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Abstract: Physical Unclonable Functions (PUFs) are promising security primitives for resource-
constrained IoT devices. A critical aspect of PUF security research is to identify all potential security
risks. This information about vulnerabilities is beneficial for both PUF developers and PUF-using
application developers in terms of designing new PUFs to mitigate existing risks and avoid vulnerable
PUFs. Recently, a PUF structure called Interpose PUF (IPUF) was proposed, which claims to be
resistant to reliability attacks and machine learning modeling attacks. Related studies on this secure
PUF design have demonstrated that some IPUFs can still be broken, but large IPUFs may remain
secure against all known modeling attacks. In addition, all these studies either focus on plain
challenge–response pair attacks or require prior knowledge of IPUF architecture implementation.
However, depending on the claim of attack resistance to reliability attacks, we can employ a different
attack approach to break IPUFs. In this paper, we describe a subspace pre-learning-based attack
method that can rapidly and accurately break the IPUFs that were treated as secure in the earlier
study, revealing a vulnerability in IPUFs if the open interface conforms to the way challenge–response
data are accessed by the subspace pre-learning-based attack method.

Keywords: IoT security; physical unclonable function; interpose PUF; machine learning modeling attack

1. Introduction

The Internet of Things (IoT) has wide and deep participation in business and everyday
life. With the exponential rise of IoT requirements, communication security has attracted
increased attention [1]. However, considering most traditional cryptographic techniques,
which require persistent memory to achieve the desired level of security, many IoT devices
are resource-constrained and cannot support traditional cryptographic protocols [2,3]. Phys-
ical Unclonable Functions (PUFs) were proposed as a potential replacement for classical
cryptography in IoT devices [4–6], leveraging small physical variations of a small number
of transistors to produce responses unique to the individual circuit. Because of their low
resource requirements, PUFs are excellent candidates for hardware primitives that can be
utilized to construct security protocols on network nodes with limited resources.

However, before adopting PUFs as a trusted security function, they must be examined
to identify all possible security vulnerabilities, such as vulnerabilities to machine learning
(ML) modeling attacks [7–10] and reliability-based attacks [11,12]. In machine learning
modeling attacks, the attacker eavesdrops on-air packets between IoTs in order to collect
enough plain challenge–response pairs (CRPs) to build a model. Then, the attacker inputs
the collected challenges, as features, and responses, as class labels, into an ML model
targeted at having a learned model for future response prediction. In reliability-based
attacks, the attacker applies pre-set challenges to the PUF with an open interface and
collects specific CRPs. Furthermore, CRPs obtained through freely queried can be easily
used to break PUFs by utilizing the reliability information of these CRPs.

Interpose PUF (IPUF) is proposed by Nguyen et al., [13] to mitigate the two above-
mentioned classes of attack. Studies in [8,13] show IPUFs could withstand various existing
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attack methods. However, IPUFs with open interfaces are the target of a recent attack
method [14] that has been able to crack many IPUFs if the position of the interpose bit
is known to the attacker in advance. Furthermore, a more recent study [15] found that,
using an NN-based method, it is possible to break (7,7)-IPUFs with the interpose bit at any
position and without an open interface. These two studies reveal the vulnerability of IPUFs,
but either study requires prior knowledge of the IPUF architecture, and they do not focus
exclusively on plain challenge–response pairs without leveraging open-interface data. As a
result, there is considerable potential for further research into the vulnerability of IPUFs.

In this paper, we describe a subspace pre-learning method to attack IPUFs. Specifically,
we first utilize pre-set and problem-tailored subspace training datasets to pre-train an NN
attacking model. Then, the pre-trained model is fine-tuned by a whole space training
dataset to break the target IPUF instance. Experimental results show that this subspace
learning method remarkably reduces the required training CRPs and required training
times compared with early studies on our tested open-interfaced IPUFs. For example,
our method only needs 300 k CRPs to break (1,5)-IPUFs, while 1 m CRPs were needed in
previous study; our method needs 1.5 h to break (1,7)-IPUFs, while 17 hrs were needed
in previous study, etc. Additionally, this attack method is capable of breaking (1,8)-IPUFs
and (8,8)-IPUFs without prior knowledge about the position of the interpose bit, while
previous research could only break (1,7)-IPUFs and (7,7)-IPUFs. Although our method
does not fully break the IPUF for all conceivable sizes and complexity yet, it reveals a
vulnerability in IPUFs if the IPUF-embedded device has an interface that enables people to
access challenge–response data.

The remainder of this paper is organized as follows: Section 2 gives a general overview
of PUF mechanisms. Section 3 explains the subspace pre-learning method we implemented
to break IPUFs. The experiment and its results are presented in Section 4. Finally, conclud-
ing remarks are given in Section 5.

2. Background Information on PUFs

In order to clarify technical discussions in later sections, we will briefly describe the
mechanism of the arbiter PUF, XOR-PUF, and IPUF in this subsection.

2.1. The Arbiter PUFs

Figure 1 shows a case of an arbiter PUF with n bits of challenge. An n-bit arbiter PUF
is made up of n stages, each with two multiplexers (MUXs). When a rising signal is given,
the signal enters the arbiter PUF from stage one and splits into two signals. The two signals
are routed through gates at each stage, and the propagation paths to the multiplexers at
each stage are determined by the challenge bit. Finally, two signals reach the D flip-flop,
which acts as an arbiter to determine whether the signal on the top path or the signal on
the lower path arrives first. If the top path signal arrives first, the D flip-flop returns 1;
otherwise, it returns 0.

Figure 1. An arbiter PUF with n bits of challenge.
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2.2. The XOR Arbiter PUFs

Due to the weak resistance of arbiter PUFs to ML modeling attacks, a new PUF was
proposed in [16] that utilized a nonlinear XOR gate in conjunction with multiple arbiter
PUFs to generate the final response. This type of PUF is known as the XOR arbiter PUF. The
simple case of one n-bit 2-XOR-PUF is illustrated in Figure 2. A k-XOR-PUF is composed
of k component arbiter PUFs (also referred to as streams or sub-challenges) in which the
responses of all k component arbiter PUFs are XORed at an XOR gate to produce a single
bit response.

Figure 2. Illustration of an XOR-PUF with two arbiter PUF components and n bits of each stream; the
final response is determined by the XORed result of two arbiter PUF components.

According to [17,18], XOR-PUFs are more resistant to modeling attacks than arbiter
PUFs. When combined with lockdown scheme mutual authentication [2] to eliminate the
open-access interface, all modeling attacks developed to date have been unable to crack the
XOR-PUF within the limited number of available CRPs. Nonetheless, recent studies [19,20]
demonstrated that, for 64-bit XOR-PUFs with nine or fewer component arbiter PUFs, there
are attack methods capable of cracking and predicting the responses of such PUFs with a
prediction accuracy of around 98 percent. Increasing the number of streams and challenge
stages, on the other hand, increases the cost and power consumption of a PUF, which is a
critical consideration for resource-constrained IoT devices. Additionally, as the number of
streams increases, the reliability of PUFs decreases and the risk of reliability-based attacks
increases [11].

2.3. The Interpose PUFs

An (x,y)-IPUF is constructed from an x-XOR PUF and a y-XOR PUF, with the output of
the x-XOR PUF serving as a challenge bit in the y-XOR PUF. An (x,y)-IPUF is constructed
by combining an Xup-XOR PUF and a Ydown-XOR PUF. By adding the interpose bit as
a challenge bit to the second XOR PUF, the Ydown-XOR PUF has exactly one more stage
than the Xup-XOR PUF. Figure 3 illustrates a schematic representation of IPUF. The IPUF
has demonstrated to be secure against both the reliability-based attacks [11] and machine
learning modeling attacks. Additional research [8] discovered that IPUFs composed of
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small component XOR PUFs are vulnerable to a neural network-based attack method.
Wisiol et al. [14] demonstrated that (1,9)-IPUFs or (8,8)-IPUFs can be broken when the
attacker is aware of the interpose position in the IPUF. However, the attackers must obtain
the information that has been interposed in this type of attack. Recent research [15] has
demonstrated that, regardless of the interpose position, a more recent attack method is
capable of cracking IPUFs without an open interface. This attack method is capable of
breaking IPUFs with a length of (1,7) or (7,7).

Figure 3. Schematic representation of Interpose PUFs.

3. Subspace Pre-Learning for IPUFs

Using a neural network-based method without an open interface, the (1,7)-IPUFs
and (7,7)-IPUFs have been successfully broken as described in [15]. We attempted the
same method with larger IPUFs, such as (1,8)-IPUFs and (8,8)-IPUFs, but were unsuc-
cessful. When the IPUF was proposed and claimed to be immune to reliability attacks,
the assumption was that IPUFs do not require a lockdown protocol [2] to prevent open
interfaces from being used by reliability attacks, and freely queried CRPs can be utilized
for attacking IPUFs. As a result, the attack methods against the PUF with an open interface
are not limited to simple challenge–response pair attacks. For attacking the IPUF with
an open interface, Wisiol et al. [14] reported a reliability-based attack method that could
“split” and break IPUFs more efficiently by targeting open-interfaced IPUFs. However, this
attack method requires knowing the position of the interpose bit, which is an addition to
prior knowledge of the IPUF implementation. As for attacking other types of PUFs with
open interfaces, Asseri et al. [12] reported success with a subspace pre-learning attack on
open-interfaced component-differential challenged XOR-PUFs, which makes use of the
open-interface CRPs to reduce training complexity as well as speed up the training process.
Therefore, we are motivated to develop a pre-learning subspace attack approach based on
the open interface IPUF.

Our subspace pre-learning attack method, which makes use of multiple sets of training
data, each from a subspace with a much lower dimension than the entire challenge space,
trains the PUF model restricted to each subspace using the same neural network model. As
a result of this learning, the parameters of the PUF model learned in one subspace were
passed as initial weight parameters for the learning of the subsequent subspace, which
means that the learning results from the subspace pre-learner on the PUF are transferred
onto the next subspace’s pre-learner. Finally, the trained neural network weights from the
pre-learning approach were input into the full space learner, which was the last step in
the process. In addition, pre-training the NN model by subspace training datasets across
the whole challenge space could devise rapidly estimable for the initial weights of the NN
model parameters. In addition, in this way, we can speed up the attack in the final round in
the whole challenge space.

In greater detail, this new pre-learning machine learning method is described in
Algorithm 1. For an (x,y)-IPUF with k challenge bits, our proposed subspace pre-learning
method includes three rounds of training. Firstly, we generate k/m training datasets
and m is a pre-defined constant. There are m consecutive challenge bits that are totally
randomly generated, and the rest of the k-m bits of the challenges are fixed. The positions of
unfixed consecutive challenge bits are different, and there is no overlap in each subset—for
example, for an IPUF with a 64-bit challenge, and we set m to 8. In the first round, we
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generate eight different subspace training datasets, and the [0:7] bits in the 64-bit challenge
are randomly generated in the first subspace dataset. [8:15] bits and [16:23] bits are also
randomly generated for the second and third datasets, etc. The rest 56 challenge bits are
fixed within subspace training datasets.

Algorithm 1: Subspace pre-learning attack method.

Data: Whole space CRP set: S;
Subspace CRP set in round one: S1;
Subspace CRP set in round two: S2;
NN model weight parameters: W;
initialize S,S1,S2 and W;
Function attack_method();
if Round ≤ 2 then

model_training(W, S1);
model_training(W, S2)

else
model_training(W, S)

end
Function model_training(W, S);
if Accuracy ≤ 98% then

Feed S into NN model with weight W;
Accuracy = Evaluate(W, S)

end

In the second round, we generate k/m different training datasets and set the length
of unfixed consecutive challenge bits to m × 2 while maintaining their different positions
in each subset. The size of the dataset in the second round is larger than it was in the first
round. Because the subspaces have much lower dimensionality, the model restricted to
each subspace can be learned very quickly; however, the model learned on subspaces is
not highly accurate in the entire space. Therefore, we need round three with the learning
from the first two rounds as pre-learners for the whole space learning. An overview of the
first two training rounds is given in Figures 4 and 5.

Figure 4. An overview of the first-round pre-learning. The challenge bits of a subset in color are
randomly generated, and the rest of the bits are fixed.
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Figure 5. An overview of the second-round of pre-learning The challenge bits of two subsets in color
are unfixed, and the rest of the bits are fixed.

4. Experimental Studies
4.1. Generating CRP from a Simulator

In the experiments, we used a simulator that is based on the Pypuf library [20]. For
each IPUF architecture setting, we generate 20 different simulated 64-bit IPUF instances
and 150 million CRP for each instance as the whole training space. As for the length of each
training subset, for an (x,y)-IPUF, if x + y ≤ 9, we assign m to 8; if x + y > 9, we assign
m to 16. In addition, we generate 2 m CRP (up to 1 million) for the first-round subspace
training dataset and 10 × 2 m (up to 8 million) CRP for the second-round subspace training
dataset. The generated PUF instances are all from the normal distribution, with a mean of 0
and a standard deviation of 1, and no noise value was added. In addition, the interpose
position is random, and this information is not used in our modeling attack method.

4.2. Experiment Setup

In the experiments, we chose the NN-based method used by Thapaliya et al. [15]
as the baseline method as well as the base learner method for the subspace pre-learning
approach. This NN-based method contains three hidden layers and uses tanh as the
activation function. In addition, this baseline NN-based method could break (1,7)-IPUFs
and (7,7)-PUFs with 6 million CRP (without open interface). The parameters of the NN
attack method we used are exactly the same as the method used by Thapaliya et al. to
evaluate the performance. For the convenience of reading, the parameters are listed in Table
1. The experiments employ a 10–90 testing–training split, with 1% CRP from the training
set used for validation. The code is all implemented in Python using the TensorFlow and
Keras ML libraries [21,22]. Furthermore, the maximum number of CRP generated from
the simulator is 150 million; experiments stop when the testing cannot converge with the
maximum number of available CRP.

Table 1. Parameters of the NN attack method for (x,y)-IPUFs.

Parameters Description

Optimizing Method ADAM

Output Activation Function Sigmoid

Learning Rate Adaptive
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Table 1. Cont.

Parameters Description

Layer Size

Layer1 = 128

Layer2 = 64

Layer3 = 128

Loss Function Binary cross entropy

Batch Size

First round: 1k

Second round: 10k

Whole space: 10y−1

Kernel Initializer Random Normal

Early Stopping True, when validation accuracy is 98%

4.3. Experimental Results and Discussion

The experimental results of the ML modeling attack on IPUFs with the proposed
subspace pre-learning approach are listed in Table 2. The results of the general NN-based
modeling attack method [15] without open interface on IPUFs, and the results of reliability-
based attack method [14] with known interpose bit position are also added to verify the
performance of our proposed method. The “Security Evaluator” column indicates the
attacking method we used for each testing result row, and only testing accuracy higher than
85% is considered a successful attack. The method “A” in the table refers to the method
implemented by Thapaliya et al. [15]. The method “B” in the table refers to the method
implemented by Wisiol et al. [14]. Method “C” refers to the subspace pre-learning method.

Table 2. Experimental results on attacking the IPUF dataset (Method “A” refers to the method in [15].
Method “B” refers to the method in [14]. Method “C” refers to the proposed subspace pre-learning method).

Number of
Stages (x,y)-IPUF Security

Evaluator
Training

Size
Average
Accuracy Training Time Success Rate

64 bits

1,5

A 1 m 99% 2 min 80%

B 500 k 95% 9 min 100%

C 300 k 99% 1 min 90%

1,6

A 2 m 96% 15 min 80%

B 2 m 95% 1.5 h 100%

C 1 m 99% 10 min 90%

1,7

A 6 m 96% 45 min 60%

B 20 m 96% 20 h 100%

C 4 m 99% 30 min 80%

1,8

A 150 m No convergence 48 h 0%

B - - - -

C 100 m 93% 5 h 80%

5,5

A 1 m 88% 10 min 80%

B 1 m 95% 15 min 98%

C 600 k 94% 3 min 90%
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Table 2. Cont.

Number of
Stages (x,y)-IPUF Security

Evaluator
Training

Size
Average
Accuracy Training Time Success Rate

64 bits

6,6

A 5 m 88% 2 h 50%

B 5 m 95% 2.5 h 75%

C 3 m 93% 40 min 80%

7,7

A 8 m 87% 2 h 50%

B 40 m 95% 17 h 74%

C 6 m 92% 1.5 h 80%

8,8

A 150 m No convergence 48 h 0%

B 150 m 95% 1.5 weeks 35%

C 120 m 91% 30 h 60%

The results show that, first and foremost, the simple NN attacking method (method
“A” in the table) succeeds in breaking the IPUF smaller than (1,8)-IPUFs or (8,8)-IPUFs
within a given number of CRPs. However, for the IPUF with a larger size, the simple
NN attacking method failed at 100 million training CRPs. In addition, the accuracy result
coming from the method “A” is even lower than 90% when x > 1. Note that this number of
required CRP is for a no-open interface.

As seen in Table 2, our pre-learning-based attack method significantly reduces the
required number of CRP and required training time compared to the baseline method. For
example, 300k CRPs are required to break 64-bit (1,5)-IPUFs by the subspace pre-learning
method, while 1 million CRPs are required by the method “A” and 500 k CRPs are required
by the method “B”. In addition, the required number of CRP to break 64-bit (5,5)-IPUFs by
the subspace pre-learning method is 600k, which is much smaller than the 1 million in the
two comparison methods.

Moreover, the average accuracy of our proposed method is much higher than the
average accuracy of method “A”. In addition, for the IPUFs, the baseline method failed
to break, (1,8)-IPUFs or (8,8)-IPUFs, and our subspace pre-learning-based attack method
successfully breaks them with 100 million or 120 million. Compared with method “B”,
our method requires less CRP and significantly reduces the required training times, which
is more efficient targeting the large-size IPUFs. For the IPUFs with a further larger size,
like (9,9)-IPUFs, training set size and our Python code exceed the available memory of the
computer node so that we stopped at (8,8)-IPUFs.

5. Conclusions

In this paper, we described a subspace pre-learning attack method for the IPUFs with
an open interface. Unlike earlier studies on the vulnerabilities of IPUF either required prior
knowledge of the IPUF architecture or only focused on plain challenge–response pairs
without leveraging open-interface information, our method makes use of the IPUFs’ open
interface and does not require any prior knowledge of IPUF architecture. The method we
employed could benefit from the pre-learning by subspace training datasets and speed
up the attacking on the whole challenge space. When compared to previously published
results, our study discovered a vulnerability in the IPUF with PUF circuit parameter values
that were previously deemed secure. In particular, our method could break 64-bit (1,5)-
IPUFs with 300 k CRPs and break 64-bit (5,5)-IPUFs with 600 k CRPs. We also could break
64-bit (1,8)-IPUFs with 100 m CRPs and break 64-bit (8,8)-IPUFs with 120 m CRPs. Both
of these performances are superior to any earlier attack methods in the required number
of CRPs or required training time, indicating that such IPUFs may be vulnerable if they
have an interface that conforms to the way challenge–response data are accessed by our
subspace pre-learning-based attack method. Importantly, this subspace pre-learning attack
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method provides PUF manufacturers and IoT security application developers with valuable
information for the protocol of current IPUF-based applications to mitigate potential risks.
Our work does not fully break the IPUF for all conceivable sizes and complexity yet;
however, future research could continue to explore the vulnerability of IPUFs with larger
sizes and complexity by further utilizing the open interface of IPUFs.
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