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Abstract: Brain tumors (BTs) are spreading very rapidly across the world. Every year, thousands of
people die due to deadly brain tumors. Therefore, accurate detection and classification are essential in
the treatment of brain tumors. Numerous research techniques have been introduced for BT detection
as well as classification based on traditional machine learning (ML) and deep learning (DL). The
traditional ML classifiers require hand-crafted features, which is very time-consuming. On the
contrary, DL is very robust in feature extraction and has recently been widely used for classification
and detection purposes. Therefore, in this work, we propose a hybrid deep learning model called
DeepTumorNet for three types of brain tumors (BTs)—glioma, meningioma, and pituitary tumor
classification—by adopting a basic convolutional neural network (CNN) architecture. The GoogLeNet
architecture of the CNN model was used as a base. While developing the hybrid DeepTumorNet
approach, the last 5 layers of GoogLeNet were removed, and 15 new layers were added instead of
these 5 layers. Furthermore, we also utilized a leaky ReLU activation function in the feature map to
increase the expressiveness of the model. The proposed model was tested on a publicly available
research dataset for evaluation purposes, and it obtained 99.67% accuracy, 99.6% precision, 100%
recall, and a 99.66% F1-score. The proposed methodology obtained the highest accuracy compared
with the state-of-the-art classification results obtained with Alex net, Resnet50, darknet53, Shufflenet,
GoogLeNet, SqueezeNet, ResNet101, Exception Net, and MobileNetv2. The proposed model showed
its superiority over the existing models for BT classification from the MRI images.

Keywords: deep learning; brain tumor; MRI; transfer learning; convolutional neural network

1. Introduction

The human brain is a command center and an essential organ of the human nervous
system responsible for accomplishing daily life activities. The brain collects stimuli or
signals from the body’s sensory organs, handles processing, and directs the ultimate
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decisions and output information to the muscles. BTs is one of the most severe situations
related to the human brain, where a group of abnormal brain cells grows in an undisciplined
manner [1]. BTs can be divided into two main types: primary and secondary metastatic.
The primary brain tumors (BTs) are generally non-cancerous and originate from human
brain cells. In contrast, secondary metastatic tumors spread to the brain with blood flow
from other body parts.

Furthermore, the World Health Organization (WHO) classified BTs into four categories
(Grade I–IV) depending on their malignancy or benignity. The standard approaches for
detecting and analyzing BTs are magnetic resonance imaging (MRI) and computer tomog-
raphy (CT) [2]. Grade III and Grade IV malignant BTs are fast-growing; they spread to
other body parts and affect healthy cells. Thus, early BT detection and classification helps
doctors plan proper treatment based on MRI and other images [3]. Glioma, pituitary and
meningioma are the three main types of primary brain tumors. Pituitary BTs are generally
benign and grow in the pituitary glands, the base layer of the brain that produces some
essential hormones in the body [4]. Gliomas develop from the glial cells of the brain [5].
Meningioma tumors generally grow on the protective membrane of the brain and spinal
cord [6]. The separation of normal brain tissue from abnormal tissues is critical in BT detec-
tion. Due to size, shape, and location variations, BT detection becomes more energizing
and is still an open problem. The concepts of medical image processing are used in BT
analysis (i.e., classification, segmentation, and detection) [7]. BT classification is a necessary
procedure to identify the tumor type at an early stage, if there are any. Many modernistic,
computer-aided diagnosis systems are presented in biomedical image processing to help
radiologists guide patience and better classify a BT [8]. A BT is a hazardous disease, and
it causes shorter life when there are high-grade tumors. To be precise, the diagnosis of a
BT plays a vital role in treatment and is helpful for the patient’s life [9]. Due to high vari-
ance, low contrast in nasopharyngeal carcinoma (NPC), and disrupted edges in magnetic
resonance images (MRIs). Accurate tumor segmentation is critical in the guidance of a
radiologist [10] to identify tumors better. There are numerous deep learning architectures
proposed in the literature for BT segmentation, such as DensNet [11], ResNet [12], and
InceptionNet [13].

In the literature, ML and DL are the two main techniques implemented for BT de-
tection [14,15]. Various studies have been proposed that employed machine learning
methods, such as support vector machines (SVM) [16,17], k-nearest neighbor (KNN) [18],
principal component analysis (PCA) [19], decision trees, and artificial neural networks
(ANNs) [20,21]. However, these methods work on hand-crafted features, while the mean
features need to be extracted for the training process. Therefore, the detection and classi-
fication accuracy depend on the quality of the features. Machine learning classifiers are
time-consuming and require large memory for large datasets [22]. Additionally, CNN lay-
ers are widely used for image and speech feature extraction [23]. Artificial neural networks
are also used for the extraction of different features, as each neuron is connected to another
neuron [24]. However, in deep learning, the last layers are fully connected and perform
well in medical imaging. For example, the CNN is the most common DL model mostly
used for image classification [25].

This inspired us to propose a DL-based approach to enhance existing algorithms’
accuracy and performance in detecting various types of BTs and evaluate the approach
on a publicly available dataset. For this purpose, we propose a hybrid DeepTumorNet
model that identifies and classifies BTs under the following three main types: meningiomas,
pituitary, and gliomas. The proposed method adopts the mechanism of deep learning
for feature extraction and a Softmax classification layer for variety. The proposed model
recorded the highest ever classification accuracy on the (CE-MRI) dataset, which is publicly
available on figshare, compared with the traditional method (i.e., Google net [26], Alex
net [27–29], Resnet50 [12], Squeezenet [28], DensNet [11], darknet53 [29], Mobilenetv2 [30],
Resnet101 [31], and Shufflenet [32]). Furthermore, with the proposed research study, we
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aim to answer the following research question: How efficiently and correctly does the deep
learning algorithm identify and classify BTs into different BT diseases?

Our main contribution to this research includes the following.
We propose a hybrid deep learning model for three types of BT classification (pituitary,

meningiomas, and gliomas), where the proposed DL classification approach outperforms
the existing state-of-the-art approaches by showing the highest accuracy on the CE-MRI
dataset, and extensive experiments are performed with nine other pretrained deep learning
models using transfer learning techniques. We also compare the results of the proposed
model with the previously proposed methods.

This research article is organized as follows. Section 2 presents the related works.
Section 3 details the proposed methodology. Section 4 describes the results and discussion.
Section 5 gives the conclusion and future work as a result of this study.

2. Related Works

Recent human works on computer-aided medical diagnosis provide improved per-
formance. For instance, Gupta et al. [33] integrated canny detection with an ANN for BTs
identification. They adjusted the sizes of previously treated images by RGB2grey conversion
and implemented a clever edge detection method to remove the qualities from BTs pictures.
In the end, an ANN was implemented for BTs identification. Mehrotra et al. [34] proposed
a DL network for two classes (malignant and benign) of dataset classification. They uti-
lized five different pre-trained deep learning models (AlexNet, GoogLeNet, ResNet101,
ResNet50, and SqueezeNet). AlexNet accomplished the most acceptable accuracy of 99.04%.
Moreover, it was observed that the model depended on the chosen optimizer.

Ramzan et al. [35] proposed a DL model for BTs detection using a fusion of hand-
crafted and deep features. The authors segmented BTs by applying a grab cut algorithm
and some morphological operations. Moreover, deep learning (VVG19) and handmade
components extracted for the tumor segments were fused through a serial-based method.
These concatenated features were supplied to multiple classifiers. Raja et al. [36] enhanced
the MR images using the nonsubsampled contourlet transform (NSCT) and NSCT fused
separately. Low- and high-frequency sub-bands were connected independently.

Furthermore, the inverse NSCT was applied to obtain enhanced images and then
extract the textured features from the enhanced images. The adaptive neuro-fuzzy inference
system (ANFIS) method was used to classify these features into normal and glioma BT
images. The classified glioma images were segmented using a morphological operation.

Sultan et al. [37] proposed a DL model based on a CNN using two publicly available
datasets containing 3064 (meningioma, glioma, and pituitary tumors) and 516 (Grade II,
Grade III, and Grade IV) images. The proposed model achieved a highest accuracy of
96.13% and 98.7%, respectively. Kumar et al. [38] introduced a hybrid approach for BT
detection and classification. The proposed strategy extracted the features from MR images
by applying a discrete wavelet transform and using PCA for feature reduction. Using a
kernel SVM trained with the reduce feature, the proposed hybrid performed better than
traditional DL methods by increasing the accuracy and decreeing the root mean square
error. Pitchai et al. [39] integrated an artificial neural network (ANN) along with a fuzzy
k-means algorithm for BT segregation and detection. The GLCM-extracted features are
given to the ANN for a variety of standard and abnormal MRI images.

Furthermore, the fuzzy k-means algorithm segregates tumors from abnormal MRIs.
Amin et al. [40] proposed an automatic detection and classification method for three publicly
available BT datasets. Their proposed strategy comprises three steps. They segment the
region of interest using different pre-processing techniques and morphological operations.
Moreover, each candidate’s lesion intensity, texture, and shape features are extracted and
classified with an SVM. The proposed technique is more robust than other existing methods
and returned 97.1% accuracy. Özyurt et al. [41] proposed a BT detection method. First, they
segmented the MRI tumor images using the NS-EMFSE method. They extracted features
from the segmented images using AlexNet and then the ML model, and KNN and a SVM
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were utilized to detect and classify the BT images as benign or malignant using the SVM,
achieving 95.62% accuracy. Kaplan et al. [42] modified the local binary patterns (LBP)
feature for BT detection and classification. They extracted the nLBP and αLBP features and
performed classification with different ML classifiers such as KNN, random forest (RF),
ANN, A1DE, and linear discriminant analysis (LDA). Their proposed method achieved the
highest accuracy of 95.56%, and nLBP d = 1 feature extraction with the KNN model, where
d is the distance between two neighbors’ pixels.

Çinar et al. [43] proposed a hybrid CNN architecture for BT detection by modifying
a deep learning model. They removed the last five layers of ResnNet50 and added eight
new layers. Their proposed hybrid ResNet50 model obtained 97.2% accuracy, while the
single ResNet50 model obtained 92.53% accuracy. Mohsen et al. [44] introduced a DNN
for BT detection and classification, where the MR images are segmented into normal and
abnormal by using the fuzzy c-means clustering technique. The features are extracted from
segmented images using DWT.

Moreover, these features are reduced by using PCA. Finally, classification is performed
by a deep neural network. Like a CNN, the proposed methodology achieved the highest
accuracy of 98.4%. Lather et al. [45] investigated different BT segmentation and detection
techniques. Their study surveyed six segmentation techniques and presented a detailed
review of previous researchers’ work on segmentation and detection. Abd-Ellah et al. [46]
suggested two-phase models for BT detection and localization. To detect brain tumors,
the proposed system in the first phase classifies MR images as normal or abnormal by
using a CNN for features extraction and the ECOC-SVM approach for classification. In the
second phase, the tumor is localized in strange images by designing a new five-layer region
based on R-CNN. The proposed two-phase multi-model achieved 99.5% detection accuracy.
Marghalani et al. [47] proposed an automatic classification method for BT and Alzheimer’s
disease. They extracted a bag of features (SURF and SIFT) and used a SVM as a classifier.

The proposed automatic classification method classified the MRI data set into three
classes—MRIs of brain tumors, MRIs of Alzheimer’s disease, and MRIs of normal brains—
with an average accuracy of 97%, which was greater than that of the SURF-based features.
Swati et al. [48] used block-wise fine-tuned CNN models for BT detection and classification.
The fine-tuned VGG-19 for the block-wise fine-tuning technique achieved 94.84% classi-
fication accuracy in less training time than the hand-crafted features. Kumar et al. [49]
introduced a new optimized DL mechanism for BT detection and classification named
Dolphin-SCA based on a deep CNN. For segmentation, the researcher used a fuzzy de-
formable fusion model with a dolphin echolocation-based sine cosine algorithm (Dolphin-
SCA). The extracted features were used in a deep neural network with Dolphin-SCA based
on the power LDP and statistical extracted features. The proposed technique achieved
96.3% classification accuracy.

Deepak et al. [50] used pre-trained GoogLeNet for feature extraction and proven
classifier models for BT detection and classification. The proposed approach recorded
98% accuracy compared with the state-of-the-art methods. Raja et al. [51] presented a
hybrid model for BT detection and classification that involves different backgrounds (i.e.,
pre-processing using a non-local express filter and segmentation using the Bayesian fuzzy
method). Afterward, various image features were captured and extracted using theoretic
measures, scattering transform, and the wavelet packet Tsallis entropy method. Finally,
classification was carried out using a hybrid approach based on deep autoencoder with
a Softmax regression and obtained 98.5% accuracy. Rammurthy et al. [52] proposed a
new BT detection technique based on DL, namely Whale Harris Hawks optimization, by
combining the whale optimization algorithm (WOA) with the Harris hawks optimization
(HHO) algorithm. At first, the tumors in the images are segmented using cellular automata,
and different features like the size, variance, mean, and kurtosis are extracted, while the
elements are classified for better BTs detection with the proposed Whale Harris Hawks
optimization (WHHO). The proposed method reached its highest accuracy at 81.6%. Ba-
hadure et al. [53] used a skull skipping algorithm to eliminate the non-brain parts from
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MR images to detect BTs based on Berkeley wavelet transformation (BWT) and segmented
features (shape, texture, color, and contrast) with an SVM classifier. The experimental
results obtained 96.51% accuracy. Waghmare et al. [54] implemented different CNN archi-
tectures for BTs detection and classification. Fine-tuned VGG-16 increased the classification
accuracy of the augmented data set and reached the most acceptable accuracy at 95.71%.

3. Materials and Methods

This section highlights and elaborates the proposed research methodology for fine-
grained BTs classification. The proposed method is mainly described in two steps. First, we
elaborated on the research dataset utilized for fine-grained BTs classification. Secondly, we
thoroughly elaborated on the proposed deep learning-based approach and its architecture
to detect and classify brain MRI images into meningiomas, gliomas, and pituitary tumors.

3.1. Dataset and Preprocessing

This research study utilized a publicly available CE-MRI dataset [55]. The MRI images
in the dataset were collected over 5 years (2005–2010) from 233 different patients having BTs
at Nanfang Hospital Guangzhou China and General Hospital Tianjin Medical University
in China. The dataset comprises 3062 MRI images of 3 distinct types of BT in 233 patients,
including gliomas (1426), meningiomas (708), and pituitary tumors (930) in 3 different
views. The details of the research dataset are explained in Figure 1 and Table 1. The
dataset images are in 2D volumes and have a 512 × 512 resolution with a 0.49 × 0.49 mm2

pixel size. Additionally, the tumor region in the MRI was bordered manually by three
experienced radiologists [56]. The dataset images available on figshare are in .mat format
and have a 512 × 512 resolution. The proposed model was designed with an input layer
size of 224 ×224. Therefore, the dataset was pre-processed to make it pursuable for the
proposed approach, as shown in Figure 2. Initially, the MRI images were normalized (i.e.,
mat to .jpg format) and then resized by using the resize function in Matlab [57] according
to the image input sizes of our proposed deep learning model and other pretrained models.
Therefore, the MRI images were resized to 224 × 224 pixels, and the DarkNet19 images
were resized to 256 × 256 pixels. Furthermore, the dataset images were split into 70% for
training and 30% for testing. We used all the 3064 brain tumor images for the experiments,
where around 2146 images (495 meningiomas, 652 pituitary tumors, and 999 gliomas) were
used for training. The remaining 918 images (213 meningiomas, 278 pituitary tumors, and
428 gliomas) for testing.

Figure 1. Three different tumors (meningioma, glioma, and pituitary tumor) in three different views.
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Table 1. Explanation of CE-MRI dataset.

Tumor Class Patients Images View of MRI. No. of MRI. Images

Meningioma 82 708
A * 209
C * 268
S * 231

Pituitary 62 930
A * 291
C * 319
S * 320

Glioma 89 1426 A * 494
C * 437
S * 495

Total 233 3064 3064
* Axial = A, * Coronal = C, and * Sagittal = S.

Figure 2. Architecture of proposed hybrid model.

3.2. DeepTumorNet

The hybrid DeepTumorNet model follows the basic structure of the CNNs. As train-
ing a convolution network from scratch is a challenging job, sometimes, it may take
months [30,48]. Therefore, instead of training a new deep learning classifier from scratch, a
pretrained classifier would be better to train the proposed deep learning approach. For this
purpose, we used GoogLeNet as a base model, as GoogLeNet [26] remained the winner
of the ILSVRC (2014) ImageNet competition. GoogLeNet has 22 learnable layers and
144 layers, including 2 convolution layers, 4 max_pooling layers, 1 average pooling layer,
2 normalization layers, 1 fully connected layer, and 9 inception layers modules [43]. Addi-
tionally, each inception module was comprised of one max-pooling and six convolutional
layers. The input layer of GoogLeNet was renewed to 224 × 224 × 1. The ReLU activation
function was used in the pretrained GoogLeNet approach. At the same time, the ReLU
activation function neglected all negative values and used zero instead. Alternatively,
Leaky ReLU is an improved version of ReLU, and it replaces all negative values with
positive ones [58].

Meanwhile, in the proposed DeepTumorNet classifier, the last 5 layers of GoogLeNet
were removed, and 15 new layers were added instead of 5 layers. Furthermore, the ReLU
activation function in the feature map layer was changed to the Leaky ReLU activation
function to increase the proposed model’s expressiveness and overcome the dying ReLU
problem without disturbing the primary convolution neural network architecture. The
total count of layers after these changes increased from 144 to 154.
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The first convolution layer used a filter (patch) size of 7 × 7, which immediately
reduced the image size. The second convolution layer had a depth of two and leveraged
the 1 × 1 convolution block, which is the effect of dimensionality reduction. Furthermore,
the inception module of GoogLeNet has different convolution kernels, such as convolution
kernels of 1 × 1, 3 × 3, and 5 × 5 which extract the features at different scales, starting from
the most delicate features to the core features. The larger convolution kernel covers a larger
area to compute the features. Similarly, the 1 × 1 convolution kernel gives further details
and reduces the amount of computation. The new additions include four convolutional
layers with a tiny filter size of 1 × 1. In addition, increasing the number of convolution
layers in the CNN gave us more detailed, accurate, and robust features. These four later
convolutional layers extracted high-level features compared with the initial layer, which
extracted low-level features.

Moreover, the global average pooling layer increased the accuracy at the network’s
end. Furthermore, the ReLU activation function in the feature map layer was changed
to the Leaky ReLU activation function to increase the proposed model’s expressiveness
and overcome the dying ReLU problem. Therefore, the proposed hybrid model extracted
more detailed, discriminative, and deep features because of the additional layer, resulting
in better classification performance than the mentioned state-of-the-art pretrained deep
learning models.

The structure of the proposed hybrid DeepTumorNet approach is shown in Figure 2.
The name, type, number of the filter, filter size, and epsilon of the added layer are elaborated
in Table 2. Below, we discuss each layer of the proposed hybrid DeepTumorNet model
in detail.

Table 2. Characteristics of added layers in the proposed hybrid model.

S.No Layer Name Type No of Filter Filter Size Epsilon

1 block_16_expand Conv 960 1 × 1
2 block_16_expand_BN Batch Norm 0.001
3 block_16_expand_relu Clipped ReLU Layer
4 block_16_depthwise Grouped Conv 960 3 × 3
5 block_16_depthwise_BN Batch Norm 0.001
6 block_16_depthwise_relu Clipped ReLU Layer 0.001
7 block_16_project Conv 320 1 × 1
8 block_16_project_BN Batch Norm 0.001
9 Conv_1 Conv 1280 1 × 1
10 Conv_1_bn Batch Norm 0.001
11 out_relu Clipped ReLU Layer
12 global_average_pooling2d_1 Global Average Pooling
13 Logits Fully Connected
14 Logits_softmax Softmax
15 ClassificationLayer_Logits Classification Layer

3.2.1. Image Input Layer

The proposed DeepTumorNet model starting from the image layer included the
model’s input, which specified the image input size, which in our case was 224 × 224 × 1.
Such a number corresponds to the input image’s width, height, and channel size (1 in the
case of grayscale images and 3 in the case of color images). The images were first read from
in the input layer for processing.

3.2.2. Convolutional Layer

The convolutional layer was utilized to recover the deep learning features from an in-
put image (producing a feature map). The mathematical operation presents two arguments:
an image matrix and a filter size (size represents the height and width of the filters) [59].
Our hybrid model uses different filter sizes of 7 × 7, 5 × 5, and 1 × 1 in the convolutional
layers and 3 × 3 in the max-pooling layers. Convolutional layers add padding with the
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input of the feature map by using the “Padding” name–value pair. The discrete time
convolution method is elaborated in Equation (1):

s(t) = (x ∗ w)(t) =
∞

∑
a=−∞

x(a)w(t− a) (1)

where W is the kernel filter, x is the input to the method, t is the time taken, and s is the
results. In the case of two-dimensional input data being taken, Equation (2) is considered:

S(i, j) = (I ∗ K)(i, j) = ∑
m

∑
n

I(i, j) ∗ K(i−m, j− n) (2)

The terms i and j show the areas of the desired matrix required after the deep learning
convolution method. The preferred technique in this procedure is set so that the filter’s
center is in the first position.

If cross-entropy is to be accomplished in the proposed approach, Equation (3) is utilized:

S(i, j) = (I ∗ K)(i, j) = ∑
m

∑
n

I(i + m, j + n) ∗ K(m, n) (3)

3.2.3. Activation Function

The activation functions are often used in DL-based models for nonlinear transfor-
mation processes. Sigmoid, Tanh, and ReLU activation functions were the most widely
used and preferred activation functions developed in the past. However, ReLU provides
an output of zero for all negative inputs (i.e., deactivating negative inputs), resulting in
dead neurons (the dying ReLU problem). A neuron is “dead” if it always outputs 0 and is
stuck on the opposing side. We used the leaky ReLU activation function instead of ReLU
in the feature map, an value-added form of the ReLU activation function, to address the
dying ReLU problem [60]. In the case of leaky ReLU, the negative number (x) output is a
tiny linear component of x instead of 0. Moreover, in the last 15 added layers, we used a
clipped ReLU activation function which performed a thresholding operation, where any
desired input value that was less than 0 was set to 0, and any desired input value that was
above the ceiling was set to the specified ceiling. The formulas of the activation functions
are shown in Equations (4)–(7):

ReLU:

f (x) =
{

0, x < 0
x, x ≥ 0

, f (x)′ =
{

0, x < 0
1, x ≥ 0

(4)

Sigmoid:

f (x) =
1

1 + e−x , f ′(x) = f (x)(1− f (x)) (5)

Tanh:
tan h(x) =

2
1 + e−2x − 1, f ′(x) = 1 f (x)2 (6)

Clipped ReLU:

f (x) =


0, x < 0
x0 ≤ x < ceiling
ceiling, x ≥ ceiling

(7)

Leaky ReLU:

f (x) =
{

x, x ≥ 0
scale ∗ x, x < 0

(8)

In the leaky ReLU function, output x is for the positive inputs, and it outputs a small
value that is 0.01 times x in the case of negative values. Hence, no neuron is deactivated in
this case, and we would no longer encounter dead neurons.
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3.2.4. Batch Normalization Layer

The batch normalization layer was utilized to normalize the outputs generated by the
proposed convolution layers. Normalization shortens the training time of the proposed
DeepTumorNet model to achieve the learning process more efficiently and quickly. The
batch normalization process is given in Equations (8)–(10):

Yi =
Xi− µβ√

σ2β + ε
(9)

σβ =
I

M
(Xi− µβ)2 (10)

µβ =
1
M

M

∑
i=1

Xi (11)

where M is the total number of input data, X_i = 1, . . . , M, µ_β is the stack’s average value,
σ_β is the stack’s standard deviation, and Yi is the new values obtained as a result of the
normalization procedure.

3.2.5. Pooling Layer

After the convolution layer, the pooling layer was used to simplify the information
from the convolution layer (a downsampling procedure to decrease the size of the feature
map and remove unnecessary data). Average and maximal pooling are the two most
common pooling strategies. In the last 15 layers, we used global average pooling. In
pooling, the network does not carry out any learning. For the pooling process, 3 × 3-sized
filters were used. The pooling process is given in Equation (12):

S = w2× h2× d2 (12)

w2 =
(w1− f )

A + 1
(13)

h2 =
(h1− f )

A + 1
(14)

d2 = d1 (15)

where w1 represents the width of the images of the MRI, h1 denotes the height of the input
MRI image, d1 denotes the value of the depth of the input MRI image size, f represents
the filter size, A represents the number of steps utilized, and S represents the size of the
manufactured image.

3.2.6. Fully Connected Layer

In the proposed model, the convolutional layers are followed by a fully connected
layer. This is accomplished by merging all of the features learned by the preceding layers
over a number of images. This layer determines the most significant patterns in order to
categorize the images. The output size value in the final completely linked layer is 3, as in
the proposed research study, the number of classes (meningioma, glioma, and pituitary) is 3.
For this, the obtained output value of the proposed FC layer is 3. Equations (16) and (17)
are used for this purpose:

Uil = ∑
j

wjil−1yjl−1 (16)

yil = f
(

uil
)
+ b(l) (17)

where l is the total number of the layers, i and j are the total number of neurons, yli is the
value created in the proposed output layer, wl-1ji is the hidden layer’s weight value, yl-1i is
the value of the input neurons, uli is the output layer’s value, and b(l) is the value of deviation.
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3.2.7. Softmax Layer

The activation function makes the output of the fully linked layer more normalized.
Softmax executes the probabilistic calculation coming from the network and creates the
work in positive numbers for each class. The Softmax method is given in Equation (18):

P(y = j|xi , W, b) =
expXTWj

∑n
j=1 expXTWj

(18)

where A, s, W, and b are weight vectors.

3.2.8. Classification Layer

The last layer of the proposed model is the classification layer, which is used to produce
the output by utilizing each input. The Softmax activation function returned a probability
distribution [61].

3.2.9. Training Parameters

We used a trial-and-error-based approach to perform experiments with the parameters
shown in Table 3. We constantly monitored the improvement of the training validation
accuracy and error to find the optimal convergence of each CNN. If there was no validation
accuracy or error increase, the training was terminated automatically. We used stochastic
gradient descent (SGD) to train the proposed DeepTumorNet model with an initial and final
learning rate of 0.01 and a minibatch size of 10 images. The proposed DeepTumorNet model
was trained on 120 epochs for brain tumor classification to obtain the optimum results.

Table 3. Parameter values used in training networks.

Name SGDM

MiniBtachSize 10
Number of Epochs 120

Initial Learning Rate 0.01
Shuffle every epoch

Validation Frequency 50

4. Results and Discussion

This research paper was intended to classify three different types of BTMRI images
correctly. The CEMRI dataset was classified with pre-trained deep learning models and the
proposed hybrid DeepTumorNet model, where 70% of the dataset was used for training
purposes and 30% for testing purposes. The results were achieved in the Matlab envi-
ronment with computer resources, namely an i5 processor and 8 GB of RAM. There are
various approaches for the measurement of deep learning network classification perfor-
mance. A confusion matrix is widely used for classification tasks in the CNN process. The
most desired and preferred measures included precision, recall, accuracy, and F1 score.
These calculations are computed through a confusion matrix [62]. The general form of the
confusion matrix utilized in this research is shown in Table 4.

Table 4. General confusion matrix.

Predicated Classes

Gliomas Meningiomas Pituitary

Actual Class Gliomas PGG PMG PPG
Meningiomas PGM PMM PPM

Pituitary PGP PMP PPP
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Here, PGG is the images from the dataset which predicted glioma; PMG is the images
from the dataset which were actually meningioma and predicted wrongly as glioma; PPG is
the images from the dataset which were actually pituitary and predicted wrongly as glioma;
PGM is the images from the dataset which were actually glioma and predicted wrongly as
meningioma; PMM is the images from the dataset which were actually meningioma and
predicted correctly as meningioma; PPM is the images from the dataset which were actually
pituitary and predicted wrongly as meningioma; PGP is the images from the dataset which
were actually glioma and predicted wrongly as pituitary; PMP is the images from the
dataset which were actually meningioma and predicted wrongly as pituitary; and PPP
is the images from the dataset which were actually pituitary and predicted correctly as
pituitary. Furthermore, the accuracy, precision, recall, and F1-score are defined below.

4.1. Performance Metrics (Accuracy, Precision, Recall, and F1 Score)

Classification accuracy is the proportion between the correct predictions and the total
data elements.

The equation that calculates the accuracy is shown in Equation (19) and Figure 3:

Acc =
TP + TN

TP + FP + TN + FN
(19)

where TP is true positive, or the estimated accurate amount of data, FP is false positive, or
the fact that it is harmful and predicated as positive, TN is true negative, which is genuinely
harmful and is predicated negatively, and FN is false negative, or the information that it is
positive and predicated as unfavorable.

Figure 3. Classification performance (accuracy (%)) of the proposed hybrid model.

Precision (positive predicted values) is the proportion of optimistic forecasts that
belong to the all positive class. The equation of the precision value is shown in Equation (20):

prec =
TP

TP + FP
(20)
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Recall is defined as the number of true positive (TP) outcomes divided by the total
number of elements corresponding to the positive class. The calculation for the recall value
is presented in Equation (21):

Recall =
TP

TP + FN
(21)

The F1 score is the average of the precision and recall. The calculation for the F1 score
is presented in Equation (22):

F1−measure =
2 ∗ prec ∗ recall

prec ∗ recall
(22)

Additionally, after the proposed hybrid DeepTumorNet model was trained, the per-
formance values of the accuracy, precion, recall, and F1 score were measured as presented
in Table 5. The proposed hybrid deeptumorNet model obtained the highest accuracy,
precision, recall, and F1 score values of 99.67%, 99.6%, 100%, and 99.6%, respectively. The
loss and accuracy curves of the proposed DeepTumorNet approach are shown in Figure 3.
The loss function shows how well the proposed hybrid model classified the tumor images
into fine-grained tumors (gliomas, meningioma, and pituitary). The loss and accuracy
of the proposed model after epoch 71 almost remained the same, demonstrating that the
proposed hybrid approach classified the brain tumors with higher accuracy even at lower
epochs than 120. The training and validation process of the proposed DeepTumorNet
model is presented in Figure 3. A confusion matrix is shown in Table 6, which summarizes
the correct and incorrect classifications of our proposed method.

Table 5. Experimentation results of pretrained models.

Model Accuracy Precision Recall F1-Score

Proposed Model 99.67% 99.6% 100% 99.66%
AlexNet 97.8% 97.6% 97.66% 97.66%

GoogLeNet 98.26% 98% 98.66% 98.33%
Shufflenet 98.37% 98.33% 98.66% 98.33%
ResNet50 98.60% 98.33% 98.66% 98.33%

MobileNet V2 99% 99% 99% 99%
SqueezeNet 97.91% 97.66% 98% 97.66%
Darknet53 99.13% 99% 99.33% 99%
Resnet101 98.91% 98.66% 99% 98.66%

ExceptionNet 98.69% 98.33% 98.33% 98%

Table 6. Confusion matrix of proposed hybrid model.

Predicated Classes

Gliomas Meningiomas Pituitary

Actual Class Gliomas 426 01 01
Meningiomas 01 211 00

Pituitary 00 00 278

4.2. Comparison of DeepTumorNet with the Pretrained Transfer Learning Approaches

This section compares some pre-trained transfer learning models with the proposed
hybrid DeepTumorNet model. This experimentation aimed to evaluate the usefulness of
the hybrid proposed model for BTs classification. At the same time, we compared the
evaluation performance of our DeepTumorNet model with nine classical DL models (i.e.,
ExceptionNet, MobileNetv2, SqueezeNet, ShuffleNet, DenseNet, ShuffleNet, ResNet50,
MobileNetv2, DarkNet-53, ResNet101, and AlexNet). All of these comparable DL models
were employed using a transfer learning configuration trained on the ImageNet database.
We changed the last three layers of each pre-trained model to adapt them to the target
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number of classes. The fully connected (FC) layer in every model was removed, and a new
FC layer having an output size of three was introduced using the fine-tuning strategy, as we
had three classes as output. Every model had a different input size, and like the size of the
input images, GoogLeNet’s was 224 × 224, while 227 × 227 was the for SqueezeNet and
other models. All models were fine-tuned with the same experimental parameters shown
in Table 6. The fine-tuning classification method is illustrated in Figure 4. To perform the
deep learning training, the dataset’s images were split at a ratio of 30% and 70% for testing
and training, respectively, to obtain reliable results and efficient performance for the deep
neural networks as shown in Figure 3. The results are presented in Table 5.

Figure 4. Diagram of transfer learning-based classification.

We witnessed that our method expressively outperformed the nine comparative
DL models from the resulting observations. However, the Darknet53 and MobileNetV2
pretrained classifiers performed relatively better and close to the proposed hybrid DeepTu-
morNet model by achieving the second and third highest performance in classifying brain
MRI images to meningioma, glioma, and pituitary types.

4.3. Comparative Results of DeepTumorNet with the State-of-the-Art Classification Approaches

Previously, researchers conducted relevant studies on BTs using different machine
learning and DL techniques with a similar dataset. However, in some studies, the authors
used binary classification classes (malignant and benign) of data and multiple classes
(fine-grained classification) with fewer images. It is noticeable in Table 7 that the proposed
deep learning-based hybrid model’s performance values were enhanced compared with
the state-of-the-art approaches in the literature.

We compared the obtained results of our proposed DeepTumorNet approach with
the state-of-the-art approaches in the literature [27,30,31,35,56,57]. The comparative results
indicated the greater efficiency of the hybrid DeepTumorNet method over these techniques.
Additionally, it was essential to use hand-crafted engineering for classification, which is
computationally more complex. Moreover, the proposed model performed well than the
mentioned methods in terms of accuracy, as depicted in Table 7. The proposed hybrid model
comprised 154 layers, including newly added layers followed by the leaky ReLU activation
function, decreasing the dying ReLU problem. Therefore, the proposed hybrid model
extracted more descriptive and discriminative details and accurate features for classification.

In the proposed hybrid model, GoogLeNet was modified by adding and replacing
the last 5 layers with 15 new layers and replacing the ReLU activation function with leaky
ReLU. The newly proposed method performed better than the base model GoogLeNet
in classification accuracy. The DeepTumorNet model is a convolutional neural network
architecture with fewer hardware resources. It also requires a very convenient time for
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training. The increasing number of epoch and dataset sizes increased the time complexity
of the network. However, the proposed deep learning-based hybrid model extracted
more descriptive, detailed, and discriminative deep features. The proposed model can
be embedded in an MRI machine for real-time BT classification. Moreover, it will help
neurologists and surgeons in the treatment of BT patients.

Table 7. Comparative study of the proposed model with recent ML and DL models.

Author Technique Classification Type Dataset Accuracy (%)

Mehrotra et al., (2020) [27] PT-CNN: AlexNet Binary Class T1-weighed MRI
(Benign = 224; malignant = 472) 99.04%

Kaplan et al., (2020) [35] LBP SVM KNN Multi-Class
T1-weighed CE-MRI

(meningiomas = 708; gliomas = 1426;
pituitary = 930)

95.56%

Sultan et al., (2019) [30] CNN Multi-Class
T1-weighed CE-MRI

(meningiomas = 208; gliomas = 492;
pituitary = 289)

96%

Anaraki et al., (2019) [63] GA-CNN Multi-Class
T1-weighed CE-MRI

(meningiomas = 708; gliomas = 1426;
pituitary = 930)

94.20%

Kumar et al., (2017) [31] GWO+M-SVM Multi-Class
T1-weighed CE-MRI

(meningiomas = 248; gliomas = 12;
pituitary = 55)

95.23%

Bahadur et al., (2017) [64] BWT+SVM Binary T2-weighted images
(normal = 67; abnormal = 134) 95%

Abiwinanda et al., (2019) CNN Multi-Class
T1-weighed CE-MRI

(meningiomas = 708, gliomas = 1426;
pituitary = 930)

84%

Proposed method Deep CNN Multi-Class
T1-weighed CE-MRI

(meningiomas = 708; gliomas = 1426;
pituitary = 930)

99.67%

5. Conclusions and Future Work

This research intended to classify BTs using different convolution neural networks
and a new hybrid model. The GoogLeNet architecture was utilized as a base for the
proposed DeepTumorNet framework. The last 5 layers of GoogLeNet were eliminated
and 15 new deep layers were added in place of the 5 layers. Furthermore, the ReLU
activation function was changed into the leaky ReLu activation function without disturbing
the primary convolution neural network architecture. The total count of layers after the
changes increased from 144 to 154. The proposed hybrid model reached a highest ever
classification accuracy of 99.67%. In addition, we deployed nine deep pretrained CNN
models using the transfer learning technique on the CE-MRI dataset to identify the BT types
and compared their results with the proposed hybrid model. The experimental results
demonstrated that the proposed hybrid model more accurately discriminated the brain
tumors. Moreover, the proposed method computed more descriptive and discriminative
details and accurate features for brain classification, resulting in high accuracy compared
with the other state-of-art approaches.

Furthermore, it is evident from experimentation that the pretrained CNN model using
transfer learning techniques produced the utmost performance. However, the hybrid
framework accuracy reached the maximal compared with the rest of the pretrained models.
Furthermore, in future work, experimenting with the dataset with a small number of
malignant brain MRI images and a significant number of normal brain MRIs should be
performed, as the proposed model extracted more detailed, discriminative, and accurate
features. Therefore, before classifying the brain MRI images into two classes (i.e., malignant
and benign), an efficient segmentation technique should be applied to brain MRI data.
After that, the proposed model can accurately detect and classify benign and malignant
images using segmented images.

Additionally, there is a possibility that other CNN networks can be converted to hybrid
approaches to show better classification results with less time complexity. We aim to classify
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BTCT images and other large BT datasets [65] with the proposed DeepTumorNet model.
Moreover, we plan to check the efficiency of the proposed hybrid method for other forms
of medical image analysis, such as lung cancer, COVID-19, and pneumonia detection.
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