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Abstract: This paper presents a tunable bandpass filter (BPF) with constant absolute bandwidth
(CABW) and switchable properties. The BPF is performed by using a tri-mode cross-shape resonator
(CSR) loaded with varactors. The CABW and switchable ability are achieved by adjusting the
resonant frequencies. Meanwhile, the two transmission zeros (TZs) produced by center-loaded stubs
strengthen the skirt selectivity in the on-state and the isolation in the off-state. For demonstration,
a tri-pole switchable BPF with three control voltages is implemented and verified, and the control
mechanism is simple. In the on-state, it exhibits a 120 MHz, 3 dB CABW with the measured insertion
loss (IL) of 2.2–2.5 dB in the tuning range of 0.816–1.188 GHz. In the off-state, the measured isolation
is better than 27 dB.

Keywords: tunable; CABW; BPF; switchable; CSR

1. Introduction

Modern wireless communication systems require multifunctional RF front-ends in
which reconfigurable filters play an essential role for easy integration. Additionally, a
number of filters with tunability of center frequency (CF), bandwidth (BW) or TZs have
been reported [1–7]. Furthermore, reconfigurable filters with switchable ability have
attracted the attention of researchers since they are able to form switched filter banks and
expand the tuning range of the filter [8–11].

By utilizing pin diodes as switches to tunable BPFs, a BPF which can switch the low-
or high-tunable passband in on-state is proposed in [11], and a BPF which can switch the
tunable passband in the on- or off-state is proposed in [12]. However, the use of pin diodes
will make the design bulky and the control complex. To overcome this problem, intrinsically
switched tunable BPFs are proposed, and the switching function is performed by using
the filters’ own tuning elements without additional switches. Through controlling the
coupling coefficients between resonators to be zero [9,10,13], adjusting the TZs to suppress
the passband [14–16], and employing transversal filter structures based on multimode
resonators and modifying the resonant frequencies of odd- and even-mode to be the
same [17,18], the tunable filters have the ability to switch the passband in the off-state.

On the other hand, the tunable BPFs with CABW property, which can replace a
number of fixed filters and reduce the size of the communication systems, have also at-
tracted lots of attention. By compensating the coupling coefficient with the inter-resonator
varactors [19–21], choosing a proper coupling region [22,23], and maintaining the sep-
aration between resonant frequencies [18,24], tunable BPFs with CABW property have
been reported.

In this letter, a tunable CABW BPF with switchable ability is proposed based on a
novel CSR. The tunable CABW is accomplished by adjusting the resonant frequencies
and maintaining their separations simultaneously. Moreover, the switchable ability of the
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passband is achieved by using its transversal filter structure. By utilizing the transmission
zeros of the resonator, the skirt selectivity of the on-state and the isolation of the off-state are
improved [25]. As a demonstration, a prototype of a switched tunable 120 MHz 3-dB CABW
BPF with a tuning range of 0.816–1.188 GHz is developed and characterized. Experimental
and simulated results are in good agreement.

2. Filter Design and Analysis
2.1. Analysis of CSR

The proposed tri-mode CSR shown in Figure 1a consists of a half-wave resonator and
two shunt stubs, where Y1, Y2 and Y3 are the characteristic admittances and θ1, θ2 and θ3
are the electrical lengths. For tuning the resonant frequencies, three types of varactors (C1,
C2 and C3) are added in the resonator.
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Figure 1. (a) Proposed CSR; (b) Odd-mode equivalent circuit; (c) Even-mode equivalent circuit.

Due to the symmetrical structure, the odd- and even-mode equivalent circuits can be
expressed as shown in Figure 1b,c, respectively [26]. The input admittances of the proposed
resonator can be derived as follows.

For odd-mode
Yo = −jY1cotθ1 + j2πfC1, (1)

The odd-mode resonant frequency f o can be determined according to Im (Yo) = 0.
For even-mode

Ye1 = −jY1cotθ1 × 2πfC1/(−Y1cotθ1 + 2πfC1), (2)

Ye2 = Y2 (j2πfC2 + jY2tanθ2)/(2Y2 − 4πfC2tanθ2), (3)

Ye3 = Y3 (j2πfC3 + jY3tanθ3)/(2Y3 − 4πfC3tanθ3), (4)

Ye = Ye1 + Ye2 + Ye3, (5)

The two even-mode resonant frequencies f e1 and f e2 can be deduced by Im (Ye) = 0.
Based on Equations (1)–(5), Figure 2 shows the tuning range of f o with variation of

C1, and Figure 3 plots the f o, f e1 and f e2 dependence on C2 and C3 for C1 = 1 pF. It can
be observed that the odd-mode resonant frequency f o is only controlled by C1, and the
even-mode resonant frequencies f e1 and f e2 are varied around f o by tuning C2 and C3
when C1 is fixed, that is to say, the specified frequency space between f e1/e2 and f o can be
obtained by tuning C2 and C3. Note that there is a set of C2 and C3 makes f e1 = f o = f e2 for
fixed C1 (f o), and this feature can be used for switching off the passband, which will be
discussed in Section 2.2.
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2.2. Coupling Matrix Analysis

Figure 4 shows the transversal topology architecture of the proposed filter, which
consists of a tri-mode CSR, source, load and external quality factor Qe. The denormalized
coupling matrix can be expressed as [18]

[m∆] =

 me1e1 0 0
0 moo 0
0 0 me2e2

, (6)

where me1e1/oo/e2e2 = f d/f e1/o/e2 − f e1/o/e2/f d, f d is the frequency-mapping element.
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The external quality factor can be expressed as [27]

Qe = (Qexe1 + Qexe2 + Qexo)/3, (7)

Qexe1/exe2/exo = f e1/e2/o/∆f e1/e2/o±90◦ , (8)

where Qexe1/exe2/exo and ∆f e1/e2/o±90◦ are the external quality factor and BW of the three
resonant modes, respectively.

By separately tuning the parameters of the coupling matrix and Qe, the theoretical
response curves with f d = 1 GHz are given in Figures 5–7 [18,28]. Figure 5 displays the
theoretical response curves varying me1e1, moo and me2e2 considering a fixed Qe = 28. As
can be seen, center frequency tuning behavior with CABW property can be obtained by
purposely changing the variable elements in the coupling matrix. As shown in Figure 6, the
specified 3 dB BW can be achieved by adjusting the frequency space between f e1/e2 and f o,
and BW3dB ≈ f e2 − f e1 when f e2 > f o > f e1. In particular, when me1e1 = me2e2 = moo = 0 (i.e.,
f e1 = f o = f e2), the passband is switched off. Figure 7 illustrates the calculated frequency
responses when Qe is tuned from 40 to 10 but the elements of the coupling matrix are fixed
as me1e1 = −me2e2 = 0.15 and moo = 0. The return loss (RL) of the passband increases when
Qe decreases, and the 3 dB BW of the passband is almost independent of Qe when Qe varies
from 40 to 20, but as Qe continues to decrease, the 3 dB BW becomes narrower and cannot
be estimated as f e2 − f e1. As a conclusion, the specified BW and off-state of the passband
can be controlled by f e1, f o and f e2, and a range of Qe provide controllable BW with a RL of
the passband better than a certain value.
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2.3. Analysis of TZs

The two shunt stubs taped with C2 and C3 can produce two TZs, respectively. The
input admittances of the two stubs are as below.

Yd = Y2 (j2πfC2 + jY2tanθ2)/(Y2 − 2πfC2tanθ2), (9)

Yu = Y3 (j2πfC3 + jY3tanθ3)/(Y3 − 2πfC3tanθ3), (10)

The frequencies of the two TZs f z1 and f z2 can be deduced by Y2 − 2πfC2tanθ2 = 0,
and Y3 − 2πfC3tanθ3 = 0, respectively [29]. As can be seen, f z1 and f z2 are controlled by C2
and C3, respectively.

In Figure 8, the weak coupling transmission responses are investigated when Y1 =
Y2/2 = Y3/2 = 1/75 S, θ1 = 65◦, θ2 = 60◦ and θ3 = 35◦ at 1 GHz. Seen from Figure 8, the
condition of f z1 < f e1 < f o < f e2 < f z2 can be realized, and the two TZs can be utilized to
improve the out-of-band rejection. By increasing C2 and decreasing C3, the BW (f e2 − f e1)
becomes narrower and the two TZs follow the variations of f e1 and f e2. When f e1 = f o = f e2
is realized by tuning C2 and C3, the two TZs are also tuned to the same frequency as f o and
can be used to enhance the isolation of the off-state.
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2.4. Schematic Diagram of the Filter and the External Quality Factor

Figure 9 presents the schematic diagram of the reconfigurable BPF based on the CSR
proposed in this paper. The BPF consists of a CSR and a pair of feedlines. The three resonant
modes of the CSR are utilized to form the three poles of the filter, and the two transmission
zeros of the CSR are used to improve the skirt selectivity of the filter in on-state and the
isolation in off-state. The variable capacitors are realized by varactors, and several lumped
components are employed for DC blocks (Cb = 30 pF) and DC bias (Rb = 10 kΩ). The
voltages V1, V2 and V3 are utilized to tune the capacitances of the varactors. Due to the
influence of Cb, the relationship between Ci in Figure 1 and Cvi (i = 1, 2, 3) in Figure 9 are
C1 = Cv1, C2 = CbCv2/(Cb + Cv2) and C3 = CbCv3/(Cb + Cv3).
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Based on the discussion in Section 2.2, the desired Qe for realizing a BPF with 120 MHz
3 dB BW in the frequency range of 0.8–1.2 GHz is illustrated in Figure 10, where Qemax
is the maximum external quality factor, with which the RL of the passband is better than
10 dB, and Qemin is the minimum external quality factor, with which the 120 MHz 3 dB BW
of the passband can be estimated by f e2 − f e1. Therefore, Qe between Qemin and Qemax can
be utilized to realize a passband with following characteristics: dB|S11| < −10 dB and
BW3dB ≈ f e2 − f e1 = 120 MHz.
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Figure 10. Desired and extracted Qe.

Qe curves with different distance s in the frequency range of 0.8–1.2 GHz are extracted
by Equations (7) and (8) and shown in Figure 10. When frequency is changed from 0.8
to 1.2 GHz, the Qe curve changes from increasing to decreasing, and when s is adjusted
from 0.15 to 0.25 mm, the Qe curve moves from a small value to large. Apparently, Qe
(s = 0.2 mm) is in the range between Qemin and Qemax in the frequency range of 0.8–1.2 GHz
and can be used to design the tunable BPF with 120 MHz 3 dB BW.

3. Experimental Verification

The reconfigurable BPF is fabricated on a 0.508 mm RO4003C substrate with a relative
dielectric constant of 3.55 and a loss tangent of 0.0027. The EM simulator SONNET is
employed for the physical dimension optimization, and the final physical parameters of
the filter are determined as in Table 1. Cb = 30 pF and Rb = 10 kΩ are used as DC block and
DC bias, respectively. The varactors Ma46H201 from M/A COM are employed as Cv1s, the
varactors Ma46H202 from M/A COM are employed as Cv2 and Cv3, and the voltages V1,
V2 and V3 are utilized to control the capacitances of Cv1s, Cv2 and Cv3, respectively. The
photography of the fabricated reconfigurable BPF is presented in Figure 11. The size of
the filter is approximately 0.09 λg × 0.18 λg, where λg is the guided wavelength on the
substrate at 0.816 GHz.

Table 1. Physical parameters of the proposed filter.

Parameter Value (mm) Parameter Value (mm)

l1 31.6 w1 0.5
l2 33.6 w2 1.5
l3 19.2 w3 1.5
l4 28.8 w4 0.5
s 0.18 w5 1.1
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Figure 11. Photograph of the fabricated filter.

The measurement is performed with a Rohde & Schwarz ZVA24 analyzer. The mea-
surement results are compared with the simulation results as shown in Figures 12 and 13.
Figure 12 shows the results of the filter as a CABW tunable filter with a 3 dB BW of 120 MHz.
The center frequency can vary from 0.816 to 1.188 GHz and the measured 3 dB BW of the
filter is 120 ± 2 MHz, the measured IL is 2.2–2.5 dB, and the measured RL is better than
10 dB over the tuning range. The IL is dominated by the parasitic resistances of the var-
actors [3]. Two TZs on either side of the passband improve the skirt selectivity. Figure 13
shows the results of the filter in the off-state. As can be seen, the measured isolation is better
than 27 dB. A comparison with other tunable CABW BPFs presented in previous studies
is provided in Table 2. The tunable CABW BPFs proposed in [20,23] have no switchable
ability. The switchable ability of the filter proposed in [12] is realized by using PIN diodes,
therefore, extra bias voltages are needed in the design and the IL is poor. The number of
the control voltages is the same as the order of the proposed filter in [17], which makes
its control simplistic, however, the isolation of its off-state is poor. The two-pole tunable
CABW filter in [18] presents a minimum 20 dB isolation of its off-state, but the number
of the control voltages is four. In this study, the tunable CABW filter presents low IL in
the on-state and high isolation in the off-state, and the tri-pole BPF with switchable ability
using only three bias voltages, which simplifies the control complexity.
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Table 2. Comparisons with previously reported tunable CABW filters.

Ref No. Filter Order Number of Control
Voltages

IL in
Passband

(dB)
Off-State

Isolation
in Off-State

(dB)

Size
(λ2

g)

[20] 2 3 1.2–2.3 No - 0.0042
[23] 2 1 1.34–2.92 No - 0.0224
[12] 2 3 2.52–4.08 Yes >43 0.0183
[17] 2 2 1–3 Yes >10 0.0121
[18] 2 4 ≤3.8 Yes >20 0.0211

This work 3 3 2.2–2.5 Yes >27 0.0162

4. Conclusions

This letter proposed a tri-pole reconfigurable CABW BPF with switchable ability. The
CSR loaded with varactors is employed to make the tunable element, and the center-loaded
stubs in the CSR are utilized to generate the two TZs and improve the selectivity of the filter.
Coupling matrix analysis of the transversal filter structure shows that center frequency
tuning CABW and switchable ability can be achieved through adjusting the resonant
frequencies. The weak coupling transmission-line responses demonstrate that the TZs
can be used to improve the isolation of the off-state. Center frequency tuning, CABW
maintenance, and switchable ability of the tri-pole filter are realized by using only three
control variables, which simplifies the control complexity. The proposed filter has the
potential to be applied in switched filter banks to reduce control complexity.
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