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Abstract

:

This paper presents a tunable bandpass filter (BPF) with constant absolute bandwidth (CABW) and switchable properties. The BPF is performed by using a tri-mode cross-shape resonator (CSR) loaded with varactors. The CABW and switchable ability are achieved by adjusting the resonant frequencies. Meanwhile, the two transmission zeros (TZs) produced by center-loaded stubs strengthen the skirt selectivity in the on-state and the isolation in the off-state. For demonstration, a tri-pole switchable BPF with three control voltages is implemented and verified, and the control mechanism is simple. In the on-state, it exhibits a 120 MHz, 3 dB CABW with the measured insertion loss (IL) of 2.2–2.5 dB in the tuning range of 0.816–1.188 GHz. In the off-state, the measured isolation is better than 27 dB.
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1. Introduction


Modern wireless communication systems require multifunctional RF front-ends in which reconfigurable filters play an essential role for easy integration. Additionally, a number of filters with tunability of center frequency (CF), bandwidth (BW) or TZs have been reported [1,2,3,4,5,6,7]. Furthermore, reconfigurable filters with switchable ability have attracted the attention of researchers since they are able to form switched filter banks and expand the tuning range of the filter [8,9,10,11].



By utilizing pin diodes as switches to tunable BPFs, a BPF which can switch the low- or high-tunable passband in on-state is proposed in [11], and a BPF which can switch the tunable passband in the on- or off-state is proposed in [12]. However, the use of pin diodes will make the design bulky and the control complex. To overcome this problem, intrinsically switched tunable BPFs are proposed, and the switching function is performed by using the filters’ own tuning elements without additional switches. Through controlling the coupling coefficients between resonators to be zero [9,10,13], adjusting the TZs to suppress the passband [14,15,16], and employing transversal filter structures based on multimode resonators and modifying the resonant frequencies of odd- and even-mode to be the same [17,18], the tunable filters have the ability to switch the passband in the off-state.



On the other hand, the tunable BPFs with CABW property, which can replace a number of fixed filters and reduce the size of the communication systems, have also attracted lots of attention. By compensating the coupling coefficient with the inter-resonator varactors [19,20,21], choosing a proper coupling region [22,23], and maintaining the separation between resonant frequencies [18,24], tunable BPFs with CABW property have been reported.



In this letter, a tunable CABW BPF with switchable ability is proposed based on a novel CSR. The tunable CABW is accomplished by adjusting the resonant frequencies and maintaining their separations simultaneously. Moreover, the switchable ability of the passband is achieved by using its transversal filter structure. By utilizing the transmission zeros of the resonator, the skirt selectivity of the on-state and the isolation of the off-state are improved [25]. As a demonstration, a prototype of a switched tunable 120 MHz 3-dB CABW BPF with a tuning range of 0.816–1.188 GHz is developed and characterized. Experimental and simulated results are in good agreement.




2. Filter Design and Analysis


2.1. Analysis of CSR


The proposed tri-mode CSR shown in Figure 1a consists of a half-wave resonator and two shunt stubs, where Y1, Y2 and Y3 are the characteristic admittances and θ1, θ2 and θ3 are the electrical lengths. For tuning the resonant frequencies, three types of varactors (C1, C2 and C3) are added in the resonator.



Due to the symmetrical structure, the odd- and even-mode equivalent circuits can be expressed as shown in Figure 1b,c, respectively [26]. The input admittances of the proposed resonator can be derived as follows.



For odd-mode


Yo = −jY1cotθ1 + j2πfC1,



(1)







The odd-mode resonant frequency fo can be determined according to Im (Yo) = 0.



For even-mode


Ye1 = −jY1cotθ1 × 2πfC1/(−Y1cotθ1 + 2πfC1),



(2)






Ye2 = Y2 (j2πfC2 + jY2tanθ2)/(2Y2 − 4πfC2tanθ2),



(3)






Ye3 = Y3 (j2πfC3 + jY3tanθ3)/(2Y3 − 4πfC3tanθ3),



(4)






Ye = Ye1 + Ye2 + Ye3,



(5)







The two even-mode resonant frequencies fe1 and fe2 can be deduced by Im (Ye) = 0.



Based on Equations (1)–(5), Figure 2 shows the tuning range of fo with variation of C1, and Figure 3 plots the fo, fe1 and fe2 dependence on C2 and C3 for C1 = 1 pF. It can be observed that the odd-mode resonant frequency fo is only controlled by C1, and the even-mode resonant frequencies fe1 and fe2 are varied around fo by tuning C2 and C3 when C1 is fixed, that is to say, the specified frequency space between fe1/e2 and fo can be obtained by tuning C2 and C3. Note that there is a set of C2 and C3 makes fe1 = fo = fe2 for fixed C1 (fo), and this feature can be used for switching off the passband, which will be discussed in Section 2.2.




2.2. Coupling Matrix Analysis


Figure 4 shows the transversal topology architecture of the proposed filter, which consists of a tri-mode CSR, source, load and external quality factor Qe. The denormalized coupling matrix can be expressed as [18]


   [   m Δ   ]   =   [       m   e 1 e 1       0   0     0     m  oo      0     0   0     m   e 2 e 2         ]  ,  



(6)




where me1e1/oo/e2e2 = fd/fe1/o/e2 − fe1/o/e2/fd, fd is the frequency-mapping element.



The external quality factor can be expressed as [27]


Qe = (Qexe1 + Qexe2 + Qexo)/3,



(7)






Qexe1/exe2/exo = fe1/e2/o/Δfe1/e2/o±90°,



(8)




where Qexe1/exe2/exo and Δfe1/e2/o±90° are the external quality factor and BW of the three resonant modes, respectively.



By separately tuning the parameters of the coupling matrix and Qe, the theoretical response curves with fd = 1 GHz are given in Figure 5, Figure 6 and Figure 7 [18,28]. Figure 5 displays the theoretical response curves varying me1e1, moo and me2e2 considering a fixed Qe = 28. As can be seen, center frequency tuning behavior with CABW property can be obtained by purposely changing the variable elements in the coupling matrix. As shown in Figure 6, the specified 3 dB BW can be achieved by adjusting the frequency space between fe1/e2 and fo, and BW3dB ≈ fe2 − fe1 when fe2 > fo > fe1. In particular, when me1e1 = me2e2 = moo = 0 (i.e., fe1 = fo = fe2), the passband is switched off. Figure 7 illustrates the calculated frequency responses when Qe is tuned from 40 to 10 but the elements of the coupling matrix are fixed as me1e1 = −me2e2 = 0.15 and moo = 0. The return loss (RL) of the passband increases when Qe decreases, and the 3 dB BW of the passband is almost independent of Qe when Qe varies from 40 to 20, but as Qe continues to decrease, the 3 dB BW becomes narrower and cannot be estimated as fe2 − fe1. As a conclusion, the specified BW and off-state of the passband can be controlled by fe1, fo and fe2, and a range of Qe provide controllable BW with a RL of the passband better than a certain value.




2.3. Analysis of TZs


The two shunt stubs taped with C2 and C3 can produce two TZs, respectively. The input admittances of the two stubs are as below.


Yd = Y2 (j2πfC2 + jY2tanθ2)/(Y2 − 2πfC2tanθ2),



(9)






Yu = Y3 (j2πfC3 + jY3tanθ3)/(Y3 − 2πfC3tanθ3),



(10)







The frequencies of the two TZs fz1 and fz2 can be deduced by Y2 − 2πfC2tanθ2 = 0, and Y3 − 2πfC3tanθ3 = 0, respectively [29]. As can be seen, fz1 and fz2 are controlled by C2 and C3, respectively.



In Figure 8, the weak coupling transmission responses are investigated when Y1 = Y2/2 = Y3/2 = 1/75 S, θ1 = 65°, θ2 = 60° and θ3 = 35° at 1 GHz. Seen from Figure 8, the condition of fz1 < fe1 < fo < fe2 < fz2 can be realized, and the two TZs can be utilized to improve the out-of-band rejection. By increasing C2 and decreasing C3, the BW (fe2 − fe1) becomes narrower and the two TZs follow the variations of fe1 and fe2. When fe1 = fo = fe2 is realized by tuning C2 and C3, the two TZs are also tuned to the same frequency as fo and can be used to enhance the isolation of the off-state.




2.4. Schematic Diagram of the Filter and the External Quality Factor


Figure 9 presents the schematic diagram of the reconfigurable BPF based on the CSR proposed in this paper. The BPF consists of a CSR and a pair of feedlines. The three resonant modes of the CSR are utilized to form the three poles of the filter, and the two transmission zeros of the CSR are used to improve the skirt selectivity of the filter in on-state and the isolation in off-state. The variable capacitors are realized by varactors, and several lumped components are employed for DC blocks (Cb = 30 pF) and DC bias (Rb = 10 kΩ). The voltages V1, V2 and V3 are utilized to tune the capacitances of the varactors. Due to the influence of Cb, the relationship between Ci in Figure 1 and Cvi (i = 1, 2, 3) in Figure 9 are C1 = Cv1, C2 = CbCv2/(Cb + Cv2) and C3 = CbCv3/(Cb + Cv3).



Based on the discussion in Section 2.2, the desired Qe for realizing a BPF with 120 MHz 3 dB BW in the frequency range of 0.8–1.2 GHz is illustrated in Figure 10, where Qemax is the maximum external quality factor, with which the RL of the passband is better than 10 dB, and Qemin is the minimum external quality factor, with which the 120 MHz 3 dB BW of the passband can be estimated by fe2 − fe1. Therefore, Qe between Qemin and Qemax can be utilized to realize a passband with following characteristics: dB|S11| < −10 dB and BW3dB ≈ fe2 − fe1 = 120 MHz.



Qe curves with different distance s in the frequency range of 0.8–1.2 GHz are extracted by Equations (7) and (8) and shown in Figure 10. When frequency is changed from 0.8 to 1.2 GHz, the Qe curve changes from increasing to decreasing, and when s is adjusted from 0.15 to 0.25 mm, the Qe curve moves from a small value to large. Apparently, Qe (s = 0.2 mm) is in the range between Qemin and Qemax in the frequency range of 0.8–1.2 GHz and can be used to design the tunable BPF with 120 MHz 3 dB BW.





3. Experimental Verification


The reconfigurable BPF is fabricated on a 0.508 mm RO4003C substrate with a relative dielectric constant of 3.55 and a loss tangent of 0.0027. The EM simulator SONNET is employed for the physical dimension optimization, and the final physical parameters of the filter are determined as in Table 1. Cb = 30 pF and Rb = 10 kΩ are used as DC block and DC bias, respectively. The varactors Ma46H201 from M/A COM are employed as Cv1s, the varactors Ma46H202 from M/A COM are employed as Cv2 and Cv3, and the voltages V1, V2 and V3 are utilized to control the capacitances of Cv1s, Cv2 and Cv3, respectively. The photography of the fabricated reconfigurable BPF is presented in Figure 11. The size of the filter is approximately 0.09 λg × 0.18 λg, where λg is the guided wavelength on the substrate at 0.816 GHz.



The measurement is performed with a Rohde & Schwarz ZVA24 analyzer. The measurement results are compared with the simulation results as shown in Figure 12 and Figure 13. Figure 12 shows the results of the filter as a CABW tunable filter with a 3 dB BW of 120 MHz. The center frequency can vary from 0.816 to 1.188 GHz and the measured 3 dB BW of the filter is 120 ± 2 MHz, the measured IL is 2.2–2.5 dB, and the measured RL is better than 10 dB over the tuning range. The IL is dominated by the parasitic resistances of the varactors [3]. Two TZs on either side of the passband improve the skirt selectivity. Figure 13 shows the results of the filter in the off-state. As can be seen, the measured isolation is better than 27 dB. A comparison with other tunable CABW BPFs presented in previous studies is provided in Table 2. The tunable CABW BPFs proposed in [20,23] have no switchable ability. The switchable ability of the filter proposed in [12] is realized by using PIN diodes, therefore, extra bias voltages are needed in the design and the IL is poor. The number of the control voltages is the same as the order of the proposed filter in [17], which makes its control simplistic, however, the isolation of its off-state is poor. The two-pole tunable CABW filter in [18] presents a minimum 20 dB isolation of its off-state, but the number of the control voltages is four. In this study, the tunable CABW filter presents low IL in the on-state and high isolation in the off-state, and the tri-pole BPF with switchable ability using only three bias voltages, which simplifies the control complexity.




4. Conclusions


This letter proposed a tri-pole reconfigurable CABW BPF with switchable ability. The CSR loaded with varactors is employed to make the tunable element, and the center-loaded stubs in the CSR are utilized to generate the two TZs and improve the selectivity of the filter. Coupling matrix analysis of the transversal filter structure shows that center frequency tuning CABW and switchable ability can be achieved through adjusting the resonant frequencies. The weak coupling transmission-line responses demonstrate that the TZs can be used to improve the isolation of the off-state. Center frequency tuning, CABW maintenance, and switchable ability of the tri-pole filter are realized by using only three control variables, which simplifies the control complexity. The proposed filter has the potential to be applied in switched filter banks to reduce control complexity.
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Figure 1. (a) Proposed CSR; (b) Odd-mode equivalent circuit; (c) Even-mode equivalent circuit. 
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Figure 2. Odd-mode resonant frequency fo versus C1 (Y1 = 1/75 S, Y2 = Y3 = 2/75 S, θ1 = 65°, θ2 = 60° and θ3 = 35° at 1 GHz). 
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Figure 3. Resonant frequencies fo, fe1 and fe2 versus C2 with different C3 (Y1 = 1/75 S, Y2 = Y3 = 2/75 S, θ1 = 65°, θ2 = 60° and θ3 = 35° at 1 GHz). 
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Figure 4. Topology architecture of the proposed filter. 
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Figure 5. Theoretical curves for varying me1e1, moo and me2e2 considering a fixed Qe = 28. 
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Figure 6. Theoretical curves for varying me1e1 and me2e2 with fixed moo = 0 and Qe = 28. 
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Figure 7. Theoretical curves for varying Qe considering me1e1 = −me2e2 = 0.15 and moo = 0. 
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Figure 8. Transmission responses using weak coupling. 
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Figure 9. Schematic diagram of the proposed filter. 
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Figure 10. Desired and extracted Qe. 
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Figure 11. Photograph of the fabricated filter. 
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Figure 12. Simulated and measured S parameters for the proposed filter in on-state. 
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Figure 13. Simulated and measured S parameters for the proposed filter in off-state. 
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Table 1. Physical parameters of the proposed filter.
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	Parameter
	Value (mm)
	Parameter
	Value (mm)





	l1
	31.6
	w1
	0.5



	l2
	33.6
	w2
	1.5



	l3
	19.2
	w3
	1.5



	l4
	28.8
	w4
	0.5



	s
	0.18
	w5
	1.1
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Table 2. Comparisons with previously reported tunable CABW filters.
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	Ref No.
	Filter Order
	Number of Control Voltages
	IL in

Passband

(dB)
	Off-State
	Isolation

in Off-State (dB)
	Size

   (  λ g 2  )   





	[20]
	2
	3
	1.2–2.3
	No
	-
	0.0042



	[23]
	2
	1
	1.34–2.92
	No
	-
	0.0224



	[12]
	2
	3
	2.52–4.08
	Yes
	>43
	0.0183



	[17]
	2
	2
	1–3
	Yes
	>10
	0.0121



	[18]
	2
	4
	≤3.8
	Yes
	>20
	0.0211



	This work
	3
	3
	2.2–2.5
	Yes
	>27
	0.0162
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