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Abstract: Recent research on single image super-resolution (SISR) using convolutional neural net-
works (CNNs) with the utilization of residual structures and attention mechanisms to utilize image
features has demonstrated excellent performance. However, previous SISR techniques mainly inte-
grated extracted image features within a deep or wide network architecture, ignoring the interaction
between multiscale features and the diversity of features. At the same time, SISR is also a typical ill-
posed problem in that it allows for several predictions for a given LR image. These problems limit the
great learning ability of CNNs. To solve these problems, we propose a closed-loop residual attention
network (CLRAN) to extract and interact with all the available diversity of features features efficiently
and limit the space of possible function solutions. Specifically, we design an enhanced residual
attention block (ERA) to extract features, and it dynamically assigns weight to the internal attention
branches. The ERA combines multi-scale block (MSB) and enhanced attention mechanism (EAM)
base on the residual module. The MSB adaptively detects multiscale image features of different scales
by using different 3 × 3 convolution kernels. The EAM combines multi-spectral channel attention
(MSCA) and spatial attention (SA). Therefore, the EAM extracts different frequency component
information and spatial information to utilize the diversity features. Furthermore, we apply the
progressive network architecture and learn an additional map for model monitoring, which forms
a closed-loop with the mapping already learned by the LR to HR function. Extensive experiments
demonstrate that our CLRAN outperforms the state-of-the-art SISR methods on public datasets for
both ×4 and ×8, proving its accuracy and visual perception.

Keywords: image super-resolution; attention mechanism; convolutional neural networks; deep learning

1. Introduction

Single image super-resolution (SISR) refers to the technology of reconstructing an
underlying high-resolution (HR) image from a single low-resolution (LR) image of the scene.
It is known as a typical ill-posed problem, as several HR outputs may correspond to the
input LR image. To tackle this inverse problem, numerous algorithms have been proposed.
According to the three tier classification of [1], SISR algorithms can be divided into two
types: learning methods [2–4] and reconstruction methods [5,6]. The SISR algorithms based
on deep learning try to hallucinate the missing details of the super-resolution (SR) images.
The methods based on the reconstruction requires the degradation model and explicit prior
information to define constraints for the target HR image.

In recent years, numerous studies based on deep learning methods with utilization of
residual structures and attention mechanisms have demonstrated outstanding performance
in SISR challenges. Dong et al. [7] proposed a super-resolution convolutional neural
network (SRCNN) in 2014, which is the first successful effort at introducing CNN with its
three convolution layers into SISR. Subsequently, a number of CNN-based SISR models
have been proposed to learn the mapping between LR and HR images. Ledig et al. [8]
proposed SRResNet, which introducing residual learning to train deep network in SISR.
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Kim et al. [9] proposed VDSR, which inspired by the proposal of the residual network [10]
and extended the depth of CNN to twenty layers. Lim et al. [11] proposed a 69-layer model
named EDSR to improve the high-frequency details, which was inspired by SRResNet and
removed redundant modules and expanded model. The success of EDSR also illustrated the
efficiency of network deepening. On this foundation, Zhang et al. [12] proposed a 400-layer
model named RCAN, which combined the residual structure with the attention mechanism
and achieved state-of-the-art performance. The success of RCAN also illustrated the
efficiency of deep network combined residual structure and attention block.

However, there are still some limitations for CNN-based SISR models. First, very
deep and very wide SISR networks lead to a huge computational cost, which is diffi-
cult to apply in real-world applications. Second, most of the deepened networks with
stacked convolution operations neglect the full utilization of the feature information in the
LR image.

To tackle these problems, Lai et al. [13] designed a pyramid network in a coarse-to-fine
fashion to gradually predict sub-band residuals. Li et al. [14] proposed a multi-scale resid-
ual network (MSRN), which is not designed to be very deep and very wide, but employs
different kernel sizes (3×3 and 5×5) in two-bypass convolution layers to exploit the multi-
scale spatial features. Furthermore, MSRN employed the hierarchical feature fusion (HFF)
technique to combine the outputs of all residual blocks, utilizing the intermediate features.
MSRN obtained equivalent performance with a 7-times smaller model size than EDSR. Sub-
sequently, Muqeet et al. [15] proposed HRAN, which employed dilated convolution layers
with different dilation factors to attain a larger receptive field and exploited the channel
and spatial dependencies. HRAN proposed the binarized feature fusion (BFF) structure,
considering that the HFF is difficult to integrate the features extracted from the CNN
smoothly. Behjati et al. [16] combined channel attention mechanisms with residual blocks
following two independent but parallel computing paths to attend to relevant features and
preserve higher frequency details. Dense connections were employed in prior work [17],
which extended each feature to subsequent features through residual connections. Instead
of the residual block, Wang et al. [18] proposed a residual in a residual dense block (RRDB),
which combines a multi-layer residual network and a dense connection to improve the
perceptual quality of the SR image in deep models. Musunuri et al. [19] employed RRDB
to replace the residual block in EDSR, yielding better reconstruction results and achieving
perceptual quality. The SISR models based on CNN, which combine multiscale feature
extraction and attention mechanisms, have achieved excellent performance. However,
most networks do not limit the function space when designing the network. The channel
attention may discard relevant details contained in other frequency components, which
ignores the diversity of features. Moreover, not all attention mechanisms improve net-
work performance, and attention employed across all levels is inefficient, as also described
in [16,20].

In this paper, we propose a novel closed-loop residual attention network (CLRAN) that
combines residual structures and attention mechanisms to utilize the multiscale features
and the diversity of features. The CLRAN also limits the space of possible functions while
learning the mapping from LR to HR. We introduce a progressive framework for the
reconstruction from LR to HR. The framework is based on the cascade of deep CNNs to
gradually reconstruct the HR image and naturally apply deep supervision simultaneously
at each level of CLRAN, and it is easily extended to other upscaling factors. Guo et al. [21]
proposed that, ideally, the SR image can be downsampled to obtain the same LR image
as the input LR image. With this limitation, it is possible to estimate the underlying
downsample kernel and reduce the space of potential functions to learn a more effective
map. Therefore, we employ an extra map that the SR image uses to reconstruct the input LR
image to limit the potential space. The extra mapping utilizes the features from the process
of gradually reconstructing the HR image, which plays a supervising function in our model.
Specifically, the CLRAN is trained by the Charbornnier penalty loss function [13] to achieve
a better visual SR result.
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The framework employs basic architecture block (Basic-CLRAN) to gradually obtain
the HR image. To achieve multi-scale SR, we only need to modify the number of Basic-
CLRANs. In this way, the parameters are shared between different scales, and the network
parameters are reduced in our model. Considering the structure of our model is simple, in
Basic-CLRAN, we employ HFF technique rather than BFF technique [15] to combine local
multi-scale features and global features.

In Basic-CLRAN, an enhanced residual attention block (ERA) is proposed as the
basic building block to interact features between each other and extract the diversity
features for more powerful feature representations. The ERA contains a multi-scale feature
extraction part and an enhanced attention part. In the multi-scale feature extraction part, we
propose the multi-scale block (MSB) to obtain the multiscale image features. Considering
the stacking multiple dilated convolutions used in [15] to attain a larger receptive field
that caused some pixel information not be utilized in the network, we adopt two 3 ×
3 convolutions instead of 5 × 5 convolutions in multi-scale residual block (MSRB) [14]
of MSRN and introduce two 1 × 1 convolutions, which not only obtain the same effect,
but also reduce parameters and indirectly increase the depth of the network. In the
enhanced attention part, motivated by the attention mechanism [22–24], we propose an
enhanced attention mechanism (EAM) to improve the interactions of the deep multi-scale
features and utilize the diversity features. The EAM mainly contains a multi-spectral
channel attention (MSCA) block and spatial attention (SA) block. The MSCA block has the
ability to capture other frequency component channel-wise information for more powerful
feature representations. The SA block further extracts the spatial information and helps
the network discriminate “where” to concentrate the features. Considering the drawback
described in [16,20], we design a non-attention branch to concentrate on the information
that is ignored by the enhanced attention branch. The weights of the two branches are
automatically calculated by introducing an attention dropout module (ADM) [20].

In order to verify the effectiveness of the proposed methods, we propose a closed-
loop residual attention network (CLRAN), combining the progressive framework with the
Basic-CLRAN. In summary, the main contributions of this paper are threefold:

(1) We propose an extra mapping that limits the potential space with the progressive
framework in our model, thus forming a closed loop to enhance the performance of the
SR model.

(2) We propose an enhanced residual attention block (ERA). This block is based
on the residual structure that fuses features at several scales by introducing the multi-
scale block (MSB) and utilizes diversity of features by introducing the enhanced attention
mechanism (EAM). The MSB and the EAM also can be employed for feature extraction in
other computer vision tasks.

(3) We propose a closed-loop residual attention network (CLRAN). The network ex-
tracts diversity of features from the input LR image and integrates them with the features
throughout the middle process to obtain high accuracy SR images. By employing a progres-
sive framework, the CLRAN gradually obtains the SR result. At the same time, the network
is easily extended to certain upscaling factors by modifying the number of Basic-CLRANs
in the progressive framework.

The rest of this paper is organized as follows. In Section 2, related work on image-super
resolution and attention mechanisms is introduced. In Section 3, the details of the proposed
methods are presented. In Section 4, the experimental process, the results, and analysis
of the proposed method on different benchmark datasets are presented. Additionally, the
ablation study on the proposed network is presented. Model complexity comparisons are
also included. In Section 5, the conclusions of the paper are presented.

2. Related Work

In recent years, with the development of neural networks, the image super-resolution
algorithms have made remarkable progress. In order to address the ill-posed issue in SISR,
researchers continuously widen and deepen the network. However, only broadening and
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deepening the network did not achieve the expected significant improvement. Therefore,
researchers designed some network structures and learning strategies such as residual
networks, recursive networks, dense connections, progressive structure designs, attention
mechanisms, and GAN models. In this section, we first describe the related SISR algorithms
based on CNNs. We then discuss the attention mechanism.

2.1. CNN-Based Networks

Dong et al. [7] first proposed a shallow three-layer convolutional neural network (SR-
CNN) for learning a nonlinear mapping function from LR → HR. Subsequently, He et al. [10]
proposed a residual learning technique. Ledig et al. [8] proposed SRResNet introducing
residual learning to SISR. Kim et al. proposed VDSR [9] with the deep (20 layers) CNN
and global residual connection and DRCN [25] with a recursive block to increase the depth
without introducing new parameters. Based on DRCN, Tai et al. [26] proposed DRRN
combined residual learning and recursive learning. These approaches extract features
from an interpolated LR image, which takes much memory and computation time. To
address this problem, Dong et al. [27] proposed the FSRCNN, which improves the training
speed of SRCNN. Shi et al. [28] proposed ESPCN, designing a sub-pixel convolution layer.
Subsequently, numerous networks were proposed to boost the reconstruction performance
of HR images. Lim et al. [11] proposed EDSR with an extremely deep and broad network
structure that was based on SRResNet and removed unnecessary modules in residual
blocks, resulting in considerable promotion. SRDenseNet [17] introduced dense connec-
tions [29] in SISR. Tai et al. [30] proposed MemNet, adopting memory blocks consisting
of recursive and gate units. RDN [31] employed the dense connections to utilize all the
hierarchical features of the convolutional layers. Wang et al. [18] proposed ESRGAN, in
which a residual in a residual dense block (RRDB) combined residual blocks, and a dense
connection was proposed to improve the perceptual quality of the SR image. Subsequently,
Musunuri et al. [19] employed to RRDB replace the residual block in EDSR, yielding better
reconstruction results. Recently, some networks have focused on balancing the performance
and memory consumption of SISR. Lai et al. [13] proposed LapSRN, which employs the
Laplacian pyramid structure to progressively reconstruct the sub-band residuals of the
HR image. Ahn et al. [32] proposed CARN, which employs group convolution and learns
high-frequency details by locally and globally cascading connections. For multiscale feature
extraction techniques, Li et al. [14] proposed MSRN, which employs different kernel size
convolution to exploit multiscale spatial features. Muqeet et al. [15] proposed HRAN,
which employs different dilation factors dilated convolution layers to exploit the multiscale
features.

2.2. Attention-Based Networks

The attention mechanism in deep learning is comparable to the attention mechanism
in human vision. It is viewed as a means of biasing the allocation of available computa-
tional resources towards the most informative components of a signal [22]. The attention
mechanism has recently been widely applied in computer vision tasks such as image
classification [33] and image captioning [22]. This mechanism aims to bias the alloca-
tion of available resources towards the most informative parts of an input signal [34].
Hu et al. [22] proposed the squeeze-and-excitation (SE) block, which is focused on the
channel-to-channel relationship. Woo et al. [24] proposed convolutional block attention
module (CBAM), in which channel attention mechanism and spatial attention mechanism
are combined. Dai et al. [35] proposed second-order channel attention (SOCA) to adaptively
rescale features by considering second-order statistics of features, so the network could fo-
cus on more informative features and enhance discriminative learning ability. Qin et al. [23]
proposed multi-spectral channel attention by compressing channels in the channel attention
mechanism by applying a discrete cosine transform (DCT).

Some researchers have successfully applied attention mechanisms to CNN-based im-
age enhancement methods, especially to SISR. Liu et al. [36] originally proposed employing
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non-local operations in a recurrent neural network for image restoration. Zhang et al. [12]
considered that if all channels of features were treated equally, the network would lack the
ability to discriminate and learn, thus proposed a channel attention (CA) mechanism that
employed the residual channel attention network (RCAN), in which the features of each
channel were adaptively re-scaled by modeling the interdependence between feature chan-
nels. Subsequently, some models [15,34,37] that combined channel attention and spatial
attention mechanisms were proposed to learn more discriminative features.

Recently, researchers have started to introduce more sophisticated attention mech-
anisms to further improve the performance of SISR. Liu et al. [38] proposed enhanced
spatial attention (ESA), which reduces the number of channels and adopts a larger stride
convolution to shrink spatial dimensions, effectively enlarging the receptive field. Inspired
by ESA, Muqeet et al. [39] proposed a cost-efficient attention mechanism (CEA) with dilated
convolutions to refine the features. Zhao et al. [40] designed PAN, introducing a pixel-wise
channel attention to SISR. Mei et al. [41] designed PANet to capture multi-scale feature.
Behjati et al. [16] combined channel attention mechanisms with residual blocks following
two independent but parallel computational paths, in which features and attention are
processed simultaneously.

3. Proposed Method
3.1. Network Architecture

The complete framework of the proposed network is shown in Figure 1. As we have
discussed in Section 1, the CLRAN employs a progressive framework by Basic-CLRAN
to reconstruct the HR image from the LR image step by step. For 4× SR task, we employ
two Basic-CLRANs, in which we obtain 2× SR for each input image. The Basic-CLRAN
in Figure 1 is composed of two parts: feature extraction and reconstruction. We set the
original LR image (ILR) as the input of the Basic-CLRAN; the shallow feature E0 is obtained
through initial feature extraction with a 3 × 3 convolutional layer

E0 = H3
HF(ILR) (1)

where Hi
HF(·) denotes the convolution operation and i denotes the size of convolution kernel.

The extracted feature E0 is sent to the enhanced residual attention feature extraction
part with several ERA modules. We denote the proposed the ERA module as HERAi (·),
given by

Ei = HERAi (E0) (2)

where Ei(i 6= 0) is the output feature map of the ith ERA module. After enhanced residual
attention feature extraction, we introduce HFF structure expressed as follows:

FDFS = ω ∗ [E0, E1, E2, . . . , En] + b (3)

where [E0, E1, E2, . . . , En] denotes the connection operation and denotes the input features
of reconstruction part.

The extracted features FDFS from the feature extraction are sent to the reconstruction
part; the configuration information for the reconstruction module is shown in Table 1. We
employ a PixelShuffle [28] layer upsampled to the same dimensions as HR. We use IHR′

to denote the final output from the reconstruction module. Therefore, the final output SR
image ISR from Basic-CLRAN is expressed as follows:

ISR = HUP(ILR) + IHR′ (4)

where HUP(·) and ISR denote an upsampled module that contains a pixelshuffle layer.
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Basic-CLRAN × 2
2× image 4× image

Basic-CLRAN × 2

Basic-CLRAN × 2

Figure 1. The complete architecture of the closed-loop residual attention network (CLRAN) for 4×
SR. The CLRAN contains a primal network (marked with black lines) and a dual regression network
(marked with red lines).

Table 1. Detailed configuration information for the reconstruction structure.

Layer Input Channel Output Channel Kernel Size

Input conv 64 64 × 2 × 2 3 × 3
PixelShuffle (×2) 64 × 2 × 2 64 /

Input conv 64 1 3 × 3

In CLRAN, we incorporate progressive architecture into our network. Therefore, for
different upscaling factors, we only need to change the number of Basic-CLRANs. The
details of our network for different SR tasks are shown in Table 2.

Table 2. The design details for different upscaling factors in our network.

Upscaling
Factor

Number of
Basic-CLRANs

Upscaling Factor in
PixelShuffle Number of ERAs

×4 2 ×2 2
×8 3 ×2 2

Loss Function: Different from most networks that have used L1 loss function, we
choose the Charbornnier penalty function [13] to train our model. Our ultimate goal
is to learn an end-to-end mapping function f from LR → HR. However, the space of
the possible mapping functions is extremely large, making the function training difficult.
Guo et al. [21] provided the derivation of the generalization error bound for the dual
regression scheme to prove that introducing dual regression mapping (DRM) to limit the
space of the possible mapping functions is effective. Inspired by Guo et al. [21], we learn
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the primary mapping P for HR reconstruction and the dual regression mapping D for LR
reconstruction simultaneously. Given a training dataset {Ii

LR, Ii
HR}N

i=1 , we address the
following problem in our network:

N

∑
i=1

LP(P(Ii
LR), Ii

HR) + λLD(D(P(Ii
LR), Ii

LR)) (5)

where LP and LD denote the loss function for the primal mapping and DRM tasks, re-
spectively. The weight of the DRM loss is controlled by λ. Guo et al. [21] discussed the
sensitivity of λ; according to the analysis, we set λ = 0.1 during our training.

In CLRAN, we input an LR image, and then the SR image is progressively predicted at
log2 S levels, where S is the scale factor. The expression IHR′ denotes the output SR image
at level s. We denote the desired output SR image at level s by ys. The overall loss function
is defined as:

LtP = ∑
log2 S
S LP(ys, IS

HR) (6)

LtD = ∑
log2 S−1
S LD(D(ys+1), ys) (7)

LT = LtP + LtD (8)

where LtP and LtD denote the total loss for the primal mapping and DRM tasks in our
network, respectively, and LT represents the overall loss of our work.

3.2. Enhanced Residual Attention Block (ERA)

The enhanced residual attention block (ERA) of the proposed network, shown in
Figure 2, is composed of two parts: the multi-scale part and the enhanced attention part.
The multi-scale part contains the MSB, and the enhanced attention part consists of the
enhanced attention branch and the non-attention branch.

+
x

x
x

x

x

+

x

Enhanced attention part Multi-scale feature extraction part

Enhanced Attention 

Mechanism (

Figure 2. The structure of the enhanced residual attention block (ERA). The purple box denotes special
calculations where each added component is multiplied by an automatically generated trainable
scalar parameter by the ADM.

Inspired by [16,20], we design the non-attention branch to learn the information that
is ignored by the enhanced attention branch. The two branches enable CNNs to make the
best use of existing feature information and fully explore the correlation and dependence
between the features.

We also introduce the ADM [20] into ERA to balance the enhanced attention branch
and non-attention branch. Formally, we have:

xn = f1×1(π
na
n × xna

n + πa
n × xa

n) (9)
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where xna
n is the output feature of the non-attention branch, and xa

n is the output feature of
the enhanced attention branch; πna and πa are weights of the non-attention branch and the
enhanced attention branch, respectively. The dynamic weights are computed by the ADM
block; f1×1(·) denotes the convolution function of 1 × 1 kernel convolution, and xn is the
output feature of the ERA.

Local Residual Learning Structure: The residual learning and shortcut connections
alleviate the difficulty of learning between the LR and HR images. We adopt residual
structure in the enhanced attention branch to maximize the utilization of the local residual
features and enable the network to be more efficient. The utilization of local residual
learning in our network significantly reduces the computational complexity, and the per-
formance of the network is enhanced.

As shown in Figure 2, we use xn−1 to describe the input feature maps sent to the
ERA, xns to describe the input feature maps sent to the enhanced attention part, and xne to
describe the output feature maps from the EAB. Formally, we describe the output of the
enhanced attention branch xa

n as

xa
n = xn−1 + xns + xne (10)

where the operation xn−1 + xns + xne is performed by a shortcut connection and element-
wise addition.

3.3. Multi-Scale Block (MSB)

Several studies [14,15] have proposed a block to extract the multiscale spatial features.
Although the dilated convolution used in [15] achieves much larger receptive fields, not
all pixels are used for calculation, resulting in the loss of extracted information details.
Therefore, we still use the conventional convolution layers to extract features. As shown
in Figure 3a, the multi-scale residual block (MSRB) is used in MSRN [14] to extract the
multiscale spatial features. Inspired by the successful application of MSRB, we propose the
multi-scale block (MSB) to detect image features at different scales. As shown in Figure 3b,
we adopt two 3 × 3 convolutions instead of 5 × 5 convolutions and introduce two 1 × 1
convolutions to reduce parameters and accelerate calculation. In addition, we remove the
local shortcut connection (LSC) in MSB and directly follow the attention enhanced attention
part to extract diversity of features. In this way, redundancy is reduced in feature utilization
and the cost of computational complexity is reduced. The whole operation is defined as

S1 = σ1
3 (σ

1
1 (En−1)) (11)

P1 = σ3
3 (σ

2
3 (σ

2
1 (En−1))) (12)

S2 = σ4
3 (σ

3
1 ([S1, P1])) (13)

P2 = σ6
3 (σ

5
3 (σ

4
1 ([P1, S1]))) (14)

En = σ5
1 ([S2, P2]) (15)

where En−1 represents the feature maps sent to the MSB, and En represents the output
feature maps of MSB; σ

j
i denotes a fusion function that combines the convolution function

and the ReLU function, where i denotes the size of the convolution kernel and j denotes
the number of σi; [S1, P1], [S2, P2], and [P1, S1] denote the concatenation operation.
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Figure 3. The structure of multi-scale residual block (MSRB) and multi-scale block (MSB), respectively.

3.4. Enhanced Attention Mechanism

Enhanced Attention Mechanism (EAM): In the enhanced attention part, we intro-
duce multi-spectral channel attention (MSCA) and spatial attention (SA) mechanisms into
our network. Convolution operations extract meaningful features by combining channel
and spatial information together. However, the MSCA block depicted in Figure 4 only
utilizes the inter-channel relationship, which neglects spatial information. SA is critical in
determining “where” to concentrate. In our work, we propose the EAM that focuses on
features in both channel and spatial dimensions. As shown in Figure 5, the EAM infers
attention feature maps sequentially along two distinct dimensions, channel and spatial,
and attention feature maps multiply with the input feature maps for adaptive feature
refinement. Our module contributes significantly to the efficient flow of information within
a network. The EAM is expressed as

F
′
= M f (F)⊗ F (16)

F” = Ms(F
′
)⊗ F

′
(17)

where F ∈ RC×H×W denotes input feature maps, M f denotes the MSCA block, Ms de-
notes the SA block, ⊗ denotes element-wise multiplication, and F” is the final refined
output features.

Split
10 n-1. . . ×

W

C

H
Scale

DCT0

Freq0

DCTn-1

Freqn-1

DCT1 . . .

. . .Freq1

FC

H

W
C

Figure 4. The structure of the multi-spectral channel attention (MSCA) block.
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ʃ

× ×

MSCA Spatial Attention (SA)

Input feature F Refined feature F

F

Mf Ms

Figure 5. The structure of the enhanced attention mechanism (EAM).

Multi-spectral Channel Attention (MSCA) Module: The channel attention (CA)
mechanism uses a scalar to represent and evaluate the importance of each channel and
automatically distributes weights to different channels so as to extract critical and impor-
tant information so that the model makes accurate judgments and will not incur greater
overhead in the calculation and storage of the model.

Low-level and mid-level features, in addition to high-level features, are important
for reconstructing an SR image. Due to massive information loss, the channel attention
mechanism that uses a scalar to represent a channel is difficult. Qin et al. [23] proposed
that using global average pooling (GAP) in the channel attention mechanism means only
preserving the lowest frequency information and discarding the useful information in
representing the channels from other frequencies. Their proposed MSCA mechanism
generalizes GAP to more frequency components of 2D discrete cosine transform (DCT).

As shown in Figure 4, the input features F ∈ RC×H×W are split along the channel
dimension into several parts. For each part, a corresponding 2D DCT frequency component
Freqi is assigned by employing selection criterion. Finally, the multi-spectral vector Freq ∈
RC is obtained by concatenation:

Freq = cat([Freq0, Freq1, . . . , Freqn−1]) (18)

The feature maps from MSCA module is then expressed as

M f (F) = sigmoid( fc(Freq)) (19)

where sigmoid denotes the sigmoid function, and fc represents fully connected layer.
Spatial Attention (SA) Module: SA tells the network on which informative part it

should be focused. As shown in Figure 5, in the SA block, the input features F
′ ∈ RC×H×W

first apply average-pooling and max-pooling operations along the channel axis and then
concatenate the outputs to generate an efficient feature map. The combined output is
convolved with the convolution function of 7 × 7 kernel convolution, producing our 2D
spatial attention map. In short, the spatial attention weight is expressed as follows:

Ms(F
′
) = sigmoid( f 7×7([AvgPool(F

′
), MaxPool(F

′
)])) (20)

where sigmoid denotes the sigmoid function, and f 7×7 represents the convolutional layer
with the filter size 7 × 7.

4. Experiments

In this section, we evaluate the performance of our model on several benchmark
test datasets. The datasets used for training and testing are introduced first, and next the
implementation details are discussed. Following that, we compare our model to several
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other methods. Finally, we conducted an ablation study to validate and evaluate the
effectiveness of our proposed methods. Specially, we employed the PyTorch framework to
all of the implementations.

4.1. Datasets and Metrics

We trained on the DIV2K dataset [42], which contains 800 training images. Bicubic
downsampling is employed to obtain the LR images. We evaluated our model using
the standard and publicly available benchmark datasets Set5 [43], Set14 [44], B100 [45],
Urban100 [46], and Manga109 [47]. Set5 [43], Set14 [44], and B100 [45] contain animals,
humans, and natural settings, whereas Urban100 [46] focuses only on urban settings.
Urban100 contains rich structure contents. The PSNR and SSIM metrics are employed to
evaluate the SR results on the Y channel of the transformed YCbCr color space.

4.2. Implementation Details

In this section, we specify the implementation details of our proposed model. We
provided two models, namely a small model CLRAN-S and a large model CLRAN-L for
4× and 8× SR. In our model, we employed two enhanced residual attention blocks (ERA,
N = 2) in each Basic-CLRAN, and the output from each ERA was 64 feature maps. We
chose the Charbornnier penalty [37] function to train our model.

In each training batch, we randomly extracted 16 LR patches with a size of 128 × 128
and 1500 epochs. We trained our model with ADAM optimizer [48] with β1 = 0.9,
β2 = 0.999, and ε = 10−8. The learning rate was initialized as 1 × 10−4. We employed the
PyTorch framework to implement our models with GeForce RTX 2080 GPU.

4.3. Results

We compared our model with several state-of-the-art methods in terms of quantitative
results and visual results. For quantitative comparison, we compared the PSNR and SSIM
values of different methods for 4× and 8× SR. The results of all comparison approaches
were derived from their pre-trained models, publicly available code, or original papers.

The results of the PSNR and SSIM values are presented in Table 3. It was found
that CLRAN yielded promising performance. CLRAN achieved comparable or superior
results compared with all the other methods, including the extremely competitive MSRN.
CLRAN-S has the best PSNR on Set5, Set14, B100 and best SSIM on Set5, Set14, B100, and
Manga109 for scale ×4. Our CLRAN-L also has excellent SSIM performance on Set5, B100,
and Manga109 for scale ×8. Compared with other methods, we found that CLRAN-S and
CLRAN-L had achieved almost the best SSIM performance on all benchmark datasets.
This confirms that CLRAN is able to gradually aggregate, select, and save relevant details
throughout the network. That was mainly because we employed the Charbornnier penalty
function [13], thus our model was capable of aggregating rich structured information to
generate more representative features. Our model employed YCbCr color space.

For quality comparison, we provided visual comparisons between our method and
the considered methods (see Figure 6). We observe that the majority of the approaches
were unable to properly recover the tiniest details and so lost the structures, as well as a
hazy effect in the majority of the methods. Our model was capable of reconstructing clear
and natural images and outperformed other approaches evaluated.

In order to fully utilize the features from the input LR image, our network combined
residual structures and attention mechanisms to extract multiscale and diversity of features.
Inspired by [14], we proposed the MSB to extract multiscale features. Muqeet et al. [15]
was also inspired by [14], which used different dilated convolution layers and channel and
spatial attention mechanisms. However, dilated convolution is not friendly to pixel level
prediction, and a network based on dilated convolution to design needs some skills, which
makes it difficult to migrate directly to other tasks. Moreover, not all attention mechanisms
improve network performance, and attention mechanisms may discard relevant details.
Behjati et al. [16] designed the network to integrate channel attention mechanisms with
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residual blocks via two independent but parallel processing routes. However, in [16],
the features of the attention branch and residual branch connect directly and neglect
spatial information. The residual blocks are simple and neglect to extract the multiscale
features. Wang et al. [18] proposed RRDB combined residual network and dense connection.
Musunuri et al. [19] employed RRDB to replace the residual block in EDSR, improving
the perceptual quality of the SR image. However, as EDSR is a deep and wide network,
training this model will cost more memory, space, and datasets. In short, these models do
not limit the space of the possible functions and neglect to extract the diversity of features.
Moreover, our model employing the loss function is different from these models.

LR

 PSNR/SSIM

Ground-truth HR

Bicubic

18.93/0.602

SRCNN

19.93/0.716

VDSR

20.27/0.749

Ours

20.68/0.782

Ground-truth HR

SRCNN

21.77/0.832

VDSR

22.91/0.874

Ours

24.71/0.905

Bicubic

21.72/0.638

Ground-truth HR

Ground-truth HR

HR

 PSNR/SSIM
LapSRN

20.34/0.762

MSRN

20.26/0.770

LR

 PSNR/SSIM

Bicubic

18.70/0.649

HR

 PSNR/SSIM
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24.87/0.904

MSRN

24.62/0.893
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23.45/0.616
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25.83/0.740
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25.35/0.722

MSRN

25.69/0.735

Figure 6. Visual comparison of different methods for 4× image SR.
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Table 3. Quantitative results with the BI degradation model for all upscaling factors ×4 and ×8.
The red number indicates the best result, and the blue number indicates the second best result. “-”
denotes the results that are not reported.

Algorithms Scale Set5
PSNR/SSIM

Set14
PSNR/SSIM

B100
PSNR/SSIM

Urban100
PSNR/SSIM

Manga109
PSNR/SSIM

Bicubic

4

28.42/0.810 26.10/0.702 25.96/0.667 23.15/0.657 24.92/0.789
SRCNN [7] 30.48/0.863 27.50/0.751 26.90/0.710 24.52/0.722 27.58/0.856

FSRCNN [27] 30.72/0.866 27.61/0.775 26.98/0.715 24.62/0.728 27.90/0.861
VDSR [9] 31.35/0.883 28.02/0.768 27.29/0.726 25.18/0.754 28.83/0.887

SRDenseNet [29] 32.02/0.893 28.50/0.778 27.53/0.733 26.05/0.781 29.49/0.899
DRCN [25] 31.56/0.881 28.15/0.763 27.24/0.715 25.15/0.753 28.98/0.882

LapSRN [13] 31.54/0.881 28.19/0.772 27.32/0.728 25.21/0.756 29.09/0.890
DCSR [49] 31.58/0.887 28.21/0.772 27.32/0.726 27.24/0.831 -/-

MemNet [30] 31.74/0.889 28.26/0.772 27.40/0.728 25.50/0.763 29.42/0.894
SRMDNF [50] 31.96/0.893 28.35/0.779 27.49/0.734 25.68/0.773 30.09/0.902

MSRN [14] 32.07/0.890 28.60/0.775 27.52/0.727 26.04/0.790 30.17/0.903
CARN [32] 32.13/0.894 28.60/0.781 27.58//0.735 26.07/0.784 -/-
IMDN [51] 32.21/0.895 28.58/0.781 27.56/0.735 26.04/0.784 30.45/0.908

CLRAN-S(Ours) 32.24/0.898 28.65/0.781 27.59/0.735 26.05/0.785 30.37/0.908
Bicubic

8

24.39/0.657 23.19/0.568 23.67/0.547 20.74/0.515 21.47/0.649
SRCNN [7] 25.34/0.647 23.86/0.544 24.14/0.504 21.29/0.513 22.46/0.661

FSRCNN [27] 20.13/0.552 19.75/0.482 24.21/0.568 21.32/0.538 22.39/0.673
SCN [52] 25.59/0.707 24.02/0.603 24.30/0.570 21.22/0.557 22.68/0.696
VDSR [9] 25.73/0.674 23.20/0.511 24.34/0.517 21.48/0.529 22.73/0.669

SRDenseNet [29] 25.99/0.704 24.23/0.581 24.45/0.530 21.67/0.562 23.09/0.712
DRCN [25] 25.93/0.674 24.25/0.551 24.49/0.517 21.71/0.529 23.20/0.669

LapSRN [13] 26.14/0.737 24.35/0.620 24.54/0.585 21.81/0.580 23.39/0.734
MemNet [30] 26.16/0.741 24.38/0.620 24.58/0.584 21.89/0.583 23.56/0.739

MSLapSRN [53] 26.34/0.756 24.57/0.627 24.65/0.590 22.06/0.596 23.90/0.756
MSRN [14] 26.59/0.725 24.88/0.596 24.70/0.541 22.37/0.598 24.28/0.752

CLRAN-L(Ours) 26.97/0.776 24.85/0.637 24.76/0.593 22.35/0.610 24.35/0.773

4.4. Discussion

To validate the effectiveness of our work, we conduct a set of experiments to compare
the performance of the MSB, DRM, ADM, and attention mechanisms [22–24], and the
number of ERAs in SISR tasks. The results are displayed in Tables 4–6. In Table 4, we
conduct the ablation study to validate the effectiveness of MSB, DRM, and ADM. All
comparative experiments employ attention mechanisms with the MSCA and SA. In Table 5,
we conduct the ablation study to validate the effectiveness of different attention mechanisms
in the enhanced attention branch of ERA, and all comparative experiments employ ADM.

Effects of MSB: We propose MSB, which is an efficient multiscale feature extraction
structure. This module adaptively detects image features at different scales and fully
utilizes the potential features of images. To validate the effectiveness of MSB, we visualize
the output feature maps of MSB. The result is shown in Figure 7. With the deepening of the
number of network layers, the features extracted by the module become more and more
abstract, which is not conducive to our observation. Therefore, we visualize the features
extracted by the first application of MSB in the network. From Figure 7, we can observe
that the output of MSB retains almost all the information of the original image.

When we employed MSB in our network, 32.47 dB PSNR was obtained with 3.33 M
parameters; when we employed without MSB, and the performance of our network with
0.88 parameters decreased by 0.32 dB. Although employing our proposed module increases
memory consumption, the effect on performance is obvious, so employing this MSB block
in our network is necessary.

Effects of ADM and DRM: In order to evaluate the effects of ADM and DRM, we
conducted the comparative experiments. As shown in Table 2, the experiments without
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ADM and DRM have lower PSNR than the experiments that employed the ADM and DRM.
Therefore, our modules are designed reasonably.

Effects of Different Attention Mechanisms: As shown in Figure 8, in the same way
as the visualization of the application of MSB, we visualized the MSCA block heatmaps
and the CA block heatmaps. As can be seen, for the MSCA employed in our model, the
image structure is clear and the high-frequency and low-frequency regions of the feature
map are correctly detected, but the CA employed is incapable of precisely locating them.

From Table 5, we also displayed the comparative experiment results to evaluate the
performance of different attention mechanisms in our model. As can be seen, the combi-
nation of the MSCA and the SA in our model achieved the best performance. Therefore,
we apply the MSCA block and the SA block in the enhanced attention branch of ERA. For
case 1, our model did not have the attention mechanism, and the performance was much
lower than those cases combined with the attention mechanism. Therefore, the attention
mechanism applied to our model is necessary.

Effects of Increasing the Number of ERAs: It is well established that increasing the
depth of the network may effectively increase network performance. In our work, increasing
the number of ERAs is the easiest way to obtain better SR results. In order to verify the
influence of the number of ERAs on the network, we conducted a series of experiments. As
shown in Table 6, our network performance improved quickly with increasing ERAs.

In order to gain a more intuitive sense of the effect of the number of ERAs on our
model, we plotted the changes in the model metrics during the first 50 epochs, with every
5 epochs as a sample. Given the parameter size of the ERA module itself, we increased the
number of ERA from 1 to 5. As shown in Figure 9, the improvement of our model was
obvious with the growing number of ERAs, although increasing the number of ERAs in our
model will lead to a more complex network. Considering balancing network performance
and complexity, we employed two ERAs (N = 2) in our network, which resulted in the
optimal balance of performance and model parameters.

Figure 7. Feature map visualization. On the left: the input feature map of the MSB. On the right: the
output feature map of MSB. The 64-channel summation feature map and each channel feature map
are shown, respectively.

MSCA CA MSCA CA

Figure 8. Attention block heatmaps for the MSCA block and the CA block. The first row: averaged
input feature map of attention layers. The second row: averaged output feature map of attention layers.



Electronics 2022, 11, 1112 15 of 18

0 10 20 30 40 50
22

24

26

28

30

32
x4 Set5

PS
N

R
 (d

B)

Epoch

 1 ERA
 2 ERAs
 3 ERAs
 4 ERAs
 5 ERAs

Figure 9. Performance comparison of CLRAN-S with a different number of ERAs.

Table 4. Ablation study: effect of different components of CLRAN-S. Test on Set5 (×4).

Case Index 1 2 3 4

MSB × X X X
DRM X × X X
ADM X X × X

Parameter (M) 0.88 3.32 3.32 3.33
PSNR (dB) 31.92 32.20 32.12 32.24

Table 5. Ablation study: effect of different attention mechanisms of CLRAN-S. Test on Set5 (×4).

Case Index 1 2 3 4 5

SA × X × × ×
CA+SA × × × X ×
MSCA × × X × ×

MSCA+SA × × × × X

Parameter (M) 3.15 3.32 3.32 3.32 3.33
PSNR (dB) 32.04 32.14 32.15 32.17 32.24

Table 6. Effect of the number of ERAs on the performance of CLRAN-S (testing on Set5) for 4× SR.

N 1 2 3 4 5

PSNR 32.04 32.24 32.26 32.30 32.34

4.5. Model Complexity Analysis

As shown in Figure 10, we visualize a cost effectiveness analysis between PSNR and
model size. CLRAN-S comparisons were done with seven state-of-the-art methods: SR-
CNN [7], VDSR [9], LapSRN [13], DRCN [25], SRDenseNet [29], MSRN [14], and CARN [32].
CLRAN-S with approximately 3.33M parameters obtained the best performance, which
verifies the effectiveness of our model. CLRAN-L comparisons were made with four state-
of-the-art methods: SRCNN [7], VDSR [9], LapSRN [13], and MSRN [14]. CLRAN-L with
approximately 4.89M parameters obtains best performance, which verifies the effectiveness
of our model. In comparison to these methods, CLRAN-S and CLRAN-L achieve higher
PSNR with a slightly larger model, demonstrating that the trade-off between performance
and model complexity is reasonable.
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Figure 10. PSNR vs. parameters on Set5.

5. Conclusions

In this paper, we proposed a new closed-loop residual attention network (CLRAN)
for single image super-resolution. Specifically, the basic architecture block of closed-
loop residual attention network (Basic-CLRAN) allowed CLRAN to fully utilize both
local and hierarchical diversity of features and easily migrated to achieve other upscaling
factor SR tasks. Additionally, the enhanced residual attention block (ERA) extracted the
multiscale and diversity image features. The multi-scale block (MSB) was proposed to
fuse features at several scales, and the enhanced attention mechanism (EAM) combined a
multi-spectral channel mechanism and a spatial attention mechanism proposed to utilize
different frequency components channel features and spatial information. Furthermore, we
proposed additional mapping and a progressive framework in our model, restricting the
space of possible functions and obtaining the SR result step-by-step, taking into account
the ill-posed SR problem and limiting the generation of distinct SR images. Comprehensive
experiments and ablation studies on benchmark datasets demonstrate the effectiveness of
each proposed module, which suggests our model is reasonable.
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