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Abstract: In this paper, a power compensator using supercapacitors in parallel to protect grid-
connected devices connected to the distributed power supply in the case of a low-voltage ride-
through (LVRT) situation in designed, and a grid-connected device control method with improved
responsiveness is proposed. In the LVRT situation, the distributed generation power may boost the
DC_link voltage, increasing the risk of destroying grid-connected devices. To prevent this, the power
compensator designed in this study absorbs active power in a fault situation and stores it in the
supercapacitor to suppress the DC_link voltage rise and efficiently use the power. In addition, we
propose methods to improve the response of the grid reactive power through the reactive power
compensation of the power compensator in LVRT situation. To this end, the power angle (θPW) was
extracted through the formula, and the reactive power command, to be compensated by the power
compensator, and the reactive power command, compensated by the grid-connected devices, were
calculated according to the active power value. In this way, the grid power controlled by the power
compensation device and the grid-connected devices was controlled by the active/reactive power of
the same power angle and analyzed mathematically. Active power control and static grid support
were performed in the normal state where the reduction rate of the normal value of the grid voltage
was around 10%. However, when the grid voltage dropped by 10% to 100%, the reactive power
control was appropriately performed with dynamic grid support by increasing the voltage from 10%
to 20% or more. We conducted a simulation of the new and renewable energy grid-connected devices
using the OPAL-RT-based Hardware-in-the Loop Simulation (HILS) system to control the proposed
active/reactive power.

Keywords: LVRT; DC_link voltage; supercapacitor; active power; reactive power; power
compensator; power angle; renewable energy; grid-connected devices

1. Introduction

In recent decades, the demand for renewable energy has increased significantly due to
the depletion of fossil fuels and the disadvantages associated with environmental pollution.
Among the types of renewable energy sources, wind power and solar power are the most
promising and are developing rapidly due to developments in power electronics technology.
Photovoltaic power generation produces electricity by converting light energy from the
sun by employing solar cells that generate electricity via the photoelectric effect when it
receives sunlight. Wind power generation converts wind power into rotational power and
supplies the generated power to the power system or consumers. Wind power generation
and photovoltaic power technologies are spotlighted as the future energy industry as they
can generate electricity anywhere there is wind and sunlight, are easy to install, and have
low prices [1–3].
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In the meantime, relatively stable system operation is possible in the form of a unidi-
rectional current that supplies electricity to each consumer through long-distance transport
centered on large-scale power plants, which in turn are centered on nuclear and thermal
power plants. On the other hand, as the demand for new and renewable energy increases,
it is changing to a bidirectional current form due to distributed generation using wind
power and photovoltaic power. As power generation facilities with uncertainties and
output variability, such as solar and wind power, are connected to the power system,
various challenges occur in system operation. One of these problems is the maintenance of
grid coordination regulations, such as maintaining constant frequency and voltage due to
frequent supply demand imbalances in the power system caused by the increased demand
for distributed power generation, and grid connection regulations, such as strengthening
power system reliability standards [4,5].

In the early days, while distributed power generation in the power system was in-
significant, no significant issues occurred in the event of a grid accident, such as a voltage
drop. When a fault occurred in the grid system, wind and photovoltaic power generators
were able to suddenly disconnect from the grid system and reconnect when the grid was
restored. However, in the recent power system, when distributed power generation in-
creases, instantaneous separation from the grid seriously affects the safety of the whole
electric power system. Many control methods have been studied to solve this problem,
such as the On Load Tap Change (OLTC) of substation peripheral voltage, the Step Voltage
Regulator (SVR) installed in the middle of distribution lines, and the capacitor bank at the
output. However, similarly, due to the intermittent renewable energy, it is insufficient to
quickly control voltage fluctuations or increase response quality while supplying power
to the load, increasing system instability. In order to solve this problem, methods for
improving system stability by applying inverters of a distributed generation are currently
being investigated [6–8].

First, dynamic brake resistors (DBRs) are applied to wind power generation among
distributed generation. The mechanical torque input through the blade pitch control is
converted into electrical energy through the PMSG and the generator-side converter, and
the converted electrical energy is supplied to the system through the system-side converter.
This is a method of suppressing the increased voltage through an external resistor if the
DC_link voltage rises due to more than a specific voltage when connected to a wind power
generator. Most distributed power sources are applicable to grid interconnects and have
the advantage of being relatively simple to control and configure, but require space to
install external resistors, and the larger the capacity, the higher the required resistance. It
has the disadvantage of increasing the required space [9,10].

Second, the de-loading droop control reduces the distributed generation power by
controlling the gain value of the generator-side converter when the DC_link voltage of the
High-Voltage Direct Current (HVDC) system rises above a specific voltage or a specific
frequency. This method does not require external hardware and has the advantage of
controlling even if there is a problem in the system. However, the speed of the turbine
increases because the limited electrical output of the wind turbine is accumulated as the
kinetic energy of the wind turbine. Additionally, since it takes time for the integral term
of the proportional–integral controller, which is a DC-linked controller, to return to the
control area, there is the disadvantage of taking a considerable time to recover after an
accident [11].

Third, as an inverter power compensation control method, it is a method of compen-
sating the generated power of a power conversion device for distributed power control
according to the LVRT situation. When calculating the q-axis current of the generator-side
converter, the amount of power generation is limited by multiplying the required genera-
tion command value by the reduction amount of the grid voltage. This control method has
superior control performance compared to de-loading droop control and DBR control, and
does not require an external device. However, this method has a relatively complex algo-
rithm compared to other control algorithms, and in the case of an unbalance accident, such
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as a short circuit, the current magnitude of the grid-side converter is different, reducing the
amount of power generation to smaller than the maximum power that can be introduced
into the grid, resulting in inefficiency, and the power conversion device, power generation
parameters, etc., are essential to determine [12].

In order to solve the grid connection problems caused by distributed generation, grid
connection regulations have been enacted, and there is substantial interest in the stability of
grid connection devices under LVRT conditions. New control methods are being updated
to cooperate with system transients for continuous operation without destroying the grid
connection of distributed generation [13].

It is operated according to each system situation in each country, but in this paper, we
proceeded according to the German Grid Code regulation, which is the strictest regulation.
To briefly explain the German Grid Code, dynamic/static grid system support according to
the magnitude of the voltage is required, and the power control responsiveness is limited to
20 ms to meet the dynamic grid demand in the LVRT situation. As shown in control block
diagram, the dq-axis inverter active/reactive power control through PLL method satisfies
the control responsiveness standard of 20 ms. This responsiveness criterion requires faster
current responsiveness as distributed power becomes more complex and distributed power
increases [14–17].

In this paper, we designed a power compensator using supercapacitors in parallel to
protect the grid-connected devices connected to the distributed power supply in the case of
an LVRT situation, and proposed a grid-connected device control method with improved
responsiveness. At this time, we applied supercapacitors used in application fields, such as
power quality improvement, high current, and high output, on the application field side
where a high output must be supplied in a short time. Supercapacitors are more expensive
than lead-acid or lithium batteries but have a high charge/discharge rate [18–21]. Hence,
when installed instead of batteries generally used in configuring the power compensator,
supercapacitors can obtain higher output and significantly shorten the charging time
as storage devices. We propose a power compensate device configuration and design
control method to match the fast power control responsiveness, as well as the grid power
compensate device protection control, and try to verify it using the OPAL-RT-based HILS
system. A simulation experiment of an LVRT condition was conducted by forming a 0.5 pu
drop at the grid voltage of 1 pu, and then the response improvement was verified.

2. Grid-Connected Devices under LVRT Conditions
2.1. Grid Connection Standards of LVRT Conditions according to German Grid Code

German Grid Code regulations that the operation shown in Figure 1 needs to be per-
formed in a low-voltage situation. According to the LVRT operating conditions defined in
the Grid Code, it can be seen that the grid connection conditions of grid-connected devices
are different according to the grid voltage and fault time. There is an obligation to maintain
the connection between the system interconnection device and the system up to 150 ms
based on the occurrence of an accident. In Zone A, all systems must always maintain grid
connection with the system and operate normally. Zone B must perform normal operation
like Zone A, and it operates so as not to separate from the system, or it can be separated
at the moment of failure occurrence with the consent of the system operator, but must be
reconnected within 2 s. This reconnection rule is defined as Short Time Interrupt (STI).
Zone C is allowed to be separated from the grid regardless of the grid management system,
but it must be reconnected within 2 s to supply active power at a rate of increase of 10%
or more of the rated power per second. Finally, the D Zone does not define the specific
contents regarding the Grid Code regulation.
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Figure 1. Requirements for FRT by German Grid Code.

Figure 2 shows the LVRT regulations in the Grid Code, which can be divided into
dynamic grid support and static grid support. Additionally, reactive power should be
supplied to the grid according to the dynamic grid support when the grid voltage is 10%
or more and the static grid support when the grid voltage is less than 10%. For example,
if the grid voltage is reduced by 50%, the required reactive current should be transmitted
to the grid at 100% of the maximum current. The reactive current required for dynamic
grid support should be supplied within 20 ms to stabilize the grid. If the voltage reduction
rate is within 10% of the steady state standard, it is defined as a dead band, and the
reactive current supply regulation according to the voltage reduction rate different from the
dynamic system support is defined in the Grid Code. This is called static system support,
and the regulation of reactive current supply according to voltage fluctuations is defined in
consultation with the system management system according to the state of the grid. Static
grid support is a method of supplying an appropriate reactive power when the grid voltage
is within ±10% in a steady state. In general, it should be possible to change the reactive
power setting value according to the user’s request in all operating conditions. Therefore,
it is necessary to be able to supply a certain range of reactive power even under the supply
condition of 100% active power, which means that the capacity of the grid interconnection
device must be designed to be larger than before in the concept of apparent power.
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2.2. Grid-Connected Device Problems under LVRT Conditions

As shown in Figure 3a, when grid-connected devices are in a normal state, the DC_link
voltage is stabilized because all the power generated by the distributed generation is
transmitted to the grid. However, in the LVRT situation shown in Figure 3b, the grid
voltage is lowered, so the power generated from the distributed power source is reduced.
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In this case, all the power generated by the distributed power source is not transmitted to
the grid, and the remaining power causes the DC link voltage to rise. As a result, the voltage
rises due to active power. If the user does not limit the output power of the distributed
power source, the destruction of the grid-connected devices occurs due to the increase in
the DC_link voltage.
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3. Grid-Connected Devices with the Proposed Power Compensator
3.1. Grid-Connected Devices with Power Compensators

In an LVRT situation, the energy generated from the distributed generation is stored
in the power compensator to stabilize the DC_link voltage of grid-connected devices.
Figure 4 shows the power control method and configuration with a power compensator
and grid-connected devices.
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The voltage equation of the equivalent circuit of the 3-phase AC–DC converter in
Figure 5 is as follows.

ea = Li
dia

dt
+ Va, eb = Li

dib
dt

+ Vc, ec = Li
dic

dt
+ Vc (1)

where ea, eb, ec: output voltages; ia, ib, ic: phase currents; and va, vb, vc: control voltages. By
converting the voltage equation of Equation (1) into a voltage equation of the two-phase
stationary coordinate system, Equation (2) is obtained as follows:

vs
ds = L

dis
ds

dt
+ es

ds , vs
qs = L

dis
qs

dt
+ es

qs (2)
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Additionally, one can obtain Equation (3) by converting Equation (2) to a voltage
equation of the two-phase rotating coordinate system.

ve
d = L

die
ds

dt
−ωLie

d + ve
ds , ve

q = L
die

qs

dt
+ ωLie

d + ve
qs (3)

Figure 6 expresses the dq vector control, and the ia magnitude and direction can be
controlled using Equation (3). When the grid voltage and phase are the same, AC→DC
power is generated, and when the grid voltage and current are 180 degrees in phase,
AC←DC power is generated. In cases of other current phase operations, reactive power is
generated. Substituting ee

d = 0, ee
q = E into the synchronous coordinate system results in

the following formula:

0 = L
die

ds
dt
−ωLie

d + ve
ds , E = L

die
qs

dt
+ ωLie

d + ve
qs (4)

When controlling ied and ieq based on the ee
q = E q-axis phase voltage, the phase of

the current is controlled, so it is possible to control active and reactive power. In order to
control the active and reactive power, the product of the voltage and current converted
into a three-phase rotating coordinate system, the active power and reactive power of the
system can be readily obtained through Equation (5):

p =
3
2
(vqiq + vdid) , q =

3
2
(vqid − vdiq) (5)

The control block diagram of grid-connected devices of distributed generation is
shown in Figure 7.
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Figure 7. Control block diagram of grid-connected devices in distributed generation.

Grid-connected devices for power compensation are a standard configuration for
LVRT support. The three-phase grid-connected devices and the controller can perform
feedforward control for the SVPWM switch operation of the AC–DC converter using the
sensed grid current value. A current controller that generates a voltage value that is a
two-phase synchronous coordinate value by reflecting the current sensed value of the
grid-connected device and the LVRT current reference (ir*

dqs_GD) determines the voltage
value. This is the two-phase synchronous coordinate value of a three-phase rectangular
coordinate, which consists of an inverse coordinate value converter. The PLL method is
used to estimate the grid phase from the sensed grid voltage value. Feedforward control
is generally implemented using the SVPWM method, and a DC_link voltage value is
sensed as a feedback parameter of the feedforward control. In order to improve the
response of current control, a feedforward compensation method based on grid voltage
and parameters is generally used. The feedforward compensation value may be composed
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of the magnitude of the grid voltage and the inductance voltage value. In feedforward
control, each parameter derived from the sensed voltage value and current value converts
a three-phase coordinate system to a two-phase stationary coordinate system and a two-
phase stationary coordinate system to a synchronous coordinate system. The three-phase
grid voltage value (Vac), a three-phase orthogonal coordinate value, is converted into a
two-phase dq synchronization coordinate value (Vr

dqs) through coordinate transformation.
Additionally, the three-phase grid current value (iuvw), a three-phase rectangular coordinate
value, is converted into a two-phase dq synchronization coordinate value (irdqs) using the
current value coordinate. The source power calculation control block reflects the command
value of the DC_link voltage to the current DC_link voltage and calculates the generated
power supplied by the distributed generation power generation system in the low-voltage
acceptance operation situation, excluding the power required inside the distributed power
generation system, as shown in Figure 8. This calculates the current generated power value
by multiplying the present voltage value (Vdc) and the present current value (Idc) of the
DC-link. The difference between the DC_link current–voltage (Vdc) and the command
voltage (V*

dc) is calculated. Then, the generated power (Pgen) supplied to the grid in the
LVRT condition is calculated by subtracting the offset power from the current generated
power value through the voltage controller that calculates the offset power.
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As a peculiarity, the generated power is not calculated based only on the DC_link
voltage/current value sensed at the specific moment, but by also compensating for the
expected change in the DC_link voltage. In this way, it is possible to consider the loss
caused by the grid-connected device hardware and switching, which is difficult to calculate
in practice, so that the power to be discharged to the grid or the power compensator in
an LVRT condition can be calculated more accurately. Figure 9 shows the detailed block
diagram of the power distributor.
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This can be divided into a controller for limiting active power and a controller for
controlling reactive power. The power distribution operation controller first calculates the
difference in the apparent power product (S2

rate) that the output power defined by the Grid
Code can output in the grid-connected devices, as shown in Equation (6), and limits it
through a limiter. Then, it is inversely squared to compare it with the active power value
based on the Grid Code.

S2
GD = P∗GD + Q∗GD (6)

Equation (7) shows that the limited active power is compared with the generated
power (Pgen) calculated in Figure 9. Based on the estimated value, the power compensator
performs charging or discharging to distribute power within the grid-connected devices.

P∗Limit > Pgen
P∗Limit ≤ Pgen

Pcomp → dis charge
Pcomp → charge

(7)

The formula for extracting the power phase (θPW) from the active power value (P*
GD)

and reactive power value (Q*
GD) according to the Grid Code is shown in (9).

P∗GD = S∗GD cos θPW
Q∗GD = S∗GD sin θPW

(8)

θPW = tan−1 Q∗GD
P∗GD

(9)

tan θPW =
sin θPW
cos θPW

(10)

Q∗ = P∗ tan θPW
Q∗comp = P∗comp tan θPW

(11)

The reactive power command (Q*
comp), compensated by the power compensator

according to the value of the active power with the extracted power angle (θPW), and the
reactive power command (Q), compensated by grid-connected devices, are calculated. In
this way, the grid power controlled by the power compensator and grid-connected devices
can be controlled with the active/reactive power of the same power angle.

As a result, the phases of grid voltage and current that change depending on the
commands of i*q and i*d can be confirmed, as shown in Figure 10.
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At this time, the current magnitude can be expressed as in Equation (12) below:

ia =
√

i2q + i2d (12)

When such a voltage/current phase difference is confirmed, active power appears due
to the voltage and current phase difference. Furthermore, when the current is before the
voltage, the true reactive power appears, and when the current lags behind the voltage, the
lagging reactive power appears. Therefore, based on the phase difference in current and
the active power of the grid, when the power of the grid-connected device sends active



Electronics 2022, 11, 1144 10 of 22

and reactive power to the grid, as in Equation (8), it is possible to control the charging and
discharging of the power compensator. In this case, as shown in Figure 11, for example,
when the active power generated by the grid connected device is less than the active power
required by the grid, the grid is more effective than the active power generated by the grid
connected device. If more power is required, the magnitude of the reactive power is shown
in the figure below.
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3.2. Designing a 3-Phase AC–DC Converter Reactor

The inductance of the input stage reactor plays the most critical role in the control
performance of a three-phase AC–DC converter. As the inductance of the input stage reactor
increases, the ripple of the current is removed. However, in general, if the inductance of
the reactor is large, the size and price of the reactor increase, and the cost and volume of
the power compensator also increase. Therefore, it is important to select a reactor with
an optimal inductance, and it is necessary to prove it mathematically. The phase between
the input voltage and the voltage across the inductor is 90 degrees. Therefore, it must be
controlled to have the same phase as in Figure 11 to synchronize the phases of the input
current and the input voltage. On the other hand, the maximum voltage modulated by the
AC–DC converter of the power compensator is the same as in Equation (13), which means
the maximum value of the voltage.

Vab−max = Vac
2√
3

(13)

If the control is performed smoothly and the maximum output value is the same as
the input active power, the input current can be converted into an equation for each angle,
and Equation (14) is expressed as follows:

Vdc Idc =
√

3eabiab cos θ

=
√

3eab
Vab
ωLi

sin α
(14)

where θ is the phase difference between the input voltage and the input current. In this way,
if the minimum inductance according to the maximum controllable voltage fluctuation is
selected, it can be obtained via the following equation:

Li

√
3eabVab−max sin(cos−1

(
eab

Vab−max

)
)

ωVdc Idc
(15)
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3.3. Supercapacitor Capacity Calculation and Design Method

It is necessary to calculate the supercapacitor capacity to control charging and dis-
charging using the DC–DC converter of the power compensator. Under LVRT conditions,
if the compensation time is 1.5 s, the designed grid-connected device’s rated output is
10 kW, and the DC_link voltage is 400 V; the voltage of the supercapacitor connected to
the half-bridge type DC–DC converter should be doubled or less to improve efficiency.
Therefore, the capacitance should be selected from the Ideal Optimal Point value, as shown
in Figure 12, but if calculated according to the rated voltage, the value is 0.384 F. When
the grid voltage falls below 50%, since the reactive current must be supplied in connection
with the grid for at least 150 ms, the voltage of the supercapacitor rises, and the stability of
the capacitor must be ensured within the maximum duration of 1.5 s.

In addition, the total capacitance of the supercapacitor can be expressed using the
power compensation capacity.

PS = CV2 (16)
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3.4. Power Compensation and Charging/Discharging Control Method of Power Compensators

As shown in the active power and reactive power control part of the control algorithm
block diagram for a power compensator in Figure 13, it is designed to compensate for
reactive power according to the state of the grid. For the normal component of the normal
system voltage in the normal state where the reduction rate of the effective value is above
or below 10%, the active power control and the static grid support described above are
performed; the system voltage is −10% to −100% when the voltage is reduced, and 10~20%
or more supports the dynamic system of voltage rise and supplies reactive power appropri-
ately. To measure the 3-phase grid voltage and output the reactive power command, the
normal grid voltage command is output as 0, but when the LVRT condition control mode is
in progress, the active power command varies depending on the grid voltage level. The
output reactive power command is limited using Equation (17) to be controlled within the
apparent power range.
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Figure 13. Algorithm block diagram for power compensator control.

Referring to Figure 14, the Vbat voltage of the Constant Voltage (CV) control is com-
pared with the V*

bat command voltage, and the current command is generated to the same
extent as the error.

At this time, to remove the error component altogether, the controller receives the
input from the PI controller and outputs the DC component. As for the output current,
Ibat is output within the current range specified through Constant Current (CC) control.
At this time, I*

c is output because current control is performed using dq conversion, and
feedforward control is performed for load fluctuations. Therefore, the output i*c can
compensate for the energy of the supercapacitor to the grid and, conversely, absorb the
power of the grid to the supercapacitor.
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P = 3
2 Ei∗qs = VDC−link IDC−link = Vbat Ibat

i∗qs =
2Vbat

3E Ibat
(17)

The load of the bidirectional DC–DC converter is a supercapacitor, and if the voltage
and current desired by the user are small, CC and CV control are applied to control the
voltage and current. However, if this control is neglected, the internal resistance of the
supercapacitor is low, and the current rapidly increases, which may damage the power
compensator. Additionally, if the withstand voltage is over 400 V, there is a risk that the
supercapacitor may be damaged. Based on this fact, it is controlled through constant
current (CC) and constant voltage (CV).
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4. HILS Verification
4.1. Verification of DC_Link Stabilization HILS of Grid-Connected Devices through Dynamic
Grid Support

Figure 15 shows an active/reactive power control simulator for grid-connected devices
implemented using HILS equipment. This control simulator is a control block diagram
that generates PWM signals for the AC–DC topology, and is divided into a controller that
controls the power supply and a dq controller that controls the dq. The system parameters
are as shown in Table 1.
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Table 1. Three-phase system parameters.

Parameter Value Unit

Grid Voltage 380 Vac
Grid Frequency 60 Hz
Apparent Power 5 kva

Output Filter 1 mH
DC_link_Cap 4700 µF

DC_link Voltage 400 Vdc
Switching Frequency 10 kHz

Figure 16 shows the results of the active and reactive power control of grid-connected
devices. Simulation results are shown when the phase of voltage and current is in phase
and when the phase of current is 90 degrees lagging or leading.
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Figure 16. Results of active and reactive power control of grid-connected devices.

According to Figure 17, the initial grid voltage is 1 pu, where the Q_ref value is 0 kW
and the P_ref value is 5 kW, indicating active power. If the voltage drop within ±10% of
grid voltage is normal, Sections 1 and 2 supply reactive power appropriately. In addition,
when grid voltage exceeds −50%, leading reactive power is supplied to 100% grid in the
second section. If the voltage rises by 20% over 1 pu, the lagging reactive current is supplied
to the grid by limiting 40% in Section 1. Figures 18 and 19 below show the simulation
results of static and dynamic grid support control. The results of the dq axis according to
the voltage and current in each section are shown.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 22 
 

 

 
Figure 16. Results of active and reactive power control of grid-connected devices. 

According to Figure 17, the initial grid voltage is 1 pu, where the Q_ref value is 0 kW 
and the P_ref value is 5 kW, indicating active power. If the voltage drop within ±10% of 
grid voltage is normal, Sections 1 and 2 supply reactive power appropriately. In addition, 
when grid voltage exceeds −50%, leading reactive power is supplied to 100% grid in the 
second section. If the voltage rises by 20% over 1 pu, the lagging reactive current is sup-
plied to the grid by limiting 40% in Section 1. Figures 18 and 19 below show the simulation 
results of static and dynamic grid support control. The results of the dq axis according to 
the voltage and current in each section are shown. 

 
Figure 17. Overall graph of varying grid voltage and current. Figure 17. Overall graph of varying grid voltage and current.



Electronics 2022, 11, 1144 15 of 22Electronics 2022, 11, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 18. Results of simulation experiment for each variable section of grid voltage and current. 

 
Figure 19. Comparison of dynamic grid support and simulation test results for each section. 

As shown in Figure 20, if a fault situation occurs at 0.4 s, the DC_link voltage of gen-
eral grid-connected devices rises significantly, resulting in the destruction of grid-con-
nected devices, and cannot satisfy the Grid Code regulations. However, it can be con-
firmed that the DC_link voltage of the proposed grid-connected devices stays constant. 
As a result, it is possible to prevent the DC_link destruction of grid-connected devices and 
satisfy the Grid Code regulations. 

Figure 18. Results of simulation experiment for each variable section of grid voltage and current.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 18. Results of simulation experiment for each variable section of grid voltage and current. 

 
Figure 19. Comparison of dynamic grid support and simulation test results for each section. 

As shown in Figure 20, if a fault situation occurs at 0.4 s, the DC_link voltage of gen-
eral grid-connected devices rises significantly, resulting in the destruction of grid-con-
nected devices, and cannot satisfy the Grid Code regulations. However, it can be con-
firmed that the DC_link voltage of the proposed grid-connected devices stays constant. 
As a result, it is possible to prevent the DC_link destruction of grid-connected devices and 
satisfy the Grid Code regulations. 

Figure 19. Comparison of dynamic grid support and simulation test results for each section.

As shown in Figure 20, if a fault situation occurs at 0.4 s, the DC_link voltage of general
grid-connected devices rises significantly, resulting in the destruction of grid-connected
devices, and cannot satisfy the Grid Code regulations. However, it can be confirmed that
the DC_link voltage of the proposed grid-connected devices stays constant. As a result, it
is possible to prevent the DC_link destruction of grid-connected devices and satisfy the
Grid Code regulations.
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Figure 20. DC_link voltage.

The simulation was performed using the power compensator control algorithm de-
scribed above, and the power compensator’s charging and power control modes were
operated. Figure 21 is a power compensator simulation block diagram, it is controlled by
dividing it into conversion and power calculator parts through CC-CV controller, AC-DC
topology controller, dq transform. and Table 2 below shows the simulation parameter table.
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Table 2. Power compensator simulation parameters.

Mode Selection Power Command Charging Control Mode
Charging Current

Charging Control Mode
Charging Voltage

Power control mode 0.8~1.5 s Active power −6 kW
50 A 200 VCharging control mode 0.1~0.8 s Reactive power 2 kVar

Figure 22 shows the charge control mode on the supercapacitor voltage/current. Since
the first supercapacitor voltage is 170 V with the supercapacitor voltage command of 200 V,
it is charged in Buck mode for 0.1 s~0.8 s. If the current 50 A of the capacitor is controlled
by Constant Current (CC), it is gradually decreased, and from the point of decrease, it is
controlled to a Constant Voltage (CV) of 200 V. Subsequently, since it is a power control
mode for 0.8 s to 1.5 s, it boosts, the current gradually decreases, and the voltage also
decreases. Figure 23 shows the result of sending the supercapacitor energy to the grid by
controlling the active power −6 kW and reactive power 2 kVar, and Figure 24 shows the
dq-axis current simulation result within the same timeframe.
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4.2. OPAL-RT Verification of Grid-Connected Devices Using Power Compensator during LVRT

During LVRT, the power generated from distributed generation causes a DC_link
voltage rise, and there is a risk of destroying grid-connected devices. The power compen-
sator designed to prevent this absorbs active power in an accident situation and stores it
in a supercapacitor to suppress the DC_link voltage rise and efficiently use the power. In
addition, if grid-connected devices operate independently, the response to sending reactive
current to the grid in the case of grid failure has a slope, as shown by the red dotted line
in Figure 25. Currently, the reactive current response is required to be within the 20 ms
regulation by the German Grid Code, but this is gradually becoming faster due to the
increase in distributed generation in each country.
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The grid-connected devices, including the proposed power compensator, the power
compensator and grid-connected devices, can compensate each i r

ds /2 and send it to the
grid. As a result, the response time of the reactive current can be shortened more quickly,
as shown by the slope of the blue line.

When the grid voltage of the proposed distributed generation grid-connected devices
is in a low-voltage failure situation, and the distributed generation output is the maximum
output, the active power of the generated distributed generation is effectively removed.
This was investigated through the simulation of distributed generation grid-connected
devices using OPAL-RT, as shown in Figure 26, to verify whether the response of reactive
current required by the Grid Code can be quickly controlled. In order to simulate the system
failure situation, the command was changed at one moment to simulate. To simulate an
LVRT condition, a 0.5 pu drop was made at the grid voltage of 1 pu, and a simulation
experiment was conducted. Table 3 below shows the system parameters for the simulation.
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Table 3. OPAL-RT parameters for grid-connected devices with power compensators.

Parameter Value Unit

Grid Voltage 220 Vrms
Grid Frequency 60 Hz
Control Period 50 µs

Apparent Power 5 kva
Supercapacitor 10 mF

Grid Connected 3 ph. Reactor 5 mH
DC/DC Converter Reactor 2 mH

Figure 27, an OPAL-RT test step, shows the operation of the supercharger circuit to
limit excessive current flow up to 0.15 s to charge the DC_link voltage when the OPAL-RT
test is ready. After that, the DC_link voltage of the grid-connected devices was controlled
to 400 V for the normal driving of the distributed generation, and the power compensator
controlled the initial voltage of the supercapacitor, 200 V, through the buck mode operation.
From 0.2 s, renewable energy generated power, and the system operated stably. At 0.4 s,
the fault situation was simulated through the grid fault simulator, and the grid voltage
was reduced by 0.5 pu. Then, it performed reactive current cooperative control of the
grid-connected devices and power compensator to deliver 1 pu of reactive current to the
grid. In addition, to protect the LVRT grid connection field, it was controlled to stabilize
the DC_link voltage of the grid-connected devices by charging the Super Cap. After 0.02 s,
which is the required time for dynamic grid support, the improvement in reactive current
response was checked and compared.
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Figure 27. OPAL-RT test step.

When operating grid-connected devices alone without using a power compensator,
a grid fault load with a response of 20 ms was designed, and the response was con-
firmed, as shown in Figure 28. It was designed to have a reactive current response within



Electronics 2022, 11, 1144 20 of 22

10 ms through cooperative control by adding a power compensator, and Figure 29 shows
the result.

First, to ensure the feasibility of improving the response, the response time of the
reactive current during the single operation of grid-connected devices was verified.
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Figure 29. Response results of the proposed grid-connected devices depending on grid voltages.

For the independent operation of grid-connected devices, Figure 28 shows the response
of 20.8 ms through the DC current converted to the dq axis when the voltage drop rate
is decreased from 0.4 s to 0.5 pu at the voltage drop rate of 1 pu. This response satisfies
20 ms of the existing German Grid Code regulation, but as mentioned in this paper, when
considering the grid regulation due to the congestion degree of distributed generation, it is
the response speed that has a fundamental problem. For this, an improved response speed
through the cooperative control of the power compensator is necessary. Figure 29 shows
the response result through the proposed algorithm and power compensator by improving
these requirements.

Figure 29 shows that the response of 6.8 ms, which is the required time according to
the same voltage drop rate of 0.5 pu, improved from the existing 20.8 ms. The conditions
required by the grid regulation were satisfied. By controlling the fast response speed with
this cooperative control, it is possible to strategize the strengthened regulations due to the
increase in distributed generation and the congestion degree of the grid and suppress the
destruction of grid-connected devices.
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5. Conclusions

In this paper, we designed a power compensator using supercapacitors in parallel to
protect the grid-connected devices connected to the distributed generation for a possible
LVRT situation and verified the results of the grid-connected device control method with
an improved response. The power compensator absorbed the active power in an accident
situation and stored it in the supercapacitor to suppress the DC_link voltage rise and
efficiently use the power. In LVRT, the system was checked through a grid variable due
to dynamic grid support, and it was confirmed that the grid compensation and reactive
current response improved from 20 ms to 6.8 ms. In this way, it was possible to stabilize
grid-connected devices by suppressing the DC_link voltage rise. The experimental progress
of this paper proves the validity of the OPAL-RT-based HILS simulation to perform grid
voltage fluctuations. However, its feasibility can be demonstrated more clearly if a user
experiments by controlling the grid voltage decrease/increase rate.
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