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Abstract: In order to improve the positioning accuracy of the pipeline inspection gauge (PIG), a
pipeline positioning method, based on weld location, is proposed. The position of the welding
scar is recognized by wavelet transform modulus maxima (WTMM). Equidistant welding scars
provide positioning references to the strap-down inertial navigation system (SINS)/dead reckoning
(DR) navigation system, which is the positioning algorithm in PIG. The following improvements
have been made in relation to prior research. First, we suggest a selection strategy for the optimal
mother wavelet and decomposition level; based on the strategy, WTMM can recognize the collision
response between the PIG and submerged weld in the burst noise for the inertial measurement
unit (IMU) output. Then, characteristic position (CP), which is the site of the weld scar, and non-
holonomic constraints are utilized to decrease the position and the attitude error. By doing such, the
SINS/DR/CP algorithm is proposed. The positioning error of the modified algorithm is 0.129% in
the experiment, which performs better than other algorithms.

Keywords: in-pipe survey system; autonomous navigation; integrated navigation; wavelet

1. Introduction

Pipelines play an important role in resource transportation. The trenchless pipeline
detection method protects the performance and structure of the inspected object [1]. Data
and mathematical models are utilized in the detection of underground pipelines [2,3]. Many
devices are also employed in trenchless detection, including ground penetrating radar [4],
ultrasonic [5,6], Raman distributed fiber sensor [7], and magnetometer [8]. These sensors
are affected by pipe material, buried depth, edaphic condition, and fluid type etc. [9].
To broaden the scope of its application, a detecting method based on strap-down inertial
navigation system (SINS) is proposed. SINS is an autonomous navigation system that does
not rely on any external information nor on the radiating energy to the outside. However,
the positioning error gradually accumulates over time.

As the core components of inertial measurement unit (IMU), the gyroscope and
accelerometer measure the acceleration and angular velocity of the pipeline inspection
gauge (PIG) (Figure 1); therefore, the position can be calculated via SINS mechanization [10].
In a pipe detection with a small nominal diameter that is less than 50 mm [11], a small-sized
micro electromechanical system IMU (MEMS-IMU) is always utilized.

The multi-sensor fusion algorithm can suppress the sensor error and the SINS cumula-
tive error. Odometers (ODs), above ground markers (AGMs), geomagnetic information,
and gravimeters provide observation information. The extended Kalman filter (EKF),
adaptively adjusted cubature Kalman filter (ACKF), and other improved algorithms are
applied for optimal estimation [12–15]. In small-diameter pipe detection, some researchers
focus on the special structure of the pipeline since sensors precision is limited by the size of
PIG. Guan utilizes non-holonomic constraints to correct PIG attitude errors [16] since the
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cylinder-shaped PIG maintain its azimuth and pitch angles constantlywithin each straight
pipeline segment. This method only constrains attitude, and does not directly correct the
relative positioning of the PIG. A method to provide reliable positioning information for
PIG is necessary, especially in underground pipelines where it is difficult to obtain external
positioning signals.

Plastic bowls

IMU and Monitor 
computer

Power supply

Odometer

Figure 1. Pipeline inspection gauge (PIG).

The pipeline junction (PJ) is used to determine the location of straight pipes, where
the PIG is subject to fixed non-holonomic constraints. So, extracting pipeline junction is also
an important step. Some researchers use wavelet transform to extract pipeline junction [17,18].
The selection of the specific mother wavelet and the compatibility of decomposition level
are fundamental for wavelet-based processing. However, the above studies do not explain
much about the wavelet selection strategy based on the collision characteristics. Moreover,
we notice that, in the pipeline detection, in addition to the collision response between PIG
and the weld (one type of the pipeline junction), the measurement data has rhythmic burst
noise. The noises come from pulling force of manual operation. When the amplitude of
collision response and rhythmic burst noise are similar, it may cause misrecognition for the
weld. Up until this point, no researchers had studied the recognition of weld scar in a strong
noise surrounding in pipeline detection. Ways to extract the characteristic information of
the pipeline under the interference of noise is another problem.

To solve the above two problems, wavelet transform modulus maxima (WTMM) is
first carried out to identify the location of the weld under the interference of noise. Then,
we introduce a pipeline detection method based on SINS/dead reckoning (DR) algorithm
and characteristic positions (CP) to enhance the positioning precision in small-diameter
pipeline. CP is the site of collision response in the measurement data, which is the location
of the weld scar. This method involves using a pair of CPs to establish the constraint
vector in the straight pipe and optimizes the parameters. The content in Sections 2–5 are
mainly studied. In Section 2, we model the collision response of the weld scar, and analyze
the cause of burst noise. In Section 3, we propose a strategy to choose mother wavelet
and decomposition level, and accurately identify the CPs. In Section 4, we utilize the
attitude and position constraints of the CPs to establish the state equation and observation
equation of the navigation system. In Section 5, we undertake an experiment to evaluate
the SINS/DR/CP algorithm, and provide references for parameter optimization.

2. Collision Modeling and Noise Analysis

As one of the pipeline junction, welding technology is widely used because of its
strong joints, superior airtightness, and great dependability. It is sensitive enough for IMU
to capture the sudden collision between PIG and the weld. It is assumed that the PIG
structure and the girth weld are isotropic along the circumference, so that only a cross
section of the PIG body and pipe could be considered. The two-dimensional dynamic
model is presented in Figure 2 to explain how the PIG collides with and passes through the
girth weld. There are two springs in the front and rear of the PIG model. The force driving
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the PIG is not constant while the PIG is passing through the weld [19], the motion equation
can be expressed as:

Mẍ + µk f a + µk f (a + x)− F(v0 − ẋ) = 0 (1)

Figure 2. The dynamic model of the PIG with obstacles.

x is the displacement on the y axis in body coordinate system Oxbybzb (m); M is the
mass of the PIG (kg); µ is the coefficient of friction between the PIG and the pipe wall; a is
the interference of the system; k f is the stiffness of the springs (N/m); F is the driving force
in the pipe (N); v0 is the initial speed, expanding the nonlinear function F(v0 − ẋ) around
the point v = v0 and omitting the higher-order terms, as follows:

F(v0 − ẋ) = F(v0)−
dF
dv

∣∣∣∣
v=v0

ẋ (2)

the variable of F is v, and ẋ is used to maintain consistency with the following equations.
Substituting (2) into (1), dF

dv

∣∣∣
v=v0

= k1, in following normal form:

Mẍ + 2µk f a + µk f x− F(v0) + k1 ẋ = 0 (3)

where 2µk f a is the stable driving force, k1 is the value of the first-order derivative at the

point of initial speed, and k1 =
4µk f a

v0
, (3) can be expressed in a simple way:

ẍ +
k1

M
ẋ +

µk f

M
x = 0 (4)

the initial conditions are t = 0, x(0) = 0, ẋ(0) = v0, and the solution is:

x(t) =
v0

2ω
√

n2 − 1

[
e(−n+

√
n2−1)ωt − e(−n−

√
n2−1)ωt

]
(5)

where ω2 =
µk f
M is the inherent characteristic and n = k1

2
√

µmk
= 2a

v0

√
µk f
M is the damping

coefficient of the system. The collision response instantaneously changes the output of the
IMU, resulting in the decrease in positioning accuracy.

We analyze the collision response in the pipeline experiments, the data in Figures 3 and 4
are from the experiments designed in Section 5. Figure 3d is a segment of the accelerometer
measurement data in the pipeline experiment, the red dots mark the collision. As shown in
(a), the change in amplitude is similar to Equation (5); (e) is the amplitude of the collision
response in the frequency domain. In the high-frequency domain, the experimental data
noise is fat-tailed distribution, and the simulated data noise is Gaussian white noise. In the
low-frequency domain, the experimental data and simulated data have similar distributions,
which can verify the rationality of Equation (5). Additionally, there are many rhythmic
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burst noises caused by the uneven pulling force in the experiment, as shown in Figure 3a,c.
If the noise location of the IMU and odometer output are the same, it can be considered
that the instantaneous movement rather than the sensor fault lead to the burst noise.
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Figure 3. Collision response between PIG and the weld, (a) is a segment of the amplitude change of
the accelerometer, (b) is the theoretical response Equation (5) (0 < n < 1), (c) is the rhythmic burst
noise, (d) is the amplitude change of the accelerometer in the experiment, (e) is the amplitude of
collision response in frequency domain (a segment of accelerometer data for the y-axis).
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Figure 4. Consistency analysis of measurement data. (a) is the velocity data measured by odometer
(1 Hz); (b) is the detail coefficient of the wavelet decomposition of (a) (choose db6 mother wavelet,
the decomposition level is 5); (c) is the wavelet decomposition of the accelerometer measurement
data (choose db4 mother wavelet, the decomposition level is 5); (d) is the wavelet decomposition of
the accelerometer measurement data in another pipeline experiment.

Figure 4 shows the consistency analysis of IMU and odometer. In Figure 4, (a) is the
discrete velocity measured by odometer (m/s); (b) is the detail coefficient of the wavelet
decomposition of (a), the burst noise of the velocity can be extracted by wavelet decompo-
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sition; (c) is the wavelet decomposition of the accelerometer measurement data, the light
blues mark the spikes successively. By comparison, the noise spikes in (b,c) appear in the
same location; (d) is the wavelet decomposition of the accelerometer output in another
pipeline experiment, in which the frequency of applied pulling force is changed. As shown
by the red marks, the location of the spikes in (d) has been significantly changed compared
to (c). Therefore, rhythmic bursts noise caused by uneven manual operation.

3. Characteristic Position Recognition

Wavelet transform (WT) contains time information. The vanishing moment is usually
utilized to compress matrix and define the concentration degree of wavelet energy—the
higher the order, the sparser the matrix. In signal detection, high-order vanishing moments
help highlight the singular part of the signal. Therefore, the singularity can be detected
by wavelet transform. Mallat and Hwang propose the maximum modulus of wavelet
transform to judge the singularity of the signal, and define Lipschitz index to quantify
the singularity [20]. In this paper, WTMM is employed to de-noise the IMU measurement
data, and the denoising results are decomposed of wavelet based on a different level, j,
from which we can obtain a series of CPs. The noise reduction principle of WTMM are as
follows.

If f (t) meets the following conditions in t0:

| f (t0 + h)− Pn(t0 + h)| ≤ A|h|α, n ≤ α ≤ n + 1 (6)

where h is a small quantity, P is the Taylor expansion polynomial of degree n of f in t0, α is
the Lipschitz index, then it can characterize the singularity of f (t) at t0, and the singularity
becomes weaker as α increases. If t ∈ [a, b], then the mother wavelets are continuously
differentiable, and it attenuates in the form of O

[
1

1+t2

]
, when f (t) satisfies

log2|W
j
2 f (t)| ≤ log2 A + jα (7)

where the Lipschitz index of f (t) is α, A is constant, |W j
2 f (t)| is the modular maxima, and

j is the scale. The signal satisfies α > 0, and the noise satisfies α < 0, which means that
signal and noise can be separated as j varies. With the increase of j, we choose the alternate
projection method [21] to reconstruct wavelet coefficients, then take the inverse wavelet
transform.

When constructing a sequence of modulus maxima, the detail coefficient is reduced
to zero through a soft threshold, and the reconstructed signal can be guaranteed to
be smooth. There are three widely used principles to determine the threshold thr [22].
(1) Universal threshold principle, which calculates a fixed form threshold with respect

to the length of the signal, i.e., thr =
√

2loge(n). (2) Minimax principle, which uses a
threshold thr = 0.3936 + 0.1829loge(n)/loge(2) to produce minimax performance for the
mean square error against an ideal procedure. (3) The Stein’s unbiased risk estimate (SURE),
which is an adaptive threshold selection rule by minimizing the mean squared risk. It uses a
threshold t̂hr = thrδ̂ and δ̂ = median(

∣∣∣dj
k

∣∣∣)/0.6745, dj
k is the median value of the coefficients

at level j. This threshold is suitable for non-white noise models that distributes unevenly
across scales, and has better results when analyzing experimental data, so we chose this
threshold.

3.1. Optimal Wavelet Selection

Selection of a suitable basis mother wavelet filter is necessary for the signal processing
in wavelet domain. In accordance with the definition of wavelet transform, the coefficient
of wavelet decomposition will be more localized if the mother function is more similar to
the analyzed signal, and this is the optimal mother wavelet. Figure 5 plots the collision
signal of accelerometer measurement data in the experiment, and the wavelet coefficients
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(decomposition level 4) are generated and ordered. Figure 5a plots reconstructed signal of
the collision response using Haar and Daubechies (order 4) filter. Figure 5b plots signif-
icant wavelet coefficients of underlying collision signal decomposed with Haar wavelet
and Daubechies wavelet (db4). The plot reveals better localization property of wavelet
coefficients with db4 in comparison to Haar wavelet. This signifies need of an optimal
wavelet basis function for better reconstructed signal processing.
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Figure 5. (a) Reconstructed signal of the collision response using Haar and Daubechies (order 4) filter.
(b) Wavelet coefficients of accelerometer signal decomposition.

Therefore, an optimal mother wavelet selection method based on cross correlation
coefficient is proposed, which is defined as

γ =
∑ (X− X̄)(Y− Ȳ)√
∑ (X− X̄)2(Y− Ȳ)2

(8)

where X is the collision signal, Y is the mother wavelet, and X̄ and Ȳ are the means of the
signal. Then the optimal wavelet is determined via finding the mother wavelet with the
largest cross-correlation coefficient in the wavelet filter bank library. Table 1 shows cross
correlation coefficient of the single bit CP signal with various wavelet filters. Daubechies
wavelet filter of order 4 (db4) is the optimal mother wavelet for CP extraction.

Table 1. Comparative table of correlation coefficients with selected mother wavelet filter for CP signal
under the experiment.

Wavelet Filter γ Wavelet Filter γ

db1 0.2957 coif1 0.3636
db2 0.4146 coif2 0.3497
db3 0.3191 coif3 0.0506
db4 0.6391 coif4 0.0254
db5 0.2169 meyr 0.1933
db6 0.2946 sym2 0.4146
db7 0.3536 sym3 0.2941
db8 0.0172 sym4 0.6115

Haaar 0.2957 Mex Hat 0.3181
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3.2. Decomposition Level Selection

Theoretically, the detail coefficient increases as the decomposition level increases. Too
many decomposition level will change the trend of the signal and overreact. Too few
decomposition level will not effectively separate the approximate coefficient and the detail
coefficient [23]. The maximum level maxlev depends on the two main operations in the
procedure of wavelet decomposition: convolving with filter and downsampling, which is
determined as:

maxlev = f ix(log2(ls/(lw− 1))) (9)

where lw and ls are the length of filter and original signal, respectively, and fix is the
round operator towards zero. For example, we utilize db4, whose corresponding filter has
8 numbers to de-noise the 6000 points of the signal. The maximum level of decomposition
is 9 in this case. Usually, in order to apply different analysis requirements and reduce the
decomposition and reconstruction time, the decomposition level is selected through trial
and error under certain constraints. For the sake of balancing frequency resolution and
computation time, decomposition level 5 is enough for pipeline surveying system.

3.3. Characteristic Position Recognition

In general, gyroscope and accelerometer measurement data display stationary and
singularity characteristics. However, accelerometers tend to be superior in terms of sta-
bility and accuracy of measurements, such as in the fields of bridge monitoring, pipeline
deformation measurement, and structural health monitoring [24,25].

Accelerometer measurement data is decomposed with decomposition level 5. Figure 6
shows the process to extract CPs, the amplitudes of the detail coefficient denote the correla-
tion of the moving mother wavelet and the signal, scale j is looking for the well-matched
frequency. The bigger the j, the more obvious the singularity of the collision response.
When j = 5, the amplitude spikes are the location of the weld, which can be regarded as the
CPs, Tp is collision time, CPn is a series of CPs. When j = 1, the frequency of burst noise
is best match, and the position of the pulling force can be extracted. The figure reveals
the local instability of the signal, which is conducive to the recognition of characteristic
positions.
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Figure 6. Wavelet decomposition in different scales.

In addition to wavelet transform, fast orthogonal search (FOS) is a stochastic method
used for time series analysis, short term signal processing, and complex system identi-
fication. After the data de-noising by FOS, the amplitude is calculated on each scale to
correspond to the singularity of the original accelerometer data [16,26]. Transient analyses
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offer a plausible route towards leak detection due to their robustness and simplicity. The
Hilbert–Huang transform (HHT) provides a modal decomposition method based on the
distribution of signal extreme points, without the need to select basis functions to identify
instantaneous signals [27,28]. FOS and HHT can extract signal features as well, but their
identification performance in a strong noisy environment of pipeline detection has not been
fully studied. As analyzed in Section II, if the collision signal is submerged in rhythmic
bursts noise, then CP may be misidentified.

In Figure 7, (a) plots the raw value of the accelerometer, (b) is the denoising data and
CP recognition result of WTMM, and (c) shows the CP recognition results of HHT, FOS, and
WTMM. WTMM not only correctly recognize the positions of all CPs, but also de-noises
the data (choose db4 wavelet, the decomposition level is 5). FOS misidentified 3 CPs and
HHT misidentified 14 CPs in 35 singular points. The recognition accuracy can be defined
as η = (S− SE)/S, S is the number of singular points, SE are the number of misidentified
CPs, ηWTMM = 100.00%, ηFOS = 91.43%, ηHHT = 60.00%. That is, WTMM is more suitable
for CP recognition in pipeline surveying system.
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Figure 7. Comparison of different CP recognition methods: (a) is the raw value of the accelerometer
measurement data, (b) is the data denoising and CP identification based on WTMM, (c) is the
comparison of CP identification based on WTMM, FOS, and HHT.

4. Models of SINS/DR/CP System

Multi-sensor data fusion is based on the error model of the sensors. The Kalman filter
(KF) is always utilized for optimal estimation [29].
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4.1. System Error Model

Ignoring the calibration error, the error equation of SINS/DR/CP is the following:

φ̇n = Maaφn + Mavδvn + Mapδp− Cn
b εb

δv̇n = Mvaφ + Mvvδvn + Mvpδp + Cn
b∇

b

δṗ = Mpvδvn + Mppδp
δṗd = Mpadφd + Mppdδpd + MpkdδKd

(10)

Both the odometer and IMU are fixed on the PIG, the attitude error equation of the
DR algorithm is omitted, and φn

d , νd can be replaced by φn, ν [30]; where Mij are navigation
coefficient matrices [31]; φT is the attitude error vector; δνnT is the velocity error vector;
δpT is the position error vector; εbT is the gyroscope drift error; ∇bT is the accelerometer
zero bias error; δpT

d is the odometer position error vector; and δKT
d is the odometer scale

coefficient error. The system state vector is:

X = [φTδνnTδpTεbT∇bTδpT
d δKT

d ]
T (11)

The system state equation is:

Ẋ21×1 = F21×21X21×1 + G21×6w6×1 (12)

where

F =



Maa Mav Map −Cn
b 03×3 03×3 03×1

Mva Mvv Mvp 03×3 Cn
b 03×3 03×1

03×3 Mpv Mpp 03×3 03×3 03×3 03×1
03×3 03×3 03×3 03×3 03×3 03×3 03×1
03×3 03×3 03×3 03×3 03×3 03×3 03×1
Mpad 03×3 03×3 03×3 03×3 Mppd Mpkd
01×3 01×3 01×3 01×3 01×3 01×3 01×3


(13)

is the dynamic coefficient matrix, G is the process noise distribution matrix, w is the vector
of input process noise, and Cn

b is the transformation matrix.

4.2. System Design Model

In SINS/DR integrated navigation algorithm, the observation vector is the difference
between positions calculated by SINS and DR. In SINS/DR/CP algorithm, the pipe length
is calculated by adjacent CPs, which can determine two points in the 3D space of the
pipeline. The constraint vector~l formed by the two points has two functions: (1)~l is in the
same direction as pipeline, the pitch and the azimuth angle of PIG can be non-holonomic
constrained. (2) The distance of the two points

∣∣∣~l∣∣∣ is the calculated length of the pipe.
The difference between the calculated and the actual pipe length indicates the divergence
direction and the magnitude of the positioning error. Overall, the constraint vector~l can
partly compensate for the systematic error.

Figure 8 plots the structure of the pipeline. ∆Lg =
∣∣∣~l∣∣∣− Lpipe is the error of calculated

pipe length and actual length. Constraint vector~l reduces the dimensionality of configura-
tion space and suppress the divergence of the position error. α is the angle between~l and
the vertical (0 < α < π); β is the angle between the horizontal projection of~l and the east
(0 < β < π). The theoretical pitch angle and azimuth angle can be determined by α and
β. Moreover, PIG’s attitude has a significant change in pipe elbow, at this time ∆Lg is no
longer applicable in the algorithm.
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Figure 8. Structure of the pipeline.

There are two kinds of system design models when PIG runs in different stages of
the inspected pipeline. Firstly, when PIG runs in the straight pipeline segment, the system
design model of SINS/DR/CP is given by:

δpCP − δpSINS
δaCP − δaSINS

δϕDR − δϕSINS
δλDR − δλSINS
δhDR − δhSINS∣∣∣~l∣∣∣− Lpipe


= H1X−



δηp
δηa
δηϕ

δηλ

δηh
δηL

 (14)

where δp and δa denote the pitch and azimuth angles that calculated by SINS at the
beginning of each straight pipeline segment. δϕ, δλ, and δh are the longitude, latitude,
and height, respectively.

∣∣∣~l∣∣∣ and Lpipe are the calculated and actual length of the pipe,
respectively. δη is the corresponding measurement noise.

δP = [ δϕ δλ δh ]T and ∆Lg =
∣∣∣~l∣∣∣− Lpipe satisfies:

∆Lg=‖δPG‖2 (15)

where δPG = [ δPE δPN δPU ]T is the projection of δP = [ δϕ δλ δh ]T in naviga-
tional coordinate system Oxnynzn, it satisfies: δPE

δPN
δPU

 =

 glv.Re · cos λ · δϕ
glv.Re · δλ

δh

 = e

 δϕ
δλ
δh

 (16)

meanwhile, under the constraints of straight pipelines,

∆Lg = Ki · δPG(i)=Kei · δP(i) (17)

where Kei =
[

KeE KeN KeU
]
= e× Ki is the projection coefficient, where

Ki =
[

cos α · cos β sin β sin α · cos β
]T (18)

α is the angle between~l and the vertical (0 < α < π), β is the angle between the horizontal
projection of~l and the east (0 < β < π); therefore, the observation matrix H is the following:
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H1 =

 H1,2 02×18
03×6 I3×3 03×6 −I3×3 03×3
01×6 KeE KeN KeU 01×12

 (19)

and H1,2 =

[
1 0 0
0 0 1

]
is the constrain matrix of pitch and azimuth angles.

Besides, when PIG running in the pipeline elbow, the system design model of SINS/DR/CP
is given by:  δϕDR − δϕSINS

δλDR − δλSINS
δhDR − δhSINS

 = H2X−

 δηϕ

δηλ

δηh

 (20)

and the corresponding system design matrix H2 is:

H2 =
[

03×6 I3×3 03×6 −I3×3 03×3
]

(21)

During the update phase of the SINS/DR/CP algorithm, dead reckoning provides
continuous new position reference. Non-holonomic restrains the divergence of pitch
and azimuth angle, and the calculation error of the straight pipe length compensates for
the errors. Furthermore, the displacements of IMU measurement data caused by CPs
significantly decrease the positioning accuracy, as analyzed in Section 2. Increasing the
level of wavelet decomposition to 9 can smooth the signal and reduce the singularity, but
this method will distort the measurement data when PIG keeps still. Another method is to
temporarily discard the IMU measurement data within the collision time Tp, and utilize
the data before Tp. After comparison, the latter method has higher positioning accuracy.
Figure 9 is the flowchart of SINS/DR/CP algorithm.

PIG is moving

IMU data

Identify the CPs 

with WTMM       

Calculate the 

constraint vector l 
and LLLin the 

straight pipe  

SINS/DR/CP

optimization algorithm 

Straight 

pipe?

Calculate the 

projection 

coefficient Ke 

Ke=0

Calculate 

angleαand βin  l

Update H 

SINS/DR/CP

Update H 

SINS calculation

IMU data

Calculate 

the poistion
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 integrated navigation algorithm
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characteristic position

data pre-processing
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Yes

gL

Figure 9. Flowchart of SINS/DR/CP algorithm.
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5. Simulation and Experiment

In this section, we validate the proposed method via numerical simulation and pipeline
experiment. The CP recognition in the experiment has been analyzed in Sections 2 and 3,
so this section focuses on positioning results of the algorithm.

5.1. Simulation Results

In the simulated experiment, the parameters were set as follows: The experimental
location was Harbin (45.7796° N, 126.6705° E), the gyro bias error was 0.5◦/h, and the
accelerometer bias error was 5 × 10−5g0 (g0 was the standard acceleration of gravity,
g0 = 9.78049 m/s2). Gyroscope and acceleration data were obtained from pipeline trajectory
generator, the inertial platform misalignment angle was [15′15′10′′], the initial velocity
error and position error were both 0, the sampling frequency was 100 Hz, and the sampling
time was 1000 s.

We generated the simulation pipeline trajectory, which is composed of multiple 35 m
long pipes. Based on the known pipeline position, the theoretical acceleration and angular
velocity values of x, y, and z axis in the inertial coordinate system were obtained. Then
we added bias and random noise to the theoretical angular velocity and acceleration, and
further added collision error that satisfied Equation (5). This simulated IMU measurement
data in pipeline detection. After that, we recognized the CPs by WTMM. Lastly, we
calculated the trajectory of the pipeline based on different methods and compared the
results.

Figure 10 shows the comparison of different positioning methods. After being affected
by the weld, the trajectory remains smooth, and there is no singularity caused by periodic
noise. The red points are CPs, the brown line is distortion position affected by the weld,
with an error of up to 40 m. The purple line is the trajectory calculated by SINS/DR.
The closest trajectory is the red line, which is calculated by SINS/DR/CP algorithm.
The simulation does not consider the influence of manual operation, it is necessary to
design pipeline experiments to further confirm the effectiveness of the proposed algorithm.
Table 2 summarizes the positioning error of different surveying methods in simulation.
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Figure 10. Simulation results of pipeline trajectory based on different calculation methods.



Electronics 2022, 11, 1100 13 of 18

Table 2. Positioning error of different surveying methods in simulation.

Different Methods East (m) North (m) MSE(H/V) (m)

Distortion Position 15.76 48.95 (27.88; 11.41)
SINS/DR 3.73 8.58 (5.27; 2.81)

SINS/DR/PJ 3.01 6.89 (4.92; 2.68)
SINS/DR/CP 2.64 5.82 (4.49; 2.31)

5.2. Experiment Results

A real pipeline experiment was undertaken to evaluate the proposed method. The
PIG and data processing software were designed and developed in Harbin Institute of
Technology. As shown in Figure 11, the experiment field was in Songjiang, Shanghai
(31.1090° N, 121.1738° E). The total length of the pipeline was 300 m, which was welded
by multiple 30 m long pipes. The parameters of the weld strictly followed the national
pipeline welding standard (GB50236). The girth weld was 4 mm higher than the inner
surface of the pipe, the length of the girth weld was 10 mm. The MEMS-IMU was STIM300
with an output frequency of 100 Hz. The odometer was the Hall sensor ES3114, it measured
the traveled distance by counting the number of rotations of the wheels. In addition, the
microprocessor was STM32 with ARM Cortex-M, the data was stored on an SD card for
offline processing. The calibration results of IMU are shown in Table 3.

Inlet

Outlet

Figure 11. Experimental field.

The specific steps of the experiment process are as follows:

∗ Use real-time kinematic technology (RTK) to obtain pipeline real position.
∗ Keep the PIG still at the pipe inlet and complete the initial alignment.
∗ Follow the direction of the arrow on the PIG, push the PIG slowly into the pipe until

the rear is flush with the pipe entrance, let it stand for 1 min, and pull the iron chain
connected with the PIG until the PIG reaches the end of the pipeline.

∗ Keep PIG still for 1 min, pull the PIG back at the pipeline inlet.
∗ Repeat the above process three times.
∗ Read the data stored in the SD card, and calculate the trajectory of the pipeline.
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Table 3. Calibration results of IMU.

Gyroscope Zero Bias (°/s) Scale Factor Installation Error (′′)

x-axis 0.0987 0.9875 198.231 256.325
y-axis 0.0996 1.0125 196.258 100.157
z-axis 0.1012 1.0079 299.345 100.108

Accelerometer Zero Bias (m/s) Scale Factor Installation Error (′′)

x-axis 0.0895 0.8920 200.211 298.125
y-axis 0.1010 1.0052 199.435 100.156
z-axis 0.1123 0.9784 297.568 100.025

Limited by the MEMS-IMU precision, the azimuth calculated by the initial alignment
was not accurate. So, we assumed that the initial azimuth was northward and rotated the
calculated PIG trajectory. The rotation angle was based on the relative positions of the
inlet and outlet of the pipeline. Furthermore, we adopted the forward and reverse test
method, which ensured that the positioning error was minimized at the inlet and outlet of
the pipeline.

Figure 12 plots the pipeline trajectory calculated by different algorithm. The red
line is the positioning result of the SINS/DR/CP algorithm. RTK is regarded as the
pipeline true position because of the highest accuracy. The marks in the figure are the weld
locations. The black text |lCP| indicates the distances between two adjacent CPs calculated
by SINS/DR/CP, the blue text

∣∣lPJ
∣∣ indicates the distances between two adjacent CPs

calculated by SINS/DR/PJ, both are in meters. By contrast, there is no obvious monotonic
change in |lCP|, and the amplitude is closer to the true value. Comparing the result of
SINS/DR/CP algorithm with the true trajectory, as shown in Figure 13, the maximum
horizontal error is 42.2 cm and the maximum vertical error is 31.7 cm in the 300 m pipeline,
the positioning error is 0.129%. Similarly, the positioning error of distortion position,
SINS/DR, SINS/DR/ACKF, and SINS/DR/PJ are 0.571%, 0.276%, 0.268%, and 0.178%,
respectively.
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Figure 12. Experimental results of pipeline positioning based on different methods.
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Figure 13. Positioning errors in the pipeline experiment.

SINS/DR is simple and suitable for pipeline detection system, but it accumulates
errors faster. ACKF utilizes a set of cubature points to approximate the state mean and
covariance of a nonlinear system with additional Gaussian noise. It is suitable for high-
dimensional nonlinear problems and has good stability. However, the nonlinearity of the
pipeline surveying system is not obvious, and raw gyroscope measurement data are not
Gaussian distribution, so the positioning accuracy of ACKF is lower than SINS/DR/PJ.
SINS/DR/PJ utilizes the non-holonomic constraints of the pipeline, and it regards the
azimuth angle and pitch angle of the straight pipeline as the true value to correct the
attitude. However, the length of equidistant weld is not utilized, which is exactly the pro
of SINS/DR/CP. Moreover, the pipeline in the experiment is basically straight, with only
small height changes. Almost the entire pipeline matches the conditions of SINS/DR/CP
algorithm. The comparison results of SINS/DR/CP algorithm and other algorithms are
summarized in Table 4, it reveals that SINS/DR/CP has the desirable positioning accuracy.

Table 4. Positional accuracy comparison of different surveying methods.

Different Methods Horizontal Error (m) Vertical Error (m) Positioning Error MSE(East; North; Up) (m)

Distortion Position 0.762 1.182 0.571% (45.1; 10.51; 144.5)
SINS/DR 0.651 0.511 0.276% (16.6; 6.5; 21.3)

SINS/DR/ACKF 0.492 0.680 0.268% (20.1; 8.2; 30.3)
SINS/DR/PJ 0.421 0.338 0.178% (12.3; 6.4; 12.9)
SINS/DR/CP 0.306 0.243 0.129% (7.8; 5.6; 7.0)

Furthermore, we notice that the frequency of manual pulling force will affect the
reliability of the calculated pipe length. PIG moves instantaneously when it is pulled,
which result in accumulation of displacement errors. SINS/DR/CP utilizes the calculation
error

∣∣∣~l∣∣∣− Lpipe of the pipe length as the observation vector, which will be affected by the
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cumulative displacement of the PIG. Therefore, projection coefficient Kei in Equation (17)
needs to be adjusted adaptively to weaken the influence of pulling force:

K̂ei = σ× Kei = σ× [ KeE KeN KeU ] (22)

where σ is the adjustment coefficient. Four pipeline experiments are conducted with
different pulling frequency in the same site. Pulling force is difficult to quantify and
control, so we count the total number of accelerometer burst noise by wavelet transform, as
analyzed in Figure 4. The total number of burst noise in experiment I, II, III, and IV are 36,
50, 61, and 72, respectively. After that, we adjust σ to ask for the lowest mean square error
(MSE) of the upward positioning error that changes significantly.

Figure 14 shows the impact of σ on positioning accuracy. Obviously, frequent pulling
will reduce the positioning accuracy. The green line is the data of Experiment IV, it has
72 times burst noise and has the largest mean square error compared with others. The blue
line is the data of Experiment I, it has 36 times burst noise and has the highest positioning
accuracy. Furthermore, the optimal value of σ increases with the increase in the number of
burst noises. When the frequency of the pulling is relatively high, σ should take around 1.5,
and when the frequency of the pulling is low, σ should take around 1.0. In long pipeline
detection, to ensure work efficiency, the velocity of PIG is usually greater than 1 m/s,
which limits the method of removing burst noise by pulling the PIG smoothly and slowly.
By calculating the number of burst noise in the accelerometer, positioning precision can
be improved.
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Figure 14. The influence of adjustment coefficient on positioning error.

6. Conclusions

Miniaturization limits the choice of sensors in pipeline detection. The collision of
PIG and the weld reduce the pipe positioning accuracy in pipeline detection. Odometer,
non-holonomic constraints, and equidistant weld scars are crucial external updates for SINS
to achieve the desirable positioning accuracy. At a pipeline detection site, it is common
to manually pull the PIG, which will induce burst noise to measurement data. When the
collision response between the PIG and the weld scar is submerged in the burst noise,
it may lead misrecognition of the weld. This paper models the collision response as CP,
proposing a CP recognition method and the improved navigation algorithm based on the
equidistant CPs.
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The results from the simulations and real experiment are presented to validate the
proposed method and the relevant algorithm. WTMM of selecting the mother wavelet based
on the cross-correlation coefficient can recognize the position of CP when it is affected
by burst noise. The larger the scale, the more obvious the CP in the detail coefficient.
Compared with other methods, SINS/DR/CP enables a PIG to self-orient, utilizing the
equal spacing characteristics. The experimental results show that the calculated pipe length
of improved algorithm is closer to the true value, and can better restrain the divergence of
the horizontal and vertical error to 0.306 m and 0.243 m, respectively. The comprehensive
positioning error is 0.129%. Simulation and actual test result show that the method is
simple and robust, and can be used by pipeline PIG manufacturers.

The azimuth of a moving PIG remains constant for a long time in long pipelines. The
azimuth estimates will gradually diverge due to low observability, then the positioning
precision will decrease. In follow-up studies, researchers can focus on the observability of
the azimuth and the positioning precision of PIG in pipes of different lengths.
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