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Abstract: Online learning is a method for exploiting input data to update deep networks in the test
stage to derive potential performance improvement. Existing online learning methods for single-
image super-resolution (SISR) utilize an input low-resolution (LR) image for the online adaptation
of deep networks. Unlike SISR approaches, reference-based super-resolution (RefSR) algorithms
benefit from an additional high-resolution (HR) reference image containing plenty of useful features
for enhancing the input LR image. Therefore, we introduce a new online learning algorithm, using
several reference images, which is applicable to not only RefSR but also SISR networks. Experimental
results show that our online learning method is seamlessly applicable to many existing RefSR and
SISR models, and that improves performance. We further present the robustness of our method to
non-bicubic degradation kernels with in-depth analyses.

Keywords: reference-based SR; online learning; self-supervised learning

1. Introduction

Deep learning-based single-image super-resolution (SISR) algorithms [1–9] have
shown remarkable progress in recent years. However, these algorithms still suffer from
blurry output images because they are generally trained to minimize the mean squared
error (MSE) or mean absolute error (MAE) between the network output and ground truth
images. This problem has led to various efforts to generate high-frequency details with a
generative adversarial network (GAN) and/or perceptual losses [10–12]. However, these
methods often lead to reduced reconstruction performance with unexpected visual artifacts.
The reason for this is that GAN-based deep networks often generate visually pleasing
images, but fail to recover genuine information lost during the downsampling (degrada-
tion) process. In order to reconstruct the lost information, reference-based super-resolution
(RefSR) methods have been proposed. RefSR algorithms aim to benefit from rich high-
frequency details of an external high-quality reference image such as video frames [13,14]
or similar web images [15] during the reconstruction, and many RefSR methods attempt
to align and combine information from a low-resolution (LR) input image and a high-
resolution (HR) reference image to synthesize a HR image. To this end, most of the studies
so far have explored how to find similar features and match the features [16–18] of the
LR image and the reference image well. For instance, patch matching [19], deformable
convolution [20], and attention [21] techniques have been utilized. The aforementioned
methods have succeeded in transferring the high-frequency detail of a reference image.
However, these reference-based algorithms show performance degradation when irrelevant
high-resolution images are given as references. To this end, we present an online learning
technique inspired by zero-shot super-resolution (ZSSR) [22]. In ZSSR, a LR input image
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ILR and its downsampled version ILR ↓ are used for supervision during the inference phase.
However, ZSSR has difficulties when dealing with a large scaling factor (e.g., ×3, ×4).

Therefore, in this paper, we propose a method to effectively exploit both LR and
HR reference images for online learning to update not only RefSR but also SISR models.
Furthermore, using a pre-trained SR model, we create a pseudo-HR image from a LR input
image, then use this pair of a pseudo-HR images ĪHR and a downsampled pseudo-HR
image ĪHR ↓ as another datum for the online learning of the SR model. In summary, we
perform online learning for both SISR and RefSR models by utilizing three types of supervi-
sion, including ILR, IRe f , and ĪHR. We use not only each supervision individually, but also
combinations of each supervision for online learning. As a result, the proposed method
can benefit from more images during the online adaptation, compared with ZSSR [22].

Our key contributions can be summarized as follows:

• We propose an online learning method for reference-based super-resolution with
various data pairs for supervision. To this end, we present three methods for SISR
models and four methods for RefSR models;

• Our method is very simple, but it is effective, and can be seamlessly combined with
both SISR and RefSR models;

• Our method shows consistent performance improvements without being significantly
affected by the degree of similarity between the reference and input images.

2. Related Works

In this section, we review deep learning-based SISR and RefSR methods. Then, we
introduce recent SR approaches using online adaptation.

Single-image super-resolution (SISR) restores high-frequency details of a LR image
using only an input LR image. The traditional SISR approaches [23,24] usually exploit the
self-similarity or self-recurrence of the input LR image. With deep learning, Dong et al. [25]
introduced a SISR model with just three convolutional layers and outperformed traditional
SISR methods with large margins. Kim et al. [3,4] increased the SR performance in terms
of PSNR and SSIM by using very deep convolutional layers. Lai et al. [26] suggested
LapSRN, which progressively restores high-frequency details with the Laplacian pyramid.
Lim et al. [5] does away with unnecessary modules in residual networks such as batch
normalization layers, and achieved improved performance. Zhang et al. [7] introduced a
channel attention model to take care of the inter-dependency across different channels. The
aforementioned methods have significantly increased SR performance in terms of PSNR
and SSIM. However, these methods may be blurry or visually unpleasing to human eyes.
To enhance visual quality, Johnson et al. [12] proposed perceptual loss that minimizes errors
on high-level features. Ledig et al. [11] adopted the GAN framework to generate photo-
realistic images. Furthermore, Wang et al. [27] introduced a relativistic adversarial loss
based on a residual-in-residual dense block to produce more realistic images. Perception-
based methods have succeeded in producing visually good results, but there is a limit to
recovering information lost during the downsampling process.

Unlike SISR, reference-based image super-resolution (RefSR) uses an additional HR
reference image as an input to restore high-frequency details. Therefore, information lost
in the downsampling process can be obtained from the reference image. Zheng et al. [19]
proposed RefSR-Net to combine information of both LR and reference images based on
patch matching. Specifically, RefSR-Net extracts local patches from both LR and reference
images and then searches for correspondences between them. After that, the resulting
matches are used to synthesize a HR image. However, the patch-match-based approach
has difficulty with handling non-rigid deformations and, thus, suffers from blur or grid
artifacts. Using optical flow [28,29] for pixel-wise matching, Zheng et al. [30] presented
CrossNet, combining a warping process and image synthesis. CrossNet can effectively
handle non-rigid deformations between the input and reference images; however, it is
vulnerable to large displacements. With the recent progress of neural-style transfer [31,32],
Zhang et al. [33] proposed SRNTT, performing texture transfer from the reference image.
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This is particularly robust when an unrelated reference image is paired with an input image.
Shim et al. [20] proposed SSEN, which aligns features of input and reference images using
non-local blocks and deformable convolutions. Intra-image global similarities extracted
from non-local blocks are utilized to estimate relative offset to relevant reference features.
After that, deformable convolution operations are used to align reference features to those
from the input low-resolution image. It is an end-to-end trainable network that does not
require optical flow estimation or explicit patch-match. Yang et al. [21] introduced an
attention-based RefSR method called TTSR, and have achieved significant performance
improvements. Recently, Jiang et al. [34] presented a knowledge-distillation technique to
solve the matching difficulties caused by the scale difference between the reference image
and the LR input image. Lu et al. [35] introduced the MASA network for addressing the
computational burden problem that may occur in LR image and reference image matching.
However, these methods are sensitive to the similarity of the reference image.

Recently, Shocher et al. [22] proposed a zero-shot super-resolution that makes the
CNN model flexibly adapt to the test image. In other words, parameters of the CNN model
are updated during the test phase, and a CNN model optimized for the input image can
be obtained. Furthermore, to reduce the number of updates, meta-learning techniques are
applied in [36,37]. In this paper, as the first study to apply online learning to the RefSR
problem, we achieved robust RefSR despite the difference in similarity between input and
reference images.

3. Methods

In this section, we introduce our online learning methods for the RefSR problem using
both SISR and RefSR models. We then describe the inference process of our method.

3.1. Online Learning

In online learning, the most important point is how to exploit input data given at the
test phase. Online learning exploits self-similarity in the image. Using the characteristics of
online learning to learn internal features, we proceed with high-resolution reference images
with similar characteristics and use them to recover test images to improve performance.

For the RefSR problem, this is more crucial, because two kinds of input data are
available: a LR image ILR and the reference image IRe f . Therefore, we develop various
methods to construct pairs of train-input X and train-target (supervision) Y from multiple
images (i.e., ILR, IRe f ). Although our main goal is to solve the RefSR problem in this work,
we present methods to construct pairs of data D which can be used to train not only RefSR
but also SISR models at the test time.

3.1.1. SISR Model

Existing SISR models require data pairs Ds consisting of an input X and supervision Y
(i.e., Ds = {X, Y}) for training. To be specific, we present three strategies, DLR

s , DPse
s , and

DRe f
s , to construct Ds. First, DLR

s consists of a downsampled LR image and an input LR
image and is denoted by DLR

s =
{

X : ILR ↓, Y : ILR}. Note that this is a commonly used
configuration to exploit self-similarity in SISR such as ZSSR [22]. Next, DPse

s is constructed
with a pseudo-HR image ĪHR obtained from a pre-trained SR model Pφ(·) as follows:

ĪHR = Pφ(ILR), (1)

where φ is the pre-trained network parameter. Then, we downsample ĪHR to construct a
pair of training samples, and the set is defined as DPse

s =
{

X : ĪHR ↓, Y : ĪHR}. Finally, we

utilize a reference image for DRe f
s . Similar to DLR

s and DPse
s , a downsampled image and

the original reference images are paired as DRe f
s =

{
X : IRe f ↓, Y : IRe f

}
. Using these three
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data pairs acquired in the test phase, pre-trained parameters θs of a SISR model SISRθs(·)
are updated by minimizing the following loss function:

Lθs(x, y) = E
[
||SISRθs(x)− y)||

]
, (2)

where x and y are extracted patches from X and Y in Ds. Note that the aforementioned
data pairs can be used individually or in combination.

3.1.2. RefSR Model

In order to train RefSR models, a pair of data Dr that comprises an input X, a reference
R, and supervision Y (i.e., Dr = {X, R, Y}) is required. Thanks to the additional input
R, it is possible to construct more diverse data pairs than SISR models, and we propose
four methods to construct Dr: DLR

r , DPse
r , DRe f 1

r , and DRe f 2
r . First, DLR

r is composed of
a downsampled LR image, a reference image, and an input LR image, and denoted by
DLR

r =
{

X : ILR ↓, R : IRe f , Y : ILR
}

(cf., DLR
s ). Similarly, we define the second data pair

DPse
r =

{
X : ĪHR ↓, R : IRe f , Y : ĪHR

}
by including IRe f to DPse

s as a reference R. In addition,

we can utilize a downsampled reference image IRe f ↓ and the original one IRe f as an input
X and supervision Y, respectively, and an input LR image as a reference R to make the third
data pair DRe f 1

r =
{

X : IRe f ↓, R : ILR, Y : IRe f
}

. Finally, we replace ILR in DRe f 1
r with ĪHR

to make the last data pair DRe f 2
r =

{
X : IRe f ↓, R : ĪHR, Y : IRe f

}
. Note that DRe f 1

r and

DRe f 2
r are extended from DRe f

s by adding ILR and ĪHR as the reference. With these data
pairs, we can update network parameters θr of the pre-trained RefSR model RefSRθr (·)
with the following loss function:

Lθr (x, r, y) = E
[
||RefSRθr (x, r)− y)||

]
, (3)

where x, r and y are extracted patches from X, R, and Y in Dr. Similar to SISR models, data
pairs can be used individually or combined for online learning. The data pairs for online
learning of SISR and RefSR models are summarized in Table 1.

Table 1. Online learning data pairs for SISR and RefSR models.

Model SISR RefSR

Data Pair DLR
s DPse

s DRe f
s DLR

r DPse
r DRe f 1

r DRe f 2
r

X ILR ↓ ĪHR ↓ IRe f ↓ ILR ↓ ĪHR ↓ IRe f ↓ IRe f ↓
R - - - IRe f IRe f ILR ĪHR

Y ILR ĪHR IRe f ILR ĪHR IRe f IRe f

3.2. Inference

With the updated parameters of SISR or RefSR models at the test stage, we estimate
the final super-resolved output image as follows:

Ōs = SISRθs(ILR), Ōr = RefSRθr (ILR, IRe f ). (4)

Notably, unlike RefSR, SISR models are updated using the reference image in the
online learning phase, but the reference image is not used for the final inference.

4. Experiments

In this section, we describe implementation details and demonstrate both quantitative
and qualitative comparisons with existing methods. We also provide various empirical
analyses, including experiments according to the similarity between the reference image
and the input LR image and experiments using non-bicubic degradation LR images.
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4.1. Implementation Details

For both SISR and RefSR models, we used the CUFED dataset [33], which consists of
11,871 pairs of input and reference images to pre-train the models for ×4 upscaling. As
baseline SISR models, we have adopted light-weight versions of SimpleNet [22], RCAN [7],
and EDSR [5] for fast execution time. Specifically, the number of residual blocks is reduced
from 20 to 6 for the RCAN, and from 32 to 16 for EDSR with 64 feature dimensions. Each
model is trained for 100 epochs with 32 batch sizes. We use all training data, including both
HR and reference images. For RefSR models, SSEN [20] and TTSR [21] are adopted. SSEN
is trained for 200 epochs with a batch size of 32, and TTSR is trained for 200 epochs with a
batch size of 9. In the online learning phase, the CUFED5 dataset [33] is used. It consists of
126 groups of images, and each group contains a HR image and 5 reference images with
different levels of similarity. Images are augmented with random crop (128 × 128), rotation,
and flip. The initial learning rate is set to 1× 10−4 for ADAM, and we multiply by 0.1 when
the loss values stop decreasing [22]. Our method is implemented using PyTorch on Ubuntu
16.04 with a single RTX 2080 GPU.

4.2. Experimental Results

For all experiments, we have trained SISR and RefSR models by following their
original configurations to obtain the baseline models. After that, the proposed online
learning is applied to verify the effectiveness of our algorithm. Note that our method does
not introduce any additional modules to the baseline models. All the models are evaluated
on the CUFED5 test set. We evaluate in terms of PSNR, SSIM, and LPIPS [12], and the
LPIPS value is measured with the VGG model.

Table 2 shows SISR online learning results over the baseline models. Online learning
with only DLR

s degrades performance in all models because the size of DLR
s is too small

(30 × 20) to exploit abundant information. In contrast, DPse
s contains plenty of HR details

useful for the inference and, thus, performance is consistently improved with DPse
s as

in [38]. Notably, we see further improvement by combining DLR
s with DPse

s . Different from
the results using DLR

s only, DLR
s + DPse

s can effectively benefit from DLR
s for self-similarity

while keeping knowledge of HR information from DPse
s .

Table 2. SISR online learning results on SISR models.

Model Method PSNR SSIM LPIPS

SRCNN [9]

Pre-trained 25.475 0.737 0.3369
DLR

s 25.379 0.732 0.3388
DPse

s 25.563 0.741 0.3273
DLR

s + DPse
s 25.559 0.741 0.3275

VDSR [3]

Pre-trained 25.660 0.746 0.3332
DLR

s 25.500 0.740 0.3229
DPse

s 25.709 0.748 0.3256
DLR

s + DPse
s 25.734 0.749 0.3245

SimpleNet [22]

Pre-trained 25.800 0.753 0.3267
DLR

s 25.727 0.750 0.3128
DPse

s 25.941 0.757 0.3152
DLR

s + DPse
s 25.958 0.757 0.3136

EDSR [5]

Pre-trained 26.198 0.771 0.2955
DLR

s 26.132 0.765 0.2897
DPse

s 26.422 0.774 0.2956
DLR

s + DPse
s 26.440 0.775 0.2932

RCAN [7]

Pre-trained 26.243 0.774 0.2906
DLR

s 26.147 0.767 0.2883
DPse

s 26.500 0.777 0.2912
DLR

s + DPse
s 26.512 0.778 0.2892



Electronics 2022, 11, 1064 6 of 13

RefSR online learning results on the SISR baseline models are shown in Table 3. In
RefSR online learning, baseline models always show performance improvements with
DRe f

s because it contains real high-frequency details not available in DPse
s . We achieve the

best results by using both DLR
s and DRe f

s , rather than using either DLR
s or DRe f

s , respectively.
Similar results are observed with RefSR online learning on the RefSR models where the best
performance is mostly achieved with DPse

r + DRe f 2
r , as shown in Table 4. Figure 1 shows

qualitative comparisons between existing methods and ours. Note that Figure 1f,k show
superior performance over their baseline counterparts Figure 1e,j.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 1. Qualitative comparison of RefSR methods on the CUFED5 datasets. (a) GT images.
(b–k) Results of Bicubic, SimpleNet [22], EDSR [5], RCAN [7], Ours+RCAN [7], SRNTT [33], SRNTT-
`2 [33], SSEN [20], TTSR-rec [21], and Ours+TTSR-rec [21], respectively.
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Table 3. RefSR online learning results on SISR models.

Model Method

Similarity

XL L M H XH

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

DRe f
s 25.888 0.755 0.3159 25.932 0.756 0.3153 25.925 0.757 0.3148 25.990 0.758 0.3140 26.046 0.760 0.3127

Ours + DLR
s + DRe f

s 25.894 0.755 0.3134 25.960 0.757 0.3119 25.950 0.758 0.3115 26.003 0.758 0.3107 26.058 0.761 0.3093
SimpleNet [22] DPse

s + DRe f
s 25.936 0.757 0.3147 25.963 0.758 0.3145 25.979 0.758 0.3143 25.985 0.758 0.3140 26.018 0.759 0.3134

DLR
s + DPse

s + DRe f
s 25.973 0.758 0.3131 25.991 0.758 0.3130 25.997 0.759 0.3130 26.010 0.759 0.3129 26.049 0.760 0.3122

DRe f
s 26.354 0.772 0.2959 26.418 0.773 0.2937 26.417 0.774 0.2932 26.512 0.776 0.2922 26.645 0.780 0.2888

Ours + DLR
s + DRe f

s 26.385 0.773 0.2889 26.438 0.775 0.2875 26.444 0.775 0.2875 26.553 0.777 0.2861 26.699 0.782 0.2833
EDSR [5] DPse

s + DRe f
s 26.452 0.775 0.2949 26.467 0.775 0.2944 26.500 0.776 0.2935 26.497 0.776 0.2938 26.559 0.778 0.2926

DLR
s + DPse

s + DRe f
s 26.462 0.775 0.2925 26.484 0.776 0.2922 26.508 0.776 0.2916 26.522 0.776 0.2917 26.577 0.778 0.2902

DRe f
s 26.402 0.773 0.2919 26.465 0.775 0.2906 26.465 0.775 0.2900 26.581 0.778 0.2886 26.703 0.782 0.2856

Ours + DLR
s + DRe f

s 26.418 0.774 0.2862 26.499 0.777 0.2853 26.505 0.777 0.2845 26.635 0.780 0.2828 26.810 0.785 0.2796
RCAN [7] DPse

s + DRe f
s 26.511 0.777 0.2908 26.547 0.778 0.2901 26.567 0.778 0.2901 26.589 0.779 0.2895 26.634 0.781 0.2887

DLR
s + DPse

s + DRe f
s 26.543 0.778 0.2890 26.562 0.779 0.2885 26.574 0.779 0.2884 26.607 0.780 0.2877 26.681 0.782 0.2862
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Table 4. RefSR online learning results on RefSR models.

Model Method

Similarity

XL L M H XH

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

SRNTT [33] Pre-trained 25.14 0.729 0.2476 25.07 0.720 0.2410 25.06 0.728 0.2354 25.13 0.734 0.2294 25.17 0.734 0.2099

SRNTT-`2 [33] Pre-trained 25.87 0.757 0.2949 25.88 0.758 0.2916 25.90 0.758 0.2893 25.97 0.760 0.2856 26.06 0.765 0.2758

SSEN [20] Pre-trained 26.156 0.768 0.2979 26.151 0.768 0.2980 26.149 0.768 0.2979 26.154 0.768 0.2977 26.152 0.769 0.2976

DLR
r 26.109 0.764 0.2879 26.107 0.764 0.2881 26.116 0.764 0.2889 26.108 0.764 0.2883 26.112 0.764 0.2884

DPse
r 26.434 0.774 0.2951 26.459 0.775 0.2946 26.480 0.775 0.2944 26.480 0.775 0.2940 26.527 0.777 0.2930

Ours + DRe f 1
r 26.226 0.767 0.2931 26.206 0.768 0.2925 26.241 0.768 0.2921 26.284 0.769 0.2903 26.276 0.770 0.2895

SSEN [20] DRe f 2
r 26.343 0.771 0.2946 26.383 0.772 0.2936 26.475 0.774 0.2920 26.509 0.775 0.2911 26.675 0.780 0.2874

DLR
r + DRe f 1

r 26.205 0.767 0.2852 26.206 0.767 0.2856 26.221 0.767 0.2854 26.261 0.768 0.2843 26.257 0.769 0.2946

DPse
r + DRe f 2

r 26.392 0.773 0.2955 26.460 0.774 0.2942 26.475 0.774 0.2946 26.505 0.775 0.2935 26.568 0.777 0.2924

TTSR-rec [21] Pre-trained 26.586 0.783 0.2825 26.623 0.785 0.2800 26.685 0.787 0.2782 26.787 0.789 0.2759 27.039 0.799 0.2653

DLR
r 26.407 0.775 0.2711 26.455 0.776 0.2689 26.502 0.778 0.2675 26.579 0.780 0.2643 26.812 0.788 0.2545

DPse
r 26.822 0.786 0.2815 26.866 0.788 0.2792 26.937 0.790 0.2782 27.027 0.791 0.2760 27.337 0.801 0.2663

Ours + DRe f 1
r 26.540 0.778 0.2791 26.563 0.781 0.2757 26.622 0.782 0.2750 26.769 0.785 0.2712 26.986 0.794 0.2614

TTSR-rec [21] DRe f 2
r 26.658 0.782 0.2818 26.717 0.785 0.2788 26.836 0.787 0.2757 26.959 0.790 0.2730 27.383 0.802 0.2578

DLR
r + DRe f 1

r 26.497 0.777 0.2696 26.522 0.779 0.2668 26.592 0.780 0.2660 26.698 0.782 0.2635 26.900 0.790 0.2529

DPse
r + DRe f 2

r 26.845 0.786 0.2816 26.877 0.788 0.2796 26.980 0.790 0.2780 27.056 0.792 0.2760 27.400 0.801 0.2663
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4.3. Empirical Analyses

• Reference Similarity

We first analyze the effect of similarity of reference images on online learning. The
CUFED5 dataset [33] provides five similarity levels, from the lowest (i.e., XL) to the highest
(i.e., XH), depending on the content similarity between the reference and LR images.
For both SISR and RefSR models, performance improvement is proportional to the level
of similarity, and the best performance is obtained with the reference with the highest
similarity XH. This result is expected, because XH reference images contain a large amount
of real high-frequency details closely related to the lost details of LR images. Therefore,
online learning with XH reference images can train baseline models with strong and
relevant HR guidance. On the contrary, the amount of relevant information is reduced with
decreasing similarity of the reference images; therefore, performance improvement also
decreases, as shown in Tables 3 and 4.

• Pseudo HR vs. LR for Supervision

For RefSR online learning for SISR models in Table 3, we can compare two results
by DLR

s + DRe f
s and DPse

s + DRe f
s . With high similarity levels (i.e., XH and H), DLR

s + DRe f
s

shows better performance while DPse
s + DRe f

s works better for low similarity levels (i.e., M,
L, and XL). For XH and H reference images, baseline networks can exploit highly relevant
information from them, as we inspected. However, the role of DRe f

s is weakened with
irrelevant reference images, while that of the combined data, DLR

s or DPse
s , is relatively

emphasized. Therefore, the performance improvement from DRe f
s combined with DPse

s is
superior, thanks to the knowledge from a pre-trained model (i.e., DPse

s ), compared to the
self-supervision (i.e., DLR

s ). Meanwhile, for RefSR online learning for RefSR models, fine-
tuning with ĪHR achieves better overall performance than fine-tuning with ILR. In other
words, for all similarity levels, DPse

r + DRe f 2
r shows better performance than DLR

r + DRe f 1
r ,

as reported in Table 4. The reason for this is that ĪHR has a relatively similar resolution
to IRe f than ILR; thus, it is much easier to align and combine with the information in the
reference image.

• Non-Bicubic Degradation

We further validate our algorithm with a LR image with non-bicubic degradation
for both RCAN (SISR) and TTSR (RefSR) models. For non-bicubic ×4 degradation, we
have utilized isotropic (gw) and anisotropic (gani) Gaussian kernels of width w with direct
(gd) and bicubic (gb) subsampling methods presented in MZSR [36]. Table 5 shows that
RCAN and TTSR pre-trained with bicubic degradation produce inferior SR results because
they cannot handle non-bicubic degradation. However, RCAN and TTSR models can
achieve substantial performance gains with the proposed online learning if the non-bicubic
degradation model is given during the online learning (i.e., Non-blind). Moreover, RCAN
and TTSR can be improved during the online learning in a blind manner that is conducted
using each input obtained by downsampling with a random kernel [36]. Figure 2 shows
qualitative non-bicubic comparisons between existing methods and ours. Therefore, we
conclude that the proposed method can handle any type of degradation (i.e., bicubic
and non-bicubic), regardless of the awareness of the degradation kernel (i.e., blind and
non-blind).
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(a) (b) (c) (d) (e) (f) (g)

Figure 2. Qualitative comparison of RefSR methods on the non-bicubic CUFED5 datasets. From the
top, each kernel (gd

0.2, gd
2.0, gd

aig ,gb
1.3) was used. (a) GT images. (b) RCAN [7]. (c) Ours + RCAN [7].

(d) GT images. (e) TTSR [21]. (f) Ours + TTSR [21] using DRe f 1
r . (g) Ours + TTSR [21] using DRe f 2

r .
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Table 5. Online learning results with non-bicubic degradation.

Model Kernel Blind Method PSNR SSIM LPIPS Model Kernel Blind Method PSNR SSIM LPIPS

gd
0.2

- Pre-trained 18.754 0.534 0.4068

gd
0.2

- Pre-trained 18.538 0.521 0.4142

Non-blind DLR
s + DRe f

s 24.335 0.726 0.3035 Non-blind DRe f 1
r 23.565 0.694 0.3431

DRe f 2
r 24.155 0.720 0.3239

gd
2.0

- Pre-trained 21.387 0.606 0.3771

gd
2.0

- Pre-trained 20.706 0.586 0.3541

Non-blind DLR
s + DRe f

s 26.263 0.772 0.2665 Non-blind DRe f 1
r 25.436 0.741 0.2891

DRe f 2
r 26.105 0.765 0.2838

Ours+

gd
ani

- Pre-trained 21.364 0.593 0.3639 Ours+

gd
ani

- Pre-trained 21.269 0.590 0.3633

EDSR [5] Non-blind DLR
s + DRe f

s 26.164 0.765 0.2764 SSEN [20] Non-blind DRe f 1
r 25.213 0.728 0.3062

DRe f 2
r 25.882 0.753 0.2953

gb
1.3

- Pre-trained 25.595 0.741 0.3288

gb
1.3

- Pre-trained 25.522 0.740 0.3273

Non-blind DLR
s + DRe f

s 26.655 0.780 0.2663 Non-blind DRe f 1
r 26.010 0.758 0.2773

DRe f 2
r 26.569 0.778 0.2789

-

- Pre-trained 21.896 0.608 0.3892

-

- Pre-trained 21.836 0.606 0.3881

Blind DLR
s + DRe f

s 24.354 0.697 0.3459 Blind DRe f 1
r 23.953 0.676 0.3654

DRe f 2
r 24.201 0.685 0.3608

gd
0.2

- Pre-trained 17.938 0.497 0.4111

gd
0.2

- Pre-trained 18.415 0.524 0.4039

Non-blind DLR
s + DRe f

s 24.532 0.737 0.2910 Non-blind DRe f 1
r 23.489 0.688 0.3423

DRe f 2
r 24.168 0.717 0.3232

gd
2.0

- Pre-trained 21.131 0.597 0.3335

gd
2.0

- Pre-trained 21.211 0.609 0.3127

Non-blind DLR
s + DRe f

s 26.545 0.783 0.2586 Non-blind DRe f 1
r 25.911 0.760 0.2647

DRe f 2
r 26.561 0.784 0.2624

Ours+

gd
ani

- Pre-trained 21.198 0.587 0.3609 Ours+

gd
ani

- Pre-trained 21.199 0.596 0.3367

RCAN [7] Non-blind DLR
s + DRe f

s 26.414 0.775 0.2679
TTSR-
rec [21] Non-blind DRe f 1

r 25.512 0.741 0.2841

DRe f 2
r 26.199 0.768 0.2754

gb
1.3

- Pre-trained 25.484 0.738 0.3314

gb
1.3

- Pre-trained 26.147 0.767 0.2912

Non-blind DLR
s + DRe f

s 26.909 0.790 0.2597 Non-blind DRe f 1
r 26.599 0.781 0.2471

DRe f 2
r 26.989 0.796 0.2471

-

- Pre-trained 21.798 0.606 0.3914

-

- Pre-trained 21.820 0.615 0.3603

Blind DLR
s + DRe f

s 24.277 0.692 0.3480 Blind DRe f 1
r 23.928 0.672 0.3535

DRe f 2
r 24.010 0.684 0.3461

5. Conclusions

We have proposed an online learning algorithm for RefSR to exploit various types of
data for network adaptation in the test stage. The proposed method has brought significant
performance improvements to both SISR and RefSR models without introducing any
additional network parameters. Specifically, various types of data pairs are proposed using
input LR, pseudo-HR, and reference HR images, and the role of each data pair is verified
with different similarity levels of the reference images. Extensive experimental results
demonstrate the validity, efficiency, and versatility of the proposed algorithm.
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