2 M3 M4 M5 M6 M7 M8 Normal M-DR

DF-IDS 87.8% 94.8% 81.5% 92.6% 96.7% 90.6% 75.3% 90.7% 96.9% 89.69%
CN-TM 98.2% 99.6% 99.7% 0.0% 96.7% 84.4% 89.7% 88.3% 88.8% 82.82%

1D-CNN 6.9% 55.8% 47.8% 12.1% 96.5% 80.3% 71.5% 96.5% 94.7% 60.19%
GoogLeNet 39.7% 59.8% 88.2% 12.1% 94.7% 72.4% 62.7% 86.9% 90.3% 67.42%

ResNet 28.9% 65.3% 83.0% 31.7% 96.5% 69.4% 69.1% 70.3% 91.9% 67.34%
DenseNet 6.6% 99.2% 65.6% 73.1% 98.0% 59.8% 59.4% 81.1% 94.5% 70.81%

(b) FAR Results

Model M1 M2 M3 M4 M5 M6 M7 M8 Normal M-FAR

DF-IDS 1.76% 3.12% 0.86% 0.00% 0.02% 1.08% 0.70% 2.09% 2.23% 1.32%
CN-TM 0.05% 0.48% 0.14% 0.01% 0.82% 1.14% 1.19% 2.21% 2.79% 0.98%

1D-CNN 0.60% 15.7% 13.3% 0.00% 1.01% 1.85% 2.23% 3.11% 5.94% 4.87%
GoogLeNet 2.63% 3.50% 10.77% 0.16% 1.01% 2.04% 0.84% 7.19% 2.52% 3.41%

ResNet 4.59% 6.33% 6.51% 0.02% 1.16% 1.38% 2.72% 3.35% 7.28% 3.70%
DenseNet 0.13% 15.6% 0.16% 0.00% 0.49% 0.70% 0.73% 3.80% 7.06% 3.19%

5. Conclusions

To solve the problem of the detection of SSL/TLS-encrypted malicious traffic, a DF-IDS
detection method was proposed in this paper. This method avoided the problem of feature
design and extraction by splitting raw traffic according to session and converting it into an
image to achieve end-to-end detection. Focusing on the small-scale and unbalanced data, a
CaForest model was built based on a deep forest and gcForest framework. By integrating
various basis classifiers, such as random forest, Extra Trees, etc., the model could detect
encrypted malicious traffic with high accuracy and a low false-alarm rate. It achieved
a fine-grained multiclassification of malicious traffic, and realized the early detection of
encrypted malicious traffic.

One of the main problems of CaForest is that the speed is sometimes too slow, so a
new parallel framework, such as Ray, should be considered. In addition, more types of
base classifiers can be applied to achieve a better performance. While this paper focused
on SSL/TLS-encrypted traffic, in future work, we will perform more research on other
encrypted traffic.

Author Contributions: Conceptualization, X.Z.; data curation, S.Z.; formal analysis, X.Z.; investiga-
tion, M.Z. and S.L.; methodology, X.Z. and Y.Z.; project administration, X.Z.; resources, S.Z.; software,
M.Z., J.W. and Y.Z.; validation, J.W. and Y.Z.; writing—original draft, Y.Z.; writing—review and
editing, X.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: In this study, the datasets were collected from the MCFP dataset
(https://mcfp.felk.cvut.cz/publicDatasets, accessed on 15 March 2021), ISCX VPN-nonVPN dataset
(http://www.unb.ca/cic/datasets/vpn.html, accessed on 15 March 2021), 2017 CTU-Normal-32
dataset (https://mcfp.weebly.com/the-ctu-13-dataset-a-labeled-dataset-with-botnet-normal-and-
background-traffic.html, accessed on 15 March 2021), http://www.malware-traffic-analysis.net
(accessed on 15 March 2021), https://packettotal.com (accessed on 15 March 2021), https://app.any.
run (accessed on 15 March 2021), and https://malware-traffic-analysis.net/index.html (accessed on
15 March 2021).

Conflicts of Interest: The authors declare no conflict of interest.

https://mcfp.felk.cvut.cz/publicDatasets
http://www.unb.ca/cic/datasets/vpn.html
https://mcfp.weebly.com/the-ctu-13-dataset-a-labeled-dataset-with-botnet-normal-and-background-traffic.html
https://mcfp.weebly.com/the-ctu-13-dataset-a-labeled-dataset-with-botnet-normal-and-background-traffic.html
http://www.malware-traffic-analysis.net
https://packettotal.com
https://app.any.run
https://app.any.run
https://malware-traffic-analysis.net/index.html


Electronics 2022, 11, 977 17 of 18

References
1. Zhang, Q.; Ma, Y.; Wang, J.; Li, X. UDP traffic classification using most distinguished port. In Proceedings of the 16th Asia-Pacific

Network Operations and Management Symposium, Hsinchu, Taiwan, 17–19 September 2014; pp. 1–4. [CrossRef]
2. Lee, S.-H.; Park, J.-S.; Yoon, S.-H.; Kim, M.-S. High performance payload signature-based Internet traffic classification system. In

Proceedings of the 17th Asia-Pacific Network Operations and Management Symposium, APNOMS 2015, Busan, Korea, 19–21
August 2015; pp. 491–494. [CrossRef]

3. Rezaei, S.; Liu, X. Deep learning for encrypted Traffic classification: An overview. IEEE Commun. Mag. 2019, 57, 76–81. [CrossRef]
4. Sommer, R.; Paxson, V. Outside the closed world: On using machine learning for network intrusion detection. In Proceedings of

the 2010 IEEE Symposium on Security and Privacy, Oakland, CA, USA, 16–19 May 2010; pp. 305–316. [CrossRef]
5. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 1–9.

6. Palangi, H.; Deng, L.; Shen, Y.; Gao, J.; He, X.; Chen, J.; Song, X.; Ward, R. Deep Sentence Embedding Using Long Short-Term
Memory Networks: Analysis and Application to Information Retrieval. IEEE ACM Trans. Audio Speech Lang. Process. 2016, 24,
694–707. [CrossRef]

7. Yin, X.; Wang, R.; Liu, X.; Cai, Y. Deep Forest-Based Classification of Hyperspectral Images. In Proceedings of the 2018 37th
Chinese Control Conference (CCC 2018), Wuhan, China, 25–27 July 2018; pp. 10367–10372. [CrossRef]

8. Xin, K.; Duan, B.; Qu, X. Classification for Multiple Power Quality Disturbances Based on Deep Forest. In Proceedings of
the IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019;
pp. 3387–3392. [CrossRef]

9. Lotfollahi, M.; Siavoshani, M.J.; Zade, R.S.H.; Saberian, M. Deep packet: A novel approach for encrypted traffic classification
using deep learning. Soft Comput. 2019, 24, 1999–2012. [CrossRef]

10. Vu, L.; Thuy, H.V.; Nguyen, Q.U.; Ngoc, T.N.; Nguyen, D.N.; Hoang, D.T.; Dutkiewicz, E. Time Series Analysis for Encrypted
Traffic Classification: A Deep Learning Approach. In Proceedings of the 2018 18th International Symposium on Communica-tions
and Information Technologies (ISCIT), Bangkok, Thailand, 26–29 September 2018; pp. 121–126. [CrossRef]

11. Wang, W.; Zhu, M.; Wang, J.; Zeng, X.; Yang, Z. End-to-end encrypted traffic classification with one-dimensional convolution
neural networks. In Proceedings of the IEEE International Conference on Intelligence and Security Informatics (ISI), Beijing,
China, 22–24 July 2017; pp. 43–48. [CrossRef]

12. Zou, Z.; Ge, J.; Zheng, H.; Wu, Y.; Han, C.; Yao, Z. Encrypted Traffic Classification with a Convolutional Long Short-Term
Memory Neural Network. In Proceedings of the 2018 IEEE 20th International Conference on High Performance Computing and
Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), Exeter, UK, 28–30 June 2018; pp. 329–334. [CrossRef]

13. Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A. IoT type-of-traffic forecasting method based on gradient boosting neural
networks. Future Gener. Comput. Syst. 2019, 105, 331–345. [CrossRef]

14. Zeng, Y.; Gu, H.; Wei, W.; Guo, Y. Deep-Full-Range: A Deep Learning Based Network Encrypted Traffic Classification and
Intrusion Detection Framework. IEEE Access 2019, 7, 45182–45190. [CrossRef]

15. Prasse, P.; Machlica, L.; Pevný, T.; Havelka, J.; Scheffer, T. Malware Detection by Analysing Encrypted Network Traffic with
Neural Networks. In Proceedings of the ECML PKDD 2017: Machine Learning and Knowledge Discovery in Databases, Skopje,
Macedonia, 18–22 September 2017; Volume 10535, pp. 73–88. [CrossRef]

16. Anderson, B.; McGrew, D. Identifying Encrypted Malware Traffic with Contextual Flow Data. In Proceedings of the 2016 ACM
Workshop on Artificial Intelligence and Security (AISec’16), Vienna, Austria, 24–28 October 2016; pp. 35–46. [CrossRef]

17. Anderson, B.; McGrew, D. Machine Learning for Encrypted Malware Traffic Classification: Accounting for Noisy Labels and
Non-Stationarity. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
Halifax, NS, Canada, 13–17 August 2017; pp. 1723–1732. [CrossRef]

18. Williams, N.; Zander, S.; Armitage, G.J. A preliminary performance comparison of five machine learning algorithms for prac-tical
IP traffic flow classification. ACM SIGCOMM Comput. Commun. Rev. 2006, 36, 5–16. [CrossRef]

19. Shekhawat, A.S.; Di Troia, F.; Stamp, M. Feature analysis of encrypted malicious traffic. Expert Syst. Appl. 2019, 125, 130–141.
[CrossRef]

20. Stergiopoulos, G.; Talavari, A.; Bitsikas, E.; Gritzalis, D. Automatic Detection of Various Malicious Traffic Using Side Channel
Features on TCP Packets. In Proceedings of the Computer Security: ESORICS 2018 International Workshops, CyberICPS 2018 and
SECPRE, Barcelona, Spain, 3–7 September 2018; Volume 11098, pp. 346–362. [CrossRef]

21. Anderson, B.; Paul, S.; McGrew, D. Deciphering malware’s use of TLS (without decryption). J. Comput. Virol. Hacking Tech. 2017,
14, 195–211. [CrossRef]

22. Zhou, Z.H.; Feng, J. Deep forest: Towards an alternative to deep neural networks. arXiv 2018, arXiv:1702.08835.
23. Zhang, X.; Chen, J.; Zhou, Y.; Han, L.; Lin, J. A Multiple-Layer Representation Learning Model for Network-Based Attack

Detection. IEEE Access 2019, 7, 91992–92008. [CrossRef]
24. Liu, X.; Wang, R.; Cai, Z.; Cai, Y.; Yin, X. Deep Multigrained Cascade Forest for Hyperspectral Image Classification. IEEE Trans.

Geosci. Remote Sens. 2019, 57, 8169–8183. [CrossRef]

http://doi.org/10.1109/apnoms.2014.6996569
http://doi.org/10.1109/apnoms.2015.7275374
http://doi.org/10.1109/MCOM.2019.1800819
http://doi.org/10.1109/sp.2010.25
http://doi.org/10.1109/TASLP.2016.2520371
http://doi.org/10.239-19/chicc.2018.8483767
http://doi.org/10.1109/iecon.2019.8926759
http://doi.org/10.1007/s00500-019-04030-2
http://doi.org/10.1109/iscit.2018.8587975
http://doi.org/10.1109/isi.2017.8004872
http://doi.org/10.1109/h-pcc/smartcity/dss.2018.00074
http://doi.org/10.1016/j.future.2019.12.013
http://doi.org/10.1109/ACCESS.2019.2908225
http://doi.org/10.1007/978-3-319-71246-8_5
http://doi.org/10.1145/2996758.2996768
http://doi.org/10.1145/3097983.3098163
http://doi.org/10.1145/1163593.1163596
http://doi.org/10.1016/j.eswa.2019.01.064
http://doi.org/10.1007/978-3-319-99073-6_17
http://doi.org/10.1007/s11416-017-0306-6
http://doi.org/10.1109/ACCESS.2019.2927465
http://doi.org/10.1109/TGRS.2019.2918587


Electronics 2022, 11, 977 18 of 18

25. Casino, F.; Choo, K.-K.R.; Patsakis, C. HEDGE: Efficient Traffic Classification of Encrypted and Compressed Packets. IEEE Trans.
Inf. Forensics Secur. 2019, 14, 2916–2926. [CrossRef]

26. Maria, J.E. MCFP Dataset. Available online: https://mcfp.felk.cvut.cz/publicDatasets/ (accessed on 15 March 2021).
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