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Abstract: With the increasing demand for earth observation in various fields, remote satellites play an
important role in ground information assurance. Apparently, the effective scheduling and utilization
of multi-satellite resources determine the quality and efficiency of information acquisition. In this
paper, focusing on the problem of centralized multi-satellite scheduling, we establish a mathematical
model of satellite scheduling with complex constraints of load and platform operation. We also
propose a real-coding Population Incremental Based Learning (PBIL) algorithm to solve the multi-
satellite scheduling problem. The real-coding format can greatly shorten the coding length compared
to the traditional PBIL algorithm with binary coding so that the computational efficiency is improved.
Additionally, we design a value probability matrix, correction coefficient and mutation operator to
guide better evolution and avoid early convergence. Finally, we take some numerical examples to
verify the real-coding PBIL algorithm for multi-satellite scheduling. The performance of the algorithm
is analyzed by comparing it with binary-coding PBIL and the Genetic Algorithm (GA). Additionally,
the influence of key parameters on algorithm performance, such as probability correction coefficient,
is also analyzed.

Keywords: earth observation; remote satellite; multi-satellite scheduling; PBIL algorithm; real coding

1. Introduction

With the development of space technology and the popularity of satellite applications,
the number and types of Earth observation satellites are increasing, playing quite an
important role in the fields of economy, military and people’s livelihood [1]. Facing the
growing demand for large-scale and diversified tasks of users from all walks of life, multi-
satellite scheduling for constellations has become a hot research issue at home and abroad.

The Multi-Satellite Scheduling Problem (MSSP) refers to the process by which the
satellite control department allocates resources, including satellites, payloads and ground
stations, etc., to meet the routine needs or urgent requests of earth observation. The process
must satisfy various constraints, maximizing the benefits of satellite missions during the
satellite in-orbit operation [2,3].

Obviously, multi-satellite scheduling involves not only satellite payload resources but
also ground management resources to ensure their normal operation. It can be seen that
there are many constraints in multi-satellite scheduling. Therefore, reasonable models and
efficient scheduling methods are of great significance for describing and solving problems
such as the MSSP.

As for the multi-satellite scheduling methods, due to the Non-deterministic Poly-
nomial (NP) characteristics of scheduling problems, most of the current research uses
heuristic methods to solve the problem [4], mainly including Tabu Search (TS) [5], Ant
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Colony Optimization (ACO) [6], Genetic Algorithm (GA) [7,8], Particle Swarm Optimiza-
tion (PSO) [9,10] and the Multi-Objective Evolutionary Algorithm (MOEA) [11,12], etc.

These heuristic optimization methods are easy to implement and widely used. Arezoo
Sarkheyli [5] applied the new Tabu Search (TS) algorithm to solve the problem of low-orbit
satellite scheduling by considering the priority of the task and satisfying the time and
resource constraints. However, the limiting factors considered only include coverage rate,
data storage capacity and battery capacity in that paper.

Zixuan Zheng et al. [8] used the improved Genetic Algorithm (GA) to solve the satellite
scheduling problem and proposed a Hybrid Dynamic Mutation (HDM) strategy, which
overcomes the early convergence and long calculation time to some extent. However, the
simulation model did not consider the constraints adequately; only the limits of satellite
data transmission were taken into account.

Chen H et al. [1] proposed a complete search algorithm, heuristic search algorithm
and swarm intelligence optimization algorithm for the observation of task-oriented satellite
cluster scheduling problems on different scales.

As mentioned above, these heuristic optimization methods are easy to implement and
efficient to solve satellite scheduling problems with specific constrains. However, when
we encounter complex satellite scheduling problems in real time, the constraints of the
model should be considered adequately; the computational complexity and efficiency of
the algorithm are considered the most important aspects of multi-satellite scheduling.

Baluja [13] first proposed an evolutionary algorithm based on Population-Based Incre-
mental Learning (PBIL) in 1996. The basic idea of the algorithm is to regard the evolution
process as a learning process. The knowledge, also called the probability of learning, is
obtained by learning to guide the generation of offspring. This probability is the accumula-
tion of information throughout the evolutionary process, and it will guide more effective
directions for the offspring (compared to GA’s parental genetic recombination strategy),
which results in faster convergence and better optimizations. Inspired by this PBIL, called
the traditional PBIL, we propose a real-coding PBIL that has a better performance both in
efficiency and quality for multi-satellite scheduling with complex constrains close to reality.

In this paper, we discuss modeling and algorithms for the Multi-satellite Scheduling
Problem (MSSP). The contribution of our work is as follows:

• Considering the load and platform operation of satellites in reality, we establish a
mathematical model of satellite scheduling with complex constraints, and the related
mathematical statement is given.

• We propose the real-coding Population-Based Incremental Learning (PBIL) algorithm
to solve the MSSP. Compared to the traditional PBIL algorithm with binary coding,
the real-coding format can greatly shorten the coding length so that the computa-
tional efficiency is improved. Additionally, we design the value probability matrix,
correction coefficient and mutation operator to guide better evolution and avoid
early convergence.

• We conduct some numerical simulations and analyses to verify the real-coding PBIL
algorithm for the MSSP. The performance of the algorithm is analyzed by comparing
it with binary-coding PBIL and Genetic Algorithm (GA). Additionally, the influence of
key parameters on algorithm performance, such as probability correction coefficient,
is analyzed.

We note that a shorter conference version of this paper appeared in Wireless and Satellite
Systems-11th EAI International Conference (WiSATS 2020) [14]. Our initial conference paper
neglected to provide the mathematical expressions of constraints in the multi-satellite
scheduling model and did not address the influence of key parameters or coding formats
on the performance of the PBIL algorithm. This manuscript addresses these issues and pro-
vides additional comparisons and analyses to verify the efficiency and quality of algorithms
for multi-satellite scheduling in our study.

The organization of this paper is as follows: Section 2 provides a mathematical model
of MSSP and gives the related mathematical statement of constraints; Section 3 proposes
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the real-coding PBIL algorithm for satellite schedules and explains a detailed framework of
our method; the simulation details and results are elaborated on and analyzed in Section 4;
lastly, the conclusion is presented in Section 5.

2. Mathematical Model of Multi-Satellite Scheduling
2.1. Symbol Definitions

For the convenience of description, the relevant symbol definitions are given, as shown
in Table 1.

Table 1. Symbol definition.

Symbol Definition

S = {S1, S2, . . . , Sm, . . . , SM} Satellite collection, a total of M satellites.

T = {t1, t2, . . . , tr, . . . , tR} Target collection, a total of R targets.

STrm, ETrm
The start time and end time of the satellite Sm observing the
target tr.

WinSTrm, WinETrm
Start time and end time of the visible time window of the
satellite Sm to the target tr.

Drm The duration of the satellite Sm observing the target tr.

Vrm The benefit of the target tr observed by the satellite Sm.

Mij
Time required for attitude maneuvering, i.e., satellite
attitude adjustment time between missions.

DSm f ree Satellite Sm currently available storage capacity.

DSrm
The satellite Smstorage space capacity that will be occupied
by the observation task for the target tr.

Tgk, Tdk
The start time of the illumination period of the kth circle and
the start time of the shadow period of the kth circle.

P0 Ground shadow period constant load power.

PC Charging power.

EB, ηD, ηC, ηWh

Battery parameters. Where EBis the battery capacity, ηD is
the discharge controller or discharge regulator efficiency, ηC
is the charge controller or charge regulator efficiency, ηWh is
the watt-hour efficiency of the battery pack.

2.2. Problem Description and Basic Assumptions

The multi-satellite scheduling problem can be described as that M satellites coopera-
tively observing R targets in a scheduling cycle so that the objective function is optimal.
The final output of the scheduling plan is mainly the allocation scheme of the observation
mission. For a satellite, the distribution result can be expressed as a six-element array
as follows:

[m, r, STrm, ETrm, Drm , Vrm]

Considering the actual satellite system, some reasonable simplifications and basic
assumptions for multi-satellite scheduling problems are as follows:

(1) The observation of each target by the satellite requires a certain image scanning time;
that is, the observation activity has a certain duration;

(2) The satellite resources involved in the scheduling process are the satellites with side-
swing capability carrying only one space-borne remote sensor;

(3) The satellite needs to maintain a stable attitude during the execution of the observation
mission. After completing an observation task, it needs to adjust the posture so that
the observation task for the next target can be performed smoothly. From the start of
the attitude adjustment to the stable attitude of the satellite, the time taken for this
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process is the satellite attitude adjustment time (also called the attitude maneuver
stabilization time).

2.3. Constraints
2.3.1. Task Time Constraints

A satellite can only observe one target at a time; that is, each satellite-borne remote
sensor can only perform one observation task at any time. The mathematical expression is
shown in Equation (1).

t1, t2 ∈ T, if f t1 t2 = 1, then, STt1+D t1+M t1 t2 ≤ STt2 , and θt1 t2 ≤ 25◦ (1)

In Equation (1), t1, t2 ∈ T, if the targets t1, t2 occupy the satellite Sm and the ob-
servation task for the target t1 is followed by the task for the target t2, then f t1 t2 = 1;
otherwise, f t1 t2 = 0. For the two adjacent observations of t1, t2, the next observation task
can be performed only after the current task t1 ends and the necessary attitude maneuver
is completed; the attitude maneuver angle must not exceed 25◦.

The task start time and end time for each target tr shall be within its corresponding
visible window, as shown in Equation (2).

STrm ≥WinSTrm and ETrm ≤WinETrm (2)

2.3.2. Data Storage Constraints

Due to the limited storage space on the satellite, the data size between the two mis-
sions of the satellite cannot exceed the capacity of the storage device. The mathematical
expression is shown in Equation (3).

If ∀tr ∈ T, If DSrm > DSm f ree, then xrm = 0 (3)

In Equation (3), xrm = 1 indicates that the satellite Sm observes the target tr, and
xrm = 0 indicates that the satellite Sm does not observe the target tr.

2.3.3. Energy Constraints

Energy constraints are manifested in the following two aspects: (1) the discharge
depth of the battery for each discharge activity cannot exceed 20%; (2) the satellite must
achieve the energy balance of the circle during each illumination ground period. That is,
the discharge energy of the battery pack during the grounding can be fully replenished
during the subsequent illumination period.

The mathematical expression is shown in Equation (4), and the meaning of the symbols
is explained in Table 1.

∀ k ∈ K, tCk, tEk ∈ [T gk, Tdk],

P0

(
Tg(k+1) − Tdk

)
/ηD ≤ 0.2 ∗ EB and P0

(
Tg(k+1) − Tdk

)
/ηD ≤ PC·(tEk − tCk)·ηC·ηWh

(4)

2.4. Objective Function

In this paper, the optimization goal is to maximize the benefits of observation, the
objective function Q1 is as shown in Equation (5).

Q1= max (∑ Vixi), i ∈ I (5)

Vi—The benefit of observing the target ti.
xi—Whether the target ti is selected for observation. If it is, xi = 1, otherwise xi = 0.
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3. Real-Coding PBIL Algorithm for Multi-Satellite Scheduling

The real-coding PBIL algorithm for multi-satellite scheduling is mainly based on the
evolutionary framework, including the key part of encoding, population initialization,
fitness function, value probability matrix, population update, etc.

3.1. Encoding

When using the traditional PBIL algorithm for multi-satellite scheduling, the binary-
coding format is often used, as shown in Figure 1.
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Each bit of the chromosome represents an observation time window corresponding
to a target, and its value is 0 or 1, which indicates whether the time window is selected to
arrange the observation task. The length of the chromosome is the number of visible time
windows for all satellites toward all targets.

However, in the actual multi-satellite scheduling process, the number of satellites in a
constellation and observation targets will be large, the planning interval will be long and
the number of visible time windows will be correspondingly larger. If the binary-coding
format is used to deal with the large-scale satellite scheduling problem, the chromosome
will be so long that it will take a lot of time for each bit of the chromosome to do the
constraints check, which will result in very low algorithm efficiency.

To enhance the computational efficiency of the algorithm, a real-coding format is
elaborated in this paper, as shown in Figure 2.
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Figure 2. Real coding format of PBIL algorithm for multi-satellite scheduling.

In the real-coding format, each bit of chromosome represents a target. For one target i
in the overall target set I, it corresponds to the i-th bit of the chromosome.

Assuming that the total number of visible time windows for the target i is ni, each
time window is numbered, corresponding from 1 to ni.



Electronics 2022, 11, 1147 6 of 15

If the value of the i-th gene position of the chromosome is wi, one of the natural
numbers from 1 to ni, it means that the time window wi of target i is selected to complete
the observation task of this target. Thus the mapping relationship between chromosomes
and problem search space points is established.

3.2. Fitness Function

In the PBIL algorithm, the fitness function represents the direction of evolution. It
determines which individual will be chosen to learn and generate the probability of value
to guide the generation of offspring. Generally, different fitness functions can be established
according to different optimization goals.

In this paper, the objective function in the mathematical model is directly taken as the
fitness function.

3.3. Value Probability Matrix

In the real-coding PBIL algorithm, the probability is in the form of a matrix. The initial
probability matrix is shown in Figure 3.
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Figure 3. The initial probability matrix.

A column of the probability matrix corresponds to a gene position of a chromosome;
in other words, it corresponds to an observation target. For the target i in the overall target
set I, it has ni observable time windows in total. This means that the value of the i-th gene
position of the chromosome has ni selections.

The matrix P is the probability of value selections in the algorithm. The j-th row of
the i-th column of the probability matrix P represents the probability of selecting the j-th
value of the i-th gene position. The probability matrix P is initialized as shown in Equation
(6), which ensures that each value of each gene position has the same probability at the
beginning of evolution. The matrix P is visually represented in Figure 3.

Pij = 1/ni (6)

Among the new populations of each generation, the individual A with the highest
fitness value is selected for learning, and the probability matrix P is updated, which will
guide the optimization direction for the population updating.
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After the optimal individual A is generated, the update formula of the probability P is
as shown in Equation (7).

Pij= Pij+X(X is a constant, and j = Ai) (7)

Obviously, the probability of the j-th value of the i-th gene position is increased. In
order to keep the sum of the probabilities of all the values of the i-th gene position as 1, it is
necessary to normalize the probability matrix. The normalization formula is as shown in
Equation (8).

Pij= Pij/ (X + 1) (1 ≤ j ≤ ni
)

(8)

Take the probability matrix update of the second generation as an example. The
update of the probability matrix is shown in Figure 4.
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As the evolution process progresses, the probability of each value will deviate differ-
ently from the initial probability. Additionally, the offspring generated according to the
probability update will be more likely to be highly adaptable.

3.4. Mutation Operator

When the fitness value between individuals in the population is not much different,
it means that the diversity of the population genes is low, and there may be a situa-
tion of evolutionary stagnation, resulting in insufficient global search and falling into a
local optimum.

Therefore, in this paper, for each individual generated from the probability matrix, it
decides whether to perform a mutation operation according to a small mutation probability.
When it is selected for mutation, a certain bit in the chromosome is randomly selected,
and the locus is randomly reassigned. The mutation operation is completed, as shown in
Figure 5.



Electronics 2022, 11, 1147 8 of 15Electronics 2022, 11, x FOR PEER REVIEW 8 of 16 
 

 

Target 

1

Target  

2
  

Target 

i
  

Target  

t  1

Target  

t

    w1 w2 wi Wt 1 wt

Target

Gene position on 

the chromosome

All targets

wi
  

Figure 5. Mutation operator. 

3.5. Population Update 

The update of the population is under the guidance of the probability matrix. With 

the real-coding format, the way of population updates is slightly different from that with 

binary coding. 

Similar to the roulette selection strategy, the probability of 𝑛 different values of the 

same gene position is sequentially accumulated to obtain 𝑛  cumulative probabilities. 

Then, a random number 𝑟 between 0 and 1 is generated. 

The value corresponding to the smallest cumulative probability greater than r is the 

value of the genetic position. In this way, new individuals generation and population up-

dates can be completed. 

3.6. End Condition 

In this paper, the end condition is the number of evolutions determined by some 

numerical experiments in which the population fitness value is not significantly improved 

in the late stage of evolution, and the algorithm stops when the population completes 

these iterations. Usually, the number of iterations will be related to the size of the popu-

lation. The larger the population is, the larger number of iterations is, and vice versa. 

3.7. Algorithm Steps 

The algorithm flow chart is shown in Figure 6. 

Encoding by real number and initializing 

the probability matrix of values

Generate new populations based on the 

probability matrix of values

Whether to pass the 

conflict check？

Calculate the fitness value and get the best 

individual

Whether the end 

condition is met？

Output the best individual, i.e. the 

ultimate planning result

Delete the task

Update and normalize  the 

probability matrix according 

to the best individual 

Y

Y

N

N

 

Figure 6. The algorithm flow chart of the PBIL algorithm. 

Figure 5. Mutation operator.

3.5. Population Update

The update of the population is under the guidance of the probability matrix. With
the real-coding format, the way of population updates is slightly different from that with
binary coding.

Similar to the roulette selection strategy, the probability of n different values of the
same gene position is sequentially accumulated to obtain n cumulative probabilities. Then,
a random number r between 0 and 1 is generated.

The value corresponding to the smallest cumulative probability greater than r is the
value of the genetic position. In this way, new individuals generation and population
updates can be completed.

3.6. End Condition

In this paper, the end condition is the number of evolutions determined by some
numerical experiments in which the population fitness value is not significantly improved
in the late stage of evolution, and the algorithm stops when the population completes these
iterations. Usually, the number of iterations will be related to the size of the population.
The larger the population is, the larger number of iterations is, and vice versa.

3.7. Algorithm Steps

The algorithm flow chart is shown in Figure 6.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 16 
 

 

Target 

1

Target  

2
  

Target 

i
  

Target  

t  1

Target  

t

    w1 w2 wi Wt 1 wt

Target

Gene position on 

the chromosome

All targets

wi
  

Figure 5. Mutation operator. 

3.5. Population Update 

The update of the population is under the guidance of the probability matrix. With 

the real-coding format, the way of population updates is slightly different from that with 

binary coding. 

Similar to the roulette selection strategy, the probability of 𝑛 different values of the 

same gene position is sequentially accumulated to obtain 𝑛  cumulative probabilities. 

Then, a random number 𝑟 between 0 and 1 is generated. 

The value corresponding to the smallest cumulative probability greater than r is the 

value of the genetic position. In this way, new individuals generation and population up-

dates can be completed. 

3.6. End Condition 

In this paper, the end condition is the number of evolutions determined by some 

numerical experiments in which the population fitness value is not significantly improved 

in the late stage of evolution, and the algorithm stops when the population completes 

these iterations. Usually, the number of iterations will be related to the size of the popu-

lation. The larger the population is, the larger number of iterations is, and vice versa. 

3.7. Algorithm Steps 

The algorithm flow chart is shown in Figure 6. 

Encoding by real number and initializing 

the probability matrix of values

Generate new populations based on the 

probability matrix of values

Whether to pass the 

conflict check？

Calculate the fitness value and get the best 

individual

Whether the end 

condition is met？

Output the best individual, i.e. the 

ultimate planning result

Delete the task

Update and normalize  the 

probability matrix according 

to the best individual 

Y

Y

N

N

 

Figure 6. The algorithm flow chart of the PBIL algorithm. Figure 6. The algorithm flow chart of the PBIL algorithm.



Electronics 2022, 11, 1147 9 of 15

Step 1. Encode each task according to the real-coding format, and initialize the probability
matrix.

Step 2. According to the above update method, use the probability matrix to guide the
generation of the new population.

Step 3. According to the constraints in the mathematical model, each of the genetic
positions of each chromosome in the population, that is, each task is checked for
conflict. A task that does not pass the conflict check will be abandoned; that is, the
value of this gene position of the chromosome will be set as zero.

Step 4. The fitness value of each individual is calculated to obtain the best individual
with the highest fitness value.

Step 5. If the end condition is satisfied, shift to Step 6. Otherwise, according to the best
individual generated in the previous step, update and normalize the probability
matrix and shift to Step 2.

Step 6. The algorithm ends. Obtain the best individual and output the corresponding
mission planning scheme.

4. Experimental Results and Analysis

In this paper, the model and algorithm proposed for multi-satellite scheduling are
verified by numerical examples as follows. By designing simulation scenarios and typical
examples, the performance of the real-coding PBIL algorithm is analyzed by comparing it
with binary-coding PBIL and the Genetic Algorithm (GA). Additionally, the influence of
key parameters on algorithm performance, such as the probability correction coefficient,
is analyzed.

4.1. Simulation Scenario

First of all, we build the simulation scenario, including satellites, targets, ground
stations, etc.

4.1.1. The Satellites

In this paper, the number of satellites is set to 10, remote satellites S1 to S10 are
established in STK, and the distribution of the satellites in STK is shown in Figure 7.
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4.1.2. The Targets

A number of observation target points are randomly established globally and assigned
to each target a benefit value. The distribution of the targets in STK is shown in Figure 8.

4.1.3. The Ground Stations

After the targets are observed by the satellites and the information is obtained, the
data will be temporarily stored in the onboard device. When communication conditions
permit, the data will be passed back to the ground station. In this paper, 12 ground stations
are set up to simulate the completion of digital missions. The distribution of the ground
stations in STK is shown in Figure 9.
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4.2. Typical Results of Multi-Satellite Scheduling Based on Real-Coding PBIL Algorithm

The average results of the 10 experiments are shown in Table 2, and one of the typical
results is shown in Figure 10.

Table 2. Results of multi-satellite scheduling.

Simulation Scene Settings Average Optimal Fitness Value

Objective function Number of targets Average optimal fitness value Average running time (s)
Q1= max (∑ Vixi), i ∈ I 50 7436 7046
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Figure 10. This is the typical simulation results of multi-satellite scheduling based on a real-coding
PBIL algorithm: (a) Evolution curve of the algorithm, a description of the optimization process, in
which x-coordinate is iterations, and y-coordinate is fitness (corresponding to the scheduling results);
(b) Gantt chart of multi-satellite scheduling results, in which x-coordinate is time, and y-coordinate
is satellite ID, each colored rectangle represents a satellite mission, with a number next to it is the
ground targets ID observed by that mission.
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As shown in the table and figure above, it can be seen that the real-coding PBIL
algorithm can effectively solve multi-satellite scheduling problems. As shown in the
evolution curve in Figure 9a, it converges around generation 80 and has high computational
efficiency.

4.3. Analysis of Algorithm Performance
4.3.1. Influence of Probability Correction Coefficient on PBIL

In the real-coding PBIL algorithm for multi-satellite scheduling, the value probability
matrix affects the direction of evolution, and the probability correction coefficient will affect
the change of the value probability matrix so as to have a certain impact on the solution
accuracy and calculation efficiency.

In this section, we analyze the influence of different probability correction coefficients
on the performance of the real-coding PBIL algorithm. For 50 targets with different prob-
ability correction coefficients (X ∈ [0, 1]), 10 simulation experiments are carried out. The
statistical results of the real-coding PBIL algorithm are shown in Table 3 and Figure 11. The
following data are the average results of 10 simulation experiments.

Table 3. Statistical results of different probability correction coefficients in PBIL.

Probability Correction Coefficient X Average Running Time (s) Average Optimal Fitness Value

0 1501.9 2457
0.1 857.2 3779
0.2 790.3 3616
0.3 791.2 3481
0.4 785.3 3348
0.5 782.7 3469
0.6 788.6 3257
0.7 775.7 3233
0.8 770.5 3266
0.9 765.2 3395
1 769.3 3313
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It can be seen from the above table and figure that when the probability correction
coefficient X is 0, the value probability matrix has no role in guiding the evolution direction
but a random optimization process, so the average running time is long, and the quality
of the solution is low. After adding the probability correction coefficient for guidance, the
optimization ability of the algorithm is significantly enhanced, and the average running
time is greatly reduced.
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With the increase of coefficient X, the average running time is basically stable, but the
average optimal fitness value generally shows a downward trend, especially between 0.1
and 0.5. The possible reason is that the increase of the correction probability coefficient
leads to a rapid evolution process falling into a local optimum, and at the same time, a large
probability correction coefficient also makes the algorithm’s optimization and exploration
ability low, thus affecting the quality of solutions.

Hence, we can know that the real-coding PBIL algorithm can achieve optimal perfor-
mance when X = 0.1.

4.3.2. Influence of Coding Format on PBIL

The encoding format is the main difference between the real-coding PBIL algorithm
and the traditional PBIL with binary coding. Different encoding formats usually determine
the length of chromosomes and the size of the probability matrix, thus having a significant
effect on the efficiency of the evolution process.

In this paper, we implement two encoding formats of binary coding and real coding
for the PBIL algorithm and solve the multi-satellite scheduling problem under the same
conditions, respectively. Ten simulation experiments are carried out, and the statistical
results are shown in Table 4.

Table 4. Statistical results of different probability correction coefficients in PBIL.

Number
Optimal Fitness Value Running Time (s) Encoding Length

Real-Coding
PBIL

Binary-Coding
PBIL

Real-Coding
PBIL

Binary-Coding
PBIL

Real-Coding
PBIL

Binary-Coding
PBIL

1 3731 3251 850.5 1236.46 50 729
2 3754 3058 856.7 1207.07 50 729
3 3712 3159 866.2 1221.49 50 729
4 3779 3126 879.9 1217.60 50 729
5 3693 3073 864.0 1219.80 50 729
6 3761 3125 862.1 1222.91 50 729
7 3735 3150 859.7 1230.60 50 729
8 3723 3113 859.6 1235.59 50 729
9 3813 3013 867.5 1234.51 50 729

10 3757 3144 866.1 1232.31 50 729
Max 3813 3251 879.9 1236.46 50 729
Min 3693 3013 850.5 1207.07 50 729

Mean 3745.8 3123 863.23 1225.156 50 729

As can be seen from the table above, the chromosome length of real coding is 50, which
is equal to the quantities of targets. In contrast, the length of binary coding is 729, about
14 times that of real coding. Obviously, the chromosome length has a significant effect on the
efficiency of constraint checking and the evolution process; therefore, shorter chromosome
lengths can improve search speed. This is consistent with the results in the table that the
running time of real-coding PBIL is significantly shorter than that of binary-coding PBIL.
The simulation results show that the running time of binary-coding PBIL is about 1.5 times
that of real-coding PBIL, which indicates that the encoding format plays an important role
in the performance of the PBIL algorithm. More notably, real-coding PBIL can obtain higher
optimal fitness values; that is, it can obtain higher quality solutions than binary-coding
PBIL for multi-satellite scheduling.

4.3.3. Comparison of PBIL and GA

According to the optimization goal in Section 2, we carry out the comparison experi-
ments of the real-coding PBIL algorithm and real-coding Genetic Algorithm for solving
multi-satellite scheduling under the same conditions.
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The Evolutionary curves of 10 simulation experiments for 50 targets are shown in
Figure 12, and the statistical results of different target quantities are shown in Table 5 and
Figure 13. All the data as follows are the average of the results of 10 simulation experiments.
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Table 5. Statistical results of comparison experiments between PBIL and GA.with different target
quantity scales.

Quantities of Targets
Optimal Fitness Value Running Time (s)

Real-Coding
PBIL

Real-Coding
GA

Real-Coding
PBIL

Real-Coding
GA

25 550.2 1340.6 2015 1993
50 857.2 2113.5 3779 3635
75 1135.3 3197.2 5623 5446

100 1563.2 3718.7 7436 7046
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As can be seen from the figure above, to solve the multi-satellite scheduling problem
under the same conditions, the PBIL algorithm converges rapidly around iteration 80, while
the GA algorithm converges after iteration 100, indicating that the PBIL algorithm has
faster computational performance than the GA algorithm.

In addition, the evolution curve of 10 simulation experiments shows that the evolution
curves obtained by the PBIL algorithm have small fluctuation, while that obtained by
the GA algorithm have significant fluctuation and difference, indicating that the PBIL
algorithm is also better than the GA algorithm in terms of computational stability.

For different target quantity scales, the ability of PBIL and GA for solving multi-
satellite scheduling is further compared and analyzed.

As shown in the table and the figure above, the running time of the PBIL algorithm
is obviously much shorter than that of the genetic algorithm, where the computational



Electronics 2022, 11, 1147 14 of 15

efficiency is almost doubled, and most of the optimal fitness values are slightly higher than
that of GA.

Therefore, considering algorithm stability, computational efficiency and optimization
quality, etc., the PBIL algorithm is superior to the genetic algorithm in solving satellite
mission planning problems to some extent.

5. Conclusions

In this paper, a number of theoretical analyses and numerical experiments were
conducted to find a better method to solve centralized multi-satellite scheduling problems.

Firstly, considering the load and platform operation of satellites in reality, we estab-
lished a mathematical model of satellite scheduling with complex constraints, and the
related mathematical statement was given.

Secondly, the real-coding Population-Based Incremental Learning (PBIL) algorithm
was proposed to solve the MSSP. Compared to the traditional PBIL algorithm with bi-
nary coding, the real-coding format can greatly shorten the coding length so that the
computational efficiency is improved. Additionally, we designed the value probability
matrix, correction coefficient and mutation operator to guide better evolution and avoid
early convergence.

Furthermore, some numerical simulations and analyses were conducted to verify the
real-coding PBIL algorithm for multi-satellite scheduling. Additionally, we analyzed the
influence of key parameters such as the probability correction coefficient on algorithm
performance. The performance of the algorithm was analyzed by comparing it with binary-
coding PBIL and Genetic Algorithm (GA). According to the numerical results, it can be seen
that when solving multi-satellite scheduling problems, in terms of the algorithm efficiency,
solution quality and task completion rate, the real-coding PBIL algorithm is superior to
other algorithms in our study.

5.1. Applications and Limitations

Concerning the actual satellite scheduling process, the real-coding PBIL algorithm
might play a crucial part to help the Satellite Control Center make decisions precisely
and quickly. Generally, users call for demands regarding earth observation and send
these requirements to the Satellite Control Center. Then, the Center will aggregate all
the demands to obtain the targets to be observed and make a reasonable scheduling plan
within a specific period for satellites to meet the observation needs. The planning process
is difficult to rely on manual completion, while the algorithm we proposed will be helpful.
According to the information on targets, satellites and ground stations, it is easy to obtain
the visible time window set of satellite to target. Just input the window set, and the
algorithm will output the satellite scheduling result, that is, which target is to be observed
by which satellite at which time.

In this paper, we carry out simulations to verify the algorithm dealing with 10 satellites
and 50–100 targets. The results show that the algorithm displays good performance in
both optimal speed and quality. However, the scenarios in our paper are far from the
large-scale scenario with vast quantities of satellites and targets as the reality. Whether the
algorithm can deal with large-scale satellite scheduling problems well still needs further
discussions and verifications. Another limitation of our algorithm is that it might not be
suitable for multi-satellite scheduling problems requiring the revisiting observation of
targets. Due to the real-coding format, each target can be observed, at most, once in a
scheduling period. Our approach might be applicable to situations with a large number
of observation demands while the satellite resources are limited, rather than the scenarios
with repeated observation requirements for a specific area.

5.2. Future Works

Concerning future work, two main paths could be taken. At first, the expansion
of the satellite scheduling model can be more applicable to various situations in reality,
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such as multi-satellite scheduling with different payload types, large-scale constellations
scheduling and multi-satellite scheduling for moving target search and tracking, etc.

In addition, we will continue to study algorithms for multi-satellite scheduling prob-
lems. The internal mechanism of the search algorithm will be further explored, and a more
effective method for multi-satellite scheduling will be put forward, even considering the
integration of artificial intelligence theory to achieve an end-to-end intelligent satellite
scheduling process.
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