
����������
�������

Citation: Lim, S.-H.; Kang, S.-H.; Ko,

B.-H.; Roh, J.; Lim, C.; Cho, S.-Y. An

Integrated Analysis Framework of

Convolutional Neural Network for

Embedded Edge Devices. Electronics

2022, 11, 1041. https://doi.org/

10.3390/electronics11071041

Academic Editors: József Sütő, Stefan

Oniga, Alin-Sasa Tisan and Fernando

Morgado-Dias

Received: 7 February 2022

Accepted: 24 March 2022

Published: 26 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Integrated Analysis Framework of Convolutional Neural
Network for Embedded Edge Devices †

Seung-Ho Lim *, Shin-Hyeok Kang, Byeong-Hyun Ko, Jaewon Roh, Chaemin Lim and Sang-Young Cho

Division of Computer Engineering, Hankuk University of Foreign Studies, Yongin 17035, Korea;
adam16377@gmail.com (S.-H.K.); devko@kakao.com (B.-H.K.); harryroh2003@gmail.com (J.R.);
chaemin.lim.hufs@gmail.com (C.L.); sycho@hufs.ac.kr (S.-Y.C.)
* Correspondence: slim@hufs.ac.kr
† This paper is an extended version of our paper published in ICCE 2022.

Abstract: Recently, IoT applications using Deep Neural Network (DNN) to embedded edge devices
are increasing. Generally, in the case of DNN applications in the IoT system, training is mainly
performed in the server and inference operation is performed on the edge device. The embedded
edge devices still take a lot of loads in inference operations due to low computing resources, so
proper customization of DNN with architectural exploration is required. However, there are few
integrated frameworks to facilitate exploration and customization of various DNN models and their
operations in embedded edge devices. In this paper, we propose an integrated framework that can
explore and customize DNN inference operations of DNN models on embedded edge devices. The
framework consists of the GUI interface part, the inference engine part, and the hardware Deep
Learning Accelerator (DLA) Virtual Platform (VP) part. Specifically it focuses on Convolutional
Neural Network (CNN), and provides integrated interoperability for convolutional neural network
models and neural network customization techniques such as quantization and cross-inference
functions. In addition, performance estimation is possible by providing hardware DLA VP for
embedded edge devices. Those features are provided as web-based GUI interfaces, so users can easily
utilize them.

Keywords: edge device; DNN; GUI interface; inference engine; ONNX; customization; DLA VP

1. Introduction

Recently, deep neural networks (DNN)-based applications have been widely used with
excellent performance in various fields. Those DNN-based applications are also emerging
in edge devices of IoT systems [1]. In the case of DNN applications in the IoT system,
training is mainly performed in the server and inference operation is performed on the
edge device. The embedded edge devices still take a lot of loads in inference operations due
to low computing resources. Generally, DNN has a complex network structure composed
of hundreds of layers and millions of parameters to increase accuracy, and computation
for training and inference with DNN is based on a lot of high-order floating points of
data. Learning or training of DNN, which requires a lot of computing resources, is usually
performed in a high-performance system, and only inference is performed in embedded
edge devices by bringing the DNN model generated by training results.

The embedded edge devices, which have limited resources, suffer from executing a
high complexity network and parameter resolution. Appropriate customization schemes
should be considered for edge devices to perform DNN inference properly on the device
side. There are two approaches to efficiently optimize DNN in edge devices: optimizing
the network at software algorithm level, and using a hardware Deep Learning Accelerator
(DLA), and these two approaches are mixed. For software optimization, a lightweight
technique to reduce the complexity of the DNN network has been studied such as network

Electronics 2022, 11, 1041. https://doi.org/10.3390/electronics11071041 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11071041
https://doi.org/10.3390/electronics11071041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11071041
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11071041?type=check_update&version=3

Electronics 2022, 11, 1041 2 of 19

layer compression, weight pruning, and filter quantization methods [2–9]. The hardware
Deep Learning Accelerator has multiple-pipelined Multiply–Accumulate (MAC) modules
and pipelined data path and buffer structure for fetching and processing input/weight
data from external memory to accelerate DNN operations [10–17].

The availability of deep learning models in the form of open sources, frameworks,
and cloud APIs has enabled many developers to easily create applications combined with
DNNs [18,19]. In addition, visualized DNN platform has been provided so that general
users can easily apply training a DNN model to their appropriate domains. Although there
are several analysis frameworks of DNN networks for embedded edge devices [20–23],
there are few integrated tools and frameworks to explore and customize those technologies
to optimize specific neural network applications in edge devices.

In this paper, we designed and implemented an integrated framework to analysis
and explore architecture for customizing neural network applications on edge devices. In
particular, the framework is specialized for Convolutional Neural Network (CNN) models
and their applications such as image classification and object detection, since CNN is the
one of the most useful among various neural network algorithms and CNN-based object
detection applications with camera input on edge devices are an active area of use. The
framework provided in this paper is an integrated system for customizing convolutional
neural network models in embedded edge devices. It provides integrated interoperability
for convolutional neural network models and network customization techniques such
as quantization and cross-inference functions. In addition, performance estimation is
possible by providing hardware DLA VP for embedded edge devices. The framework
provides three main parts: the front-end GUI part, the inference engine part, and the DLA
Virtual Platform (VP) part. In the front-end part, a web-based GUI interface is provided
for users to run and simulate various deep learning models. In the inference part, it
provides integrated interoperability for various convolutional neural network models with
ONNX [24] format to provide open standard interface for existing neural network models,
so various convolutional neural network models and operations are applied and compared
with the framework. In addition, it provides various customization interfaces including
parameter quantization and editing parameters, as well as crosswise and stepwise inference
analysis of network layer. In the last part, our framework provides hardware DLA VP
implemented in SystemC. The DLA VP is based on RISC-V embedded processor and has a
dedicated acceleration module for convolutional neural network, so hardware exploration
is possible by executing the customized neural network models through DLA platform and
inferring the performance of the deep learning model on edge device.

This is an extended version of the previous paper published as an abstract at ICCE
2022 [25], in which this paper is focused on the integrated framework with GUI interface,
inference engine, and hardware virtual platform for edge device which is also our previous
work [15], and additionally gives experimental results. The organization of this paper
is as follows. The background and related work of this paper are described in Section 2,
and details of the developed framework are explained in Section 3. Section 4 shows
experimental results and Section 5 concludes this paper.

2. Background and Related Work
2.1. Optimization and Acceleration for Embedded Edge Devices

There are several DNN customization tools and platforms. Most of the tools, frame-
works, and libraries are aimed at advancing and optimizing the training and inference
operations for advanced neural network models in high-performance GPUs or Cloud
Computing systems. However, they have few functions and features for exploration and
customization of neural network models for embedded edge devices. That is, most plat-
forms do not provide detailed information, parameters, and performance metrics inside
embedded edge devices, such as quantization, parameter pruning, and cross-layer infer-
ence with different parameter formats. In addition, there are few ways to estimate the

Electronics 2022, 11, 1041 3 of 19

detailed internal operations of deep neural network with running on embedded edge
device platform.

There have been several studies to reduce the complexity of neural networks by prun-
ing unimportant network connections; quantizing and applying Huffman conding [2];
using vector quantization to CNN [3]; studying of quantization, coding, pruning, and shar-
ing techniques for image instance retrieval [4]; or by applying filter-wise quantization [5].
Some studies tried to optimize network model architecture by applying complex-optimized
computation methods [6,7]. Ref. [8] showed some techniques that can be used to reduce
computational cost on computer architecture and instruction level uses.

NVDIA developed a deep learning accelerator architecture called NVDLA to ac-
celerate neural network operation with dedicated hardware module for neural network
operations [10]. Eyeriss [11] designed a flexible accelerator architecture for deep neural
networks on edge devices. There were studies which proposed deep learning accelerator
architecture as a co-processor of RISC-V embedded CPU by designing corresponding in-
structions for the accelerator [12,13]. In [14], they investigated the extension of embedded
processor architecture to accelerate deep neural networks with in-pipeline hardware and
related instructions. Ref. [15] developed dedicated deep learning accelerator as a controller
module of embedded processor. Ref. [16] showed customized object detection system
using YOLO with RISC-V based hardware accelerator, and [17] showed an 8-bit quantized
inference model with NVDLA accelerator.

2.2. Frameworks for Neural Networks

As Artificial Intelligence (AI) and deep neural networks-based applications show
excellent performance in many fields, many tools and frameworks have been developed to
build various deep learning network models and their operations for learning and inference
in a variety of real fields [19]. Deep neural network tools and frameworks that are widely
used for deep neural network research and development include Caffe [26], Theano [27],
CNTK [28], TensorFlow [29], PyTorch [21], and DIGITS [22]. Typical tools or platforms
make it easy for users to use DNN models and to use a visualization interface to get a
graphical picture of the model and its behavior. Each of them has different criteria such as
programming language, usage method, development environment, interface, supported
CPUs and GPUs, maturity level, supported neural network model, and so on.

Caffe [26] is a widely used deep learning library and framework developed by the
Berkeley AI Research Center. Caffe has high expressiveness, modularity, and execution
speed. As for the expression method, plain text schema can be used instead of code for the
neural network model expression. Modularity is high so that new tasks can be easily added
to the existing model. In addition, it provides an environment where multiple GPUs can be
used. Theano [27] is a deep learning to and library developed by the Montreal Institute
for Learning Algorithms at the University of Montreal. It is provided in the form of a
Python library and is mainly used to manipulate and evaluate mathematical expressions
for neural network models. There are high-level frameworks running windows system. It
has overhead due to the compilation process to load Python modules and has a complex
structure to extend models. CNTK [28] is an open-source deep learning toolkit developed
by Microsoft. It is a toolkit that allows users to graphically run deep neural network models
step-by-step on various deep neural network models and analyze the results. It can be
used as a library for Python, C#, and C++ programs, or it can be used as a standalone type.
Another distinct feature of CNTK is that it supports ONNX format, so interoperability
between frameworks is high. Although these tools are suitable for designing complex
neural network models in general-purpose or high computing systems supporting GPUs,
they lack features for customizing and optimizing models for embedded edge devices.

TensorFlow [29] is another kind of open-source programming framework that was
firstly developed by the Google Brain team for internal Google use for developing deep
learning and machine learning applications, and was later released as open source. Ten-
sorFlow can be used in various programming languages such as Python, JavaScript, C++,

Electronics 2022, 11, 1041 4 of 19

and Java, and it also supports various GPUs. TensorFlow Lite [20], also called TensorBoard,
is a suite of tools that support running TensorFlow models on mobile, embedded, and
IoT devices. The main components are an interpreter that can run the quantization model
and a converter that converts the TensorFlow model into an efficient format that the in-
terpreter can use. However, it does not provide a framework environment for executing
and analyzing neural network operations in real embedded edge devices. PyTorch [21]
is a machine learning library based on torch which is developed by Facebook. PyTorch
also provides an interface to increase operation speed through various GPUs and supports
implementation of neural network models and operations in Python. The PyTorch frame-
work supports tools for quantization for parameter optimizations. It supports dynamic
quantization, static quantization, and quantization-aware learning, and supports inference
on quantized models to perform performance comparison with the original model. Apache
TVM [30] is a compiler tool and framework that optimizes the DNN model for various
hardware including CPUs, GPUs, microcontrollers, and FGPAs. TVM supports block
sparsity, multi-bit level quantization, memory planning, various processor compatibility,
and Python programming-based prototyping. DIGITS [22] is a deep learning GPU train-
ing system developed by NVIDIA. DIGITS uses a simplified text file format rather than
a programming language to describe neural network models and parameters, supports
multi-GPU-based neural network operation, and it provides a web-based interactive user
interface for user convenience. Pico-CNN [23] is another kind of deep learning inference
framework for embedded systems providing C source code with standard C libraries. It
supports pre-trained ONNX models to make C code and deploy various neural network
models with C code. It is not GUI-based, and does not support embedded architecture
such as accelerator.

3. Integrated Framework for Edge Devices

The purpose of the framework is to provide a GUI environment for optimizing deep
learning models on edge devices. For this, the framework provides three main functions:
First, a standard interface is applied to enhance interoperability between deep learning
models implemented in various previous frameworks in a single engine. Second, a hard-
ware Virtual Platform (VP) and its interfaces are provided for inferring the performance
of a deep learning model in a DLA. Third, for user convenience, a web-based graphical
user interface is provided. The overall architecture of the framework is shown in Figure 1,
which is composed of three parts: the GUI platform part, the inference engine part, and the
DLA VP part.

Model Visualizer

Augmentation
Control/Viewer

Weight/
Pruning Editor

Quantization
Editor

Client-side Control

Front-End

Back-End
Server-side Control

Request Response

DB

Open DNN Platform
(TensorFlow, PyTorch..)

ONNX Converter

NN Builder

ESL Builder

ONNX Model

Model for Inference (.net, .sys, w, b)

DLA Model

Main
MemoryDMAInt. Ctl. peri.

RISC-V
Core

Mem I/F

Loader

Buffer

PE PE

PE PE

...

...

......

Deep Learning Accelerator

FP, HB, INT, ESL
(De)Quantization

Inference Engine

Debug with Step
Cross Execution

VP Execution Control

RISC-V Tool Chain

Socket
I/F

RISC-V Image

Express JS
Node Js

Web Framework

CLINT

Figure 1. The overall architecture of the framework.

3.1. GUI Platform

The GUI interface is responsible for receiving the configurations of neural network
model from the user, executing the neural network model through the inference engine
or virtual platform, and displaying the results graphically. Figure 2 shows the overall
structure of the GUI platform composed of the front-end and back-end. Specifically, for

Electronics 2022, 11, 1041 5 of 19

the optimization of the deep learning operation of the embedded edge device, the GUI
interface provides various interfaces to run the functions provided by the inference engine
described above, such as list of the supported neural network models, file interface, settings
of quantization level including FP, INT, and Hybrid for inferencing, stepwise and crosswise
inferencing of each layer, as shown in the left part of the Figure 2. In addition, it also
provides visualization of the neural network model and inference processes, the editing
interface of weight parameters of the neural network model, data augmentation, and file
management functions.

To provide those features, the back-end part of GUI platform consists of five modules as
shown in the right part of Figure 2: Router and Event Listener (REL), Process Manager (PM),
File Manager (FM), Session Manager (SM), and Auxiliary Utility Manager (AUM). REL is
responsible for the main request processing function as the manager of the platform. Since
all functions of the platform, such as file management, inference selection, weight editing,
image augmentation, and image visualization, are visually expressed in a web browser, it
performs event service routines according to various requests from other parts. The back-
end event listener receives the user’s configuration for the neural network model through
internal socket interface from the front-end part, and REL executes the neural network
operation of the model to the interface engine based on this information. The inference
engine event listener interacts with the inference engine through socket communication. It
receives the results of the inference engine and stores the results in the file storage space
through the file manager.

Process Manager

Process Pool

Router and Event
Listener

File Manager Session Manager

Auxiliary Utility Manager
(Augmentation, Json Parsing)

Inference Workflow

Manage parameter files
by users

Update current states of
users

Local Storage Session Pool

Front-end
Event Listener

Inference Engine
Event Listener

Interfacing with
Inference EngineSocket

Interface

Interfacing with
user interface

Visualizer

Neural Network
Model List

Inference Type
: FP, Hybrid, INT

Cross/Step Inference

Augmentation

File Manager
Interface

Front-End User Interface Back-End Structure

Figure 2. Structure of the GUI platform part composed of the front-end and back-end.

The inference engine operates separately from the GUI platform part, and multiple
users can run the inference engine at the same time from the individual user interface.
When running the inference engine, a separate child process is executed in the process
manager to handle the individually separated running of inference engine. The process
manager also examines the inference engine process by referring to the session. If an
abnormal termination or malfunction of the inference engine process occurs, it performs
post-processing of the inference engine to be killed safely.

The file manager manages the file directory on a per-user basis so that multiple users
can use the inference engine at the same time. The file manager stores the neural network
model files and weight files uploaded by the user in the file directory, and the user can edit
and upload/download the weight files via file manager. The session manager manages
the user’s state using a session and updates the user’s state whenever the state changes.
Sessions are also used by the process manager to check the normal state of a process. When

Electronics 2022, 11, 1041 6 of 19

a state change is detected in the event routine handled by the event receiver, the session
manager updates the state of the session.

Finally, in the Auxiliary Utility Manager, there are two auxiliary functions that sup-
port the platform: data augmentation and JSON parser. For data computation of neural
networks, the platform supports a data augmentation function that increases the number
of training images by transforming images for training [31]. The JSON parser converts the
model file and weight file into JSON format. The JSON-formatted models and weight files
are used to check the number of neural network layers and information of each layer in the
visualization process of the neural network.

3.2. Inference Engine

The structure of the inference engine part is composed of ONNX Converter, NN
builder, ESL builder, and Inference Engine. In general, since the DNN framework uses an
individual model representation and storage method, it is difficult to use a DNN model
developed in one framework, in another framework. To increase the interoperability of
models between frameworks, an open form of intermediate representation is required.
ONNX [24] provides framework-independent model representations for sharing mod-
els developed in various frameworks. To increase interoperability between frameworks
through ONNX, the model developed in a certain framework must be first converted into
an ONNX model, and the ONNX model needs to be converted again into a model suitable
for another framework.

ONNX is described as Google’s Protobuf [32] and supports about 200 operations
corresponding to the layers of the neural network. The definition of a model in a neural
network is not simply a list of data, but requires additional description of what the data
means. Figure 3a shows the main components of ONNX, in which important information
in ONNX model configuration are Node, Input, and Initializer, shown in the figure. Node
generally acts as a layer in a neural network, Input represents dimension information of
a matrix, and Initializer stores weights. Each element is a hierarchical object structure,
and a model is constructed by grouping related objects into a doubly linked list. Our
framework provides an ONNX converter, which converts the ONNX model into deep
learning models executable in our inference engine. The ONNX converter uses the ONNX
model to create networks, weights, bias, etc. according to the format suitable for NN
builder. Figure 3b shows the operation flow of the implemented ONNX converter. It
consists of four steps: ONNX Load, data extraction and purification, conversion to specific
model format, and CFG format creation. The ONNX loader plays the role of loading
the ONNX model file. After loading the ONNX model file, in the data extraction and
purification process, it traverses all the nodes, inputs, and initializers inside the ONNX
model to extract information about the layer type, name matrix size, and so on. During
extraction, the ONNX model data is normalized to be fixed as the proper model input
format. The extracted and refined information is converted into a form that can be managed
collectively by putting the entire layer information in one internal object. After that, it is
finally converted into a CFG file format that can be used in the inference engine.

Electronics 2022, 11, 1041 7 of 19

Graph

Model

Node

Input

Initializer

(a) Basic ONNX structure
composition and model de-
scription

ONNX Load

Data Extraction &
Refine

Data Format Convert

Create CFG Format &
Report

Normalization

Update

CFG File

(b) ONNX converter and op-
eration flow

Figure 3. Basic ONNX structure composition and model description, and developed ONNX converter
and its operation flow.

The NN builder performs NN operations through the inference engine using the
generated configuration of network model by ONNX converter. The inference engine
provides model information such as network layer and weight parameter to the back-end
web interface so that the user can monitor and change it at the GUI platform part. To
explore and customize the network models for edge device, the inference engine provides
features such as parameter quantization, layer-cross execution, layer-stepwise execution,
and parameter editing. The quantization method applied in the inference engine is the
combination of Log2 distribution method and the KL diffusion method, which was ap-
plied to NVDLA architecture [17]. Log2 distribution is a method that chooses the largest
area which has scattered values in 8 levels (8 bits) among the values obtained by taking
logarithmic values of the floating-point data, and KL diffusion technique is a method of
minimizing the difference in the amount of information between two transformed data by
applying the KL diffusion formula to obtain cross entropy.

The inference engine supports three inference methods: floating point-based inference,
hybrid inference, and integer (quantized) inference. The hybrid method means that quanti-
zation of input/output parameters is applied for the convolution layer, but floating-point
operation is performed on the remaining layers. The general inference operation proceeds
with network input, network constructing, preprocessing, inference operation, outputting
the result and saving to a file, and saving image. The common flow of the three inference
methods is the same, but it differs in the preprocessing part and the file storage part. In the
case of floating-point inference, only batch normalization is performed in preprocessing,
but in the case of hybrid inference, batch normalization and quantization are performed. In
the case of integer inference, the whole quantization of the image is also performed. When
performing inference, for each individual layer, the input, weight, and output results for
the layer are stored as separate files, so the contents are used to analyze the performance of
each inference.

Another feature supported by the inference engine is cross-inference. The cross-
inference refers to a method of proceeding with step-by-layer inference by applying dif-
ferent inference methods between layers. Cross-inference is made at breakpoints on a
layer-by-layer basis, like breakpoints in program debugging. The inference engine uploads
the inference model before inference starts and sets the basic format of inference for each
layer. Figure 4 shows an example of cross-inference. In the figure, the breakpoint is set
to layer 3. Layers from 0 to 2 are designated as float-point inference, layer 3 and 4 are
designated as integer inference, and layer 5 is designated as float-point inference again.
In this case, when the inference engine starts inference, it performs float-point inference
in layers 0, 1 and 2 and stops. In layer 3, integer data is generated by performing quanti-
zation operation on the weight parameters that were specified as float-point values, and
then neural network operation is performed on the generated integer data. In layer 5,
de-quantization is performed to make float-point inference again.

Electronics 2022, 11, 1041 8 of 19

Layer
1

Layer
0

Layer
3

Layer
2

Layer
5

Layer
4

Layer
7

Layer
6

Layer
9

Layer
8 ...

DequantizationQuantization

FP32 INT8 FP32INT8

Figure 4. Cross inference procedure with quantization and de-quantization.

The Inference Engine and NN builder also have an interface that delivers the neural
network model to the ESL (Electronic System Level) builder. We implemented a hardware
virtual platform at the system level to analyze various performance issues for executing
neural network operations on edge device hardware. The ESL builder is responsible for
creating a network models for executing neural network operations on this virtual platform.
When the inference engine performs neural network operation for each network layer,
the user selects whether to perform it through the inference engine (actually, this is done
by CPUs and GPUs of server running inference engine) or through hardware DLA VP. If
the user chooses to execute the neural network operation with the hardware DLA VP, the
inference engine delivers the network model and parameters to the ESL builder. The ESL
builder converts the received model and parameters into a specific format of model and
parameters so that they can be executed in the VP, then transmits them to the VP through
the socket interface. When the corresponding neural network operation is completed, the
VP sends the results back to the ESL builder. Then, the ESL builder sends the corresponding
result back to the front-end through via inference engine and displays the result on the
GUI screen.

3.3. DLA Platform Part

We provide a function with Virtual Platform (VP) to estimate and predict the per-
formance of the NN model according to the hardware configuration of embedded edge
device. As shown on the right side of Figure 1, the hardware VP operates as an independent
module. The virtual platform basically includes an embedded CPU Core, a TLM 2.0 Bus
module, an Interrupt controller, and a Memory interface with DMA (Direct Memory Ac-
cess) controlling. The CPU core module supports RISC-V’s RV32IM instruction set [33,34]
and provides interrupt handling and a system call interface to software running on a
virtual platform.

There are various edge device platforms widely used in IoT systems, which are
generally composed of a low-spec embedded processor, memory and interfaces. Among
embedded processors used in the research area, RISC-V [33,34] is an emerging processors
since it provides well structured and expandable instruction set architecture for edge device,
as well as it is on open source architecture. So, in the framework, a RISC-V-based edge
device system is modeled and configured as a virtual platform, and based on this platform,
we developed DLA VP to provide dedicated deep learning accelerator that can accelerate
convolutional neural network operations. Recently, the RISC-V Virtual Platform was
developed based on SystemC [35], which is efficient for system verification in a relatively
short time. It was designed with a generic bus system using TLM 2.0 around RISC-V
RV32IM core, so it is very expandable and configurable platform that can extend other
TLM-connected modules for verifying special functions in the RISC-V VP environment.
We developed a DLA platform based on the RISC-V VP platform [35] by integrating the
Deep Learning Accelerator (DLA) module into the virtual platform. As shown in Figure 1,
it is connected to the TLM 2.0 Bus through the target port and is allocated to a part of
the address range of the RISC-V CPU core. The development of DLA VP platform was
previously published, and we have integrated the DLA VP into the framework in this paper.
Please refer to the details [15].

The DLA module is composed of several modules to perform neural network opera-
tions such as convolution, activation, and pooling, as shown in Figure 5. The internal data
structure of the DLA module includes GSFR (Global Special Function Register) and Buffers.
GSFR is the memory-mapped register area that the RISC-V CPU core accesses by being

Electronics 2022, 11, 1041 9 of 19

mapped to the CPU’s address range. An application running on the VP can execute neural
network models and individual operation with the DLA module by setting configurations
of the network model to the GSFR area. The register values that can be set are as follows.
For convolution settings, filter size, stride length, parameter type, and bias type can be set.
The filter size can be set from 1 × 1 to 3 × 3, and the stride length can be set. In addition,
the width, height, and size for the image are set, and the locations of the memory address
of image and parameters such as weight and bias value are set in register set. The registers
for activation and pooling configuration also exist within the register set. We can specify
the activation type as a register value, in which the activation types supported by DLA
are ReLU and leaky ReLU. The pooling type also can be specified as a register value, and
pooling supports min, max, and average pooling. The pooling sizes supported by the DLA
are 2 × 2 and 3 × 3. The internal Buffer is a buffering space used to temporarily buffering
data for neural network operations. The buffer is subdivided into image, parameter, temp,
CPIPE and APIPE data buffers according to the characteristics of the data.

Loader

PEPE PE PE

Activation

CPIPE

APIPE

...

GSFR

IMG
Parameter
Temp
CPIPE

Buffer

Pooling

Memory

RV32IM
CPU Core

APIPE

PEPE PE PE...

TL
M

 2
.0

 B
us

DLA Receiver
/TransmitterSocket I/F

Interfacing with
ESL builder DLA Execution SW

Figure 5. DLA architecture consists of GFSR, Buffer, Loader, and PIPE modules.

Th other Internal modules include the loader and PIPE modules. The loader module
is an interface module that is connected to the outside of the DLA module. Between DLA
and memory, all data for neural network operation is transmitted and received through
the loader module through DMA operation. The loader module reads data from the
main memory to process deep learning operations and writes back the resulting data to
main memory. The PIPE module further divides into CPIPE and APIPE modules. The
CPIPE module performs the convolution operation with loaded image data and weight
parameters, and the APIPE module performs the activation or pooling operations. The
element that performs the actual neural network operation in PIPEs is the Processing
Element (PE) module. For pipelined and parallel neural network operation, vector-based
MAC is performed by grouping groups of 4 units.

The interworking between the ESL builder and the DLA platform is also described in
Figure 5. When the ESL builder transmits a specific neural network model and parameters
converted in the format executed on the DLA platform to the DLA platform through
the socket interface, the DLA Receiver/Transmitter of the DLA platform receives the
corresponding information. This information is then delivered to the DLA execution SW,
and it performs neural network operations through the DLA module. To execute neural
network operation in the DLA module, a RISC-V-compiled software is required. The DLA
execution SW is the software compiled by RISC-V toolchain, and thus can be executed on
the RISC-V core. After completing the neural network operation, the results are then sent
back to ESL builder via the DLA Receiver/Transmitter.

4. Experiments

In the framework architecture, the front-end and back-end are implemented in JavaScript
as a web framework based on react, inference engine is implemented in C, and the DLA VP

Electronics 2022, 11, 1041 10 of 19

for edge device simulation is implemented in SystemC. Since the front-end GUI platform
provides a web environment, users use the framework through the web interface. Using the
framework implemented in this paper, users may derive and analyze the results by chang-
ing and applying various factors affecting performance and overhead of various neural
network models through a GUI interface, and users may estimate hardware performance
such as memory buffer and operation time by running it on the hardware DLA VP. Interface
features available to users include model conversion and visualizer, file manager, inference
settings such as normal inference, stepping inference, cross inferences, and execution with
DLA VP platform.

4.1. GUI Interface of Front-End

The initial interface of the framework and the arrangement of interfaces for each
function are shown in Figure 6. As shown in the figure, the initial interface has four
elements according to each function: user login, visualizer, file manager, and inference. The
user login is an interface for user management, and the visualizer is a user interface that
graphically displays information about the network model being used. File manager is
an interface to manage neural network models in the framework. As shown in the figure,
the users may create, delete, and manage neural network models through the file manager
interface. The inference interface executes inference operations of the selected model among
several models in the framework. This GUI interface provides configuration options to set
model selection, cross inference, inference parameter type, and stepper option for layers, so
users can try to perform inference operation according to the configuration.

Figure 6. The initial interface of the framework and the arrangement of interfaces for each function:
user login, visualizer, file manager, and inference.

4.2. Inference Engine

To run various neural network models in the inference engine or hardware DLA VP
provided in one platform, the model needs to be converted into an executable configuration
in the engine, which is performed by the ONNX converter and NN builder provided in
our framework. Figure 7 shows the conversion progress and results of the neural network
model using the file manager interface that performs model conversion. As shown in the
figure, the file manager interface has the neural network models used in the framework
as a list and provides a button to add a neural network model at the bottom of the GUI.
When the button is clicked, an empty model is added to the list. After that, the user sets
the model by inputting the CFG file and the parameter file for the model. The CFG file

Electronics 2022, 11, 1041 11 of 19

and parameter file are configuration and parameter information of the model converted
by ONNX convert. After that, when the user clicks the ’Convert’ button on the right, the
model is converted into a model format that can be used in our framework.

Figure 7. File manager inferface and converting procedure of a specific neural network model.

The neural network models in the list are run in the inference engine or DLA platform,
and the results can be analyzed graphically through the GUI screen. User interface of the
framework running inference is shown in Figure 8. The left part of the figure describes
user interface for configuring network model to execute inference, the configurations
include selecting model, checking to options of cross inference, selecting parameter type,
and checking to option of stepper inference mode. As shown in left part of the figure,
the framework provides users with an interface to select the neural network model from
the model list. For the selected model, it helps to explore and customize the model or a
specific layer of the model through interfaces such as inference method, inference type with
quantization, and stepper index. First, you can set the inference type to either cross-true or
cross-false. Cross-true is a method that can specify different inference types for each layer
of a neural network model, but cross-false is a method that cannot specify differently. The
inference type that can be specified is a floating-point or integer type. In the stepper indexes
field, you put a specific layer on which to perform neural network operations. Then, an
image is selected as a target for neural network operation. In addition, it is possible to
select whether the corresponding layer setting is performed in the software-based inference
engine or the hardware DLA VP platform through the button shown in the upper middle
part of Figure 8.

Figure 8. GUI interfaces to setting inference options, running inference through inference engine or
hardware DLS VP, and its resulting display.

After the setting for inference, when you click the blue button ’start inference’, the
layer information being executed is displayed such as filter size, stride size, number of
filters, batch size, means and variances, and inference is processed according to the setting,
as shown in the upper middle part of Figure 8. The user can also identify the inference
procedure being performed through the console screen. When the inference is finished,
a message indicating that the inference has been completed is displayed, and the results
created by the layer execution is displayed for each channel according to the settings, which

Electronics 2022, 11, 1041 12 of 19

is shown in the lower middle part of Figure 8. After performing the operation on the
current layer, the user proceeds with the desired operation by using one of the four buttons:
forward, redo, stop, and H/W simulate, shown in the middle of the figure. The forward
button proceeds inference to the next layer, and the redo button performs the current layer
again. The stop button stops and ends the inference. The H/W simulate button lets the
framework perform the HW simulation using the HW platform for the current layer.

We can analyze the inference operation on a specific layer with the statistical informa-
tion of the input and output as well as the resulting images. As an example of the result,
Figure 9 shows the results of performing the inference operation on layer 3 of the yolov3-
tiny neural network model. As shown in the figure, for a specific layer of the neural model,
it can be analyzed by displaying the inference operations according to the configuration
of the layer. In addition, individual statistical analysis of the input data and output data
of the corresponding layer is possible. As shown in Figure 9a,b, layer 3 of yolov3-tiny is a
convolution operation that generates 32 output channels for 16 input channels having a
size of 208 × 208, so the framework displays the result as an image for each channel and
individual statistical information is identified by clicking the image of the corresponding
channel in both input and output.

Figure 9. The results of performing inference of specific layer of selected neural network model.

After analyzing the results and image information of the corresponding layer, we can
perform the inference again with changing parameter values such as weight and bias. If
you click the ’redo’ button after changing some bias or weight values through the parameter
editing GUI interface, inference operation of the corresponding layer is performed again,
as shown in Figure 9c. With those features, you can perform the customization procedure
and analysis like quantization or editing parameter values.

As an example of application to the framework, an object detection application called
Darknet [36], which is widely used for object detection in embedded edge devices, is
applied to our framework by applying the model converting of Darknet yolov2, yolov3, and
yolov3-tiny into our framework. We performed various features such as visualization, file
management, inference, and so on, and it was identified that most of the features provided
by the framework operated normally. The summary of applying features for several

Electronics 2022, 11, 1041 13 of 19

versions of Darknet object detection deep neural network application to our framework is
shown in Table 1. As shown in the table, it is identified that most of the features provided
by the framework are operated normally. The features include file management, inference
method including hybrid inference, stepping inference, and cross inference with different
type of parameters, and visualization of the network model. In addition, the framework also
has augmentation features. The features such as visualizer, file manager, and augmentation
are functional parts, and the functions operate normally. For the inference, it indicates
whether object detection is performed properly through the framework. In the case of
yolo2 and yolov3, inference results were not obtained properly by the cross inference,
which we need to analyze the networks with parameters of cross inferencing. For the case
of yolo3-tiny, all the features of our framework were properly executed. The inference
operations with hybrid, stepping, and cross settings give proper results, and we could
analyze the inference results.

Table 1. Summary of features in the framework with several versions of Darknet object detection
deep neural network applications.

Features yolo2 yolo3 yolo3-Tiny

File Manager O O O

Steping Inference (FP, HYB, INT) 4 4 O

Cross Inference X X O

Visualizer O O O

Augmentation O O O

4.3. Results of DLA VP

The hardware DLA VP platform can simulate the usability of an edge device for neural
network operation, and through this, it provides a direction for estimating performance
and customizing the actual edge device. First, to check whether the implemented hardware
DLA VP normally executes the neural network operation, we performed specific neural
network operation such as Convolution Neural Network (CNN) operation, activation, and
pooling which corresponds to a specific layer of the yolov3-tiny neural network model
on our platform. Specifically, the neural network operations for layers 0, 1, and 13 of
the yolov3-tiny neural network models are executed on both the inference engine and
the hardware DLA VP, and the results are analyzed. Layer 0 performs the convolution
operation using 16 3 × 3 filters on 416 × 416 image with 3 channels to output 416 × 416
image with 16 channels, and layer 1 performs max pooling operation on 416 × 416 image
with 16 channels to output 208 × 208 image with 16 channels. Layer 13 generates an
output of 13 × 13 image with 256 channels by performing convolution operation using
256 13 × 13 filters on 13 × 13 image with 1024 channels.

Figure 10 shows the distribution of image pixel values resulting of each neural network
operation of layer 0, 1, and 13. In the figure, the blue point is the distribution of the result
performed by the inference engine, and the orange point is the distribution of the neural
network operation output performed in the hardware DLA VP platform. As shown in the
figure, most of the pixels of each neural network operation overlap, indicating that the
neural network operation performed by the hardware DLA VP platform is appropriate. In
addition, when performing the neural network operation in the inference engine, we set the
parameters with 32-bit floating point, while we set the parameters with 8-bit integer when
performing neural network operation in hardware DLA VP to see the quantization effects
on the neural network operations. From the figure, it is identified that the results of neural
network operations overlap in most areas, which means that parameter simplification using
quantization does not significantly reduce the accuracy of neural network computation
on edge devices. When we performed a quantitative similarity check using the cosine
similarity method [37], it was confirmed that the similarity was at least 85%. In summary,

Electronics 2022, 11, 1041 14 of 19

from the experiments, we identify that the implemented hardware DLA VP platform
normally executes deep neural network operations, and users can perform simulation on
the edge device using the hardware DLA VP platform for a specific layer of the neural
network model through the GUI interface and analyze the results by comparing the results
of inference engine.

Next, we estimated the performance of various metrics for the hardware DLA VP
platform with neural network operations. If you look at many existing DLAs, in the
detailed implementation the DLA may differ from one another; however, the components
of DLA are similar in general. Although our DLA VP could not represent all other DLAs or
embedded edge devices, the quantitative analysis of performance with our DLA VP can be
used as a reference for designing neural network applications in embedded edge devices.
The purpose of DLA VP is to figure out how much performance effect is derived if various
neural network models and operations are executed on an embedded edge device, and to
give insight to optimize the neural network model for embedded edge devices.

(a) Inference Engine vs. DLA
VP platform for yolo-tiny3
layer 0

(b) Inference Engine vs. DLA
VP platform for yolo-tiny3
layer 1

(c) Inference Engine vs. DLA
VP platform for yolo-tiny3
layer 13

Figure 10. Comparison of each pixel values of inference operation with inference engine and DLA
VP platform that execute layers 0, 1, and 13 of Darknet yolov3-tiny: (a) CNN of 416 × 416 size with
16 filters, (b) max pooling of 416 × 416 size, (c) CNN of 13 × 13 size with 1024 filters. In the figure,
pixel values of inference engine are plotted with blue points while pixel values of DLA VP are plotted
with orange points.

Specifically, our DLA is based on the RISC-V processor, and the DLA controller
architecture consists of the Loader, CPIPE, and APIPE to perform neural network operations.
Each module is divided into sub-modules in detail, and we define operation times at ESL
levels by analyzing the detailed architecture and data flow performed in DLA for each
module. Table 2 shows the sub-modules within the DLA controller, and summarizes
the operation times consumed by each sub-module of DLA. Of course, operation times
are changeable manually according to modeling, and performance estimation may also
vary according to the changed values. As shown in the table, the Loader module is
internally composed of Router, Data, and Requester modules. The CPIPE module consists
of con2CPIPE, 4 PEs, and CPIPEDone, and the APIPE module consists of con2APIPE, 4
PEs, and APIPEDone. The PE modules in CPIPE and APIPE are modules that perform
convolution or activation/pooling operations. In this experiment, it was set for 4 PEs
to perform parallel operation with the data path outside, which may be changed by
DLA configurations.

Electronics 2022, 11, 1041 15 of 19

Table 2. Configuration parameters of sub-modules within the DLA for hardware simulation.

(Unit) Loader Module

Memory Delay per Byte Router Data Requester Sum

5 11 43 10 64

CPIPE APIPE

con2CPIPE 4 PEs CPIPEDone Sum con2APIPE 4 PEs APIPEDone Sum

555 1114 67 1736 208 399 100 707

The performance metrics provided by the hardware DLA VP include the amount
of data transmitted to the DLA, the number of calls for each module, and the estimated
execution time of each module according to a specific neural network operation. These
metrics can be monitored through the GUI interface. Based on those settings of operation
times, we performed the convolution neural network operation and the subsequent max
pooling operation for layer 0 and layer 13 of yolov3-tiny on the hardware DLA VP, and esti-
mated the performance with those metrics. The experimental results for each performance
metric are described in Table 3. As shown in the table, we can compare and analyze the
performance metrics estimated when performing neural network computations in hard-
ware DLA VP with respect to the configuration of specific neural network computations.
Specifically, when performing neural network operation, according to the configuration
such as image size, the number of channels, and the number of outputs, we get inspiration
about what is the distribution of the transferring amount through the data buffer, and what
is the distribution of the call count of each internal module in the DLA module in detail.
From the experimental results, we can compare the performance metrics such as relative
amount of data buffer or parallelism levels of PEs running neural network operation by
comparing the configurations of layers like layer 0 consisting of large images with small
channels and outputs while layer 13 consists of small images with large channels and
outputs. According to this quantitative analysis, we can have insight into determining how
much to size the data buffer and how many PEs to perform neural network calculations
according to the layer configuration of the neural network model. By doing this, more
optimized neural network application will be possible by determining in real time how
much buffer is required or how to parallelize the PE on an embedded edge device.

Electronics 2022, 11, 1041 16 of 19

Table 3. Simulation results for the configured parameters. It executes layer 0 and 13 of yolov3-tiny
with hardware DLA VP.

Layer 0 Layer 13
Metrics (416 × 416 with 3 Channels, 16 Outputs) (13 × 13 with 1024 Channels, 256 Outputs)

Amount of
Data transfer(KB)

IMG 2028 IMG 169

Para. 1.125 Para. 6144

Temp 5408 Temp 338

CPIPE 2704 CPIPE 42.25

APIPE 2704 APIPE 169

Call Counts
per Each Module(#)

Loader 34 Loader 276

CPIPE 359,424 CPIPE 3,407,872

APIPE 232,960 APIPE 6656

Estimated Execution
Time (unitx106)

Loader 65.76704 Loader 35.13472

CPIPE

CON2CPIPE 199.48032

CPIPE

CON2CPIPE 1891.36896

4PEs 400.398336 4PEs 3796.369408

CDONE 24.081408 CDONE 228.327424

APIPE

CON2APIPE 48.45568

APIPE

CON2APIPE 1.384448

4PEs 92.95104 4PEs 2.655744

ADONE 23.296 ADONE 0.6656

5. Conclusions

Since DNN operation generally requires a lot of computing resources, a high-performance
computing system is mainly used for DNN-based applications. However, recently, appli-
cations using DNN in low-spec computer systems such as embedded edge devices are
increasing. One of the instances is IoT systems. DNN operation can be divided into training
and inference. In the case of DNN application in the IoT system, training is mainly per-
formed in the server and inference is performed on the edge device. However, edge devices
still take a lot of loads in inference operations due to low computing resources. A lot of
research has been done to make the DNN operation work normally in the embedded edge
device. In terms of the DNN algorithm, research has been conducted mainly on applying
algorithm enhancement such as neural network layer compression, parameter quantization,
or editing in neural networks. On the hardware side, there was a study adding an inde-
pendent Deep Learning Accelerator for hardware acceleration in edge devices. However,
there are few integrated frameworks that can explore and customize inference operations
for various DNN models to optimize DNN in edge devices.

In this paper, we developed an integrated framework that can explore and customize
inference operations of various CNN models on embedded edge devices. The frame-
work provided in this paper consists of the GUI interface part, inference engine part,
and hardware DLA VP part. As a key feature, by applying the ONNX-based standard
model expression, various existing DNN models can be integrated and compared into our
framework and provide integrated interoperability for various neural network models.
The inference engine has several neural network customization techniques for embedded
edge devices such as hybrid quantization, stepper and cross-inference functions. In addi-
tion, hardware performance estimation is possible using the hardware DLA VP platform.
Since all interfaces are provided as web-based GUIs, users utilize them through the web.
Currently, the framework and HW DLA VP have limitations in that they operate on only
CNN models. There are some cases in which normal results were not obtained for specific

Electronics 2022, 11, 1041 17 of 19

features. In further work, we plan to expand the framework to be able to operate on a
wider field of DNN inference operations with edge devices.

Author Contributions: Conceptualization, S.-H.L. and S.-Y.C.; methodology, S.-H.L.; software, S.-
H.K., B.-H.K., J.R. and C.L.; validation, S.-H.K., B.-H.K., J.R. and C.L.; formal analysis, S.-H.L.,
S.-H.K., B.-H.K., J.R. and C.L.; investigation, S.-Y.C.; resources, S.-H.K., B.-H.K., J.R. and C.L.; data
curation, S.-H.L., B.-H.K., J.R. and S.-Y.C.; writing—original draft preparation, S.-H.L.; writing—
review and editing, S.-H.L. and S.-Y.C.; visualization, S.-H.L.; supervision, S.-H.L. and S.-Y.C.; project
administration, S.-H.L. and S.-Y.C.; funding acquisition, S.-H.L. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the MSIT (Ministry of Science and ICT), Korea, under
the National Program for Excellence in SW, supervised by the IITP (Institute of Information &
Communication Technology Planning & Evaluation)(2019-0-01816). This work was funded by
Genesys Logic. Inc. This work was supported by the National Research Foundation of Korea
(NRF) grant funded by the Korean government (MSIT) (NRF-2021R1F1A1048026). This work was
supported by Hankuk University of Foreign Studies Research Fund.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are available from the authors.

Abbreviations
The following abbreviations are used in this manuscript:

DNN Deep Neural Network
GUI Graphic User Interface
DLA Deep Learning Accelerator
ONNX Open Neural Network Exchange
VP Virtual Platform
MAC Multiply-Accumulate
AI Artificial Intelligence
CNTK Microsoft Cognitive Toolkit
DIGITS Deep Learning GPU Training System
GPU Graphica Processing Unit
CPU Central Processing Unit
NN Neural Network
ESL Electronic System Level
TVM Tensor Virtual Machine
FP Floating Point
INT Integer
REL Router and Event Listener
PM Process Manager
FM File Manager
SM Session Manager
AUM Auxiliary Utility Manager
JSON JavaScript Object Notation
CFG Configuration
RISC-V Reduced Instruction Set Computer
TLM Transaction-level Modeling
GSFR Global Special Function Register
ReLU Rectified Linear Unit
PE Processing Element
CNN Convolution Neural Network

References
1. Sundaravadivel, P.; Kesavan, K.; Kesavan, L.; Mohanty, S.P.; Kougianos, E. Smart-log: A deep-learning based automated nutrition

monitoring system in the IoT. IEEE Trans. Consum. Electron. 2018, 64, 390–398. [CrossRef]

http://doi.org/10.1109/TCE.2018.2867802

Electronics 2022, 11, 1041 18 of 19

2. Han, S.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Networks with pruning, trained quantization and
Huffman coding. arXiv 2015, arXiv:1510.00149.

3. Gong, Y.; Liu, L.; Yang, M.; Bourdev, L. Compressing deep convolutional networks using vector quantization. arXiv 2014,
arXiv:1412.6115.

4. Chandrasekhar, V.; Lin, J.; Liao, Q.; Morère, O.; Veillard, A.; Duan, L.; Poggio, T. Compression of Deep Neural Networks for
Image Instance Retrieval. In Proceedings of the Data Compression Conference, Snowbird, UT, USA, 4–7 April 2017; pp. 300–309.

5. Kim, H.; Jo, G.; Lee, H.; Shin, D. Filter-Wise Quantization of Deep Neural Networks for IoT Devices. In Proceedings of the 2021
IEEE International Conference on Consumer Electronics, Las Vegas, NV, USA, 10–12 January 2021.

6. Howard, A.; Zhu, M.; Chen, B.; Kalenichenoko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861.

7. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1800–1807.

8. Vanhoucke, V.; Senior, A.; Mao, M.Z. Improving the speed of neural networks on CPUs. In Proceedings of the Deep Learning and
Unsupervised Feature Learning NIPS Workshop, Granada, Spain, 12–17 December 2011; Volume 1, pp.1–8.

9. Kim, E.; Lee, K.H.; Sung, W.K. Recent Trends in Lightweight Technology for Deep Neural Networks. Korean Inst. Inf. Sci. Eng.
2020, 38, 18–29.

10. NVIDIA Corporation. Nvdla Open Source Project. 2018. Available online: http://nvdla.org/primer.html (accessed on 30
July 2020).

11. Chen, Y.; Yang, T.; Emer, J.; Sze, V. Eyeriss v2: A Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices.
IEEE J. Emerg. Sel. Top. Circuits Syst. 2019, 9, 292–308. [CrossRef]

12. Wu, N.; Jiang, T.; Zhang, L.; Zhou, F.; Ge, F. A Reconfigurable Convolutional Neural Network-Accelerated Coprocessor Based on
RISC-V Instruction Set. Electronics 2020, 9, 1005. [CrossRef]

13. Li, Z.; Hu, W.; Chen, S. Design and Implementation of CNN Custom Processor Based on RISC-V Architecture. In Proceedings of
the 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International
Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Zhangjiajie,
China, 10–12 August 2019; pp. 1945–1950.

14. Porter, R.; Morgan, S.; Biglari-Abhari, M. Extending a Soft-Core RISC-V Processor to Accelerate CNN Inference. In Proceedings of
the 2019 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 5–7
December 2019; pp. 694–697.

15. Lim, S.-H.; Suh, W.W.; Kim, J.-Y.; Cho, S.-Y. RISC-V Virtual Platform-Based Convolutional Neural Network Accelerator Imple-
mented in SystemC. Electronics 2021, 10, 1514. [CrossRef]

16. Zhang, G.; Zhao, K.; Wu, B.; Sun, Y.; Sun, L.; Liang, F. A RISC-V based hardware accelerator designed for Yolo object detection
system. In Proceedings of the 2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE),
Fuzhou, China, 26–29 April 2019.

17. Migacz, S. NVDLA 8-bit Inference with TensorRT. In Proceedings of the GPU Technology Conference, San Jose, CA, USA, 8–11
May 2017.

18. Nguyen, G.; Dlugolinsky, S.; Bobáket, M.; Tran, V.; Garcia, A.; Heredia, I.; Malik, P.; Hluchy, L. Machine Learning and Deep
Learning Frameworks and Libraries for Large-scale Data Mining: A Survey. Artif. Intell. Rev. 2019, 52, 77–124. [CrossRef]

19. Erickson, B.J.; Korfiatis, P.; Akkus, Z.; Kline, T.; Philbrick, K. Toolkits and Libraries for Deep Learning. J. Dig. Imaging 2017, 30,
400–405. [CrossRef] [PubMed]

20. TensorBoard: TensorFlow’s Visualization Toolkit. Available online: https://www.tensorflow.org/tensorboard (accessed on 1
August 2020).

21. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32
(NeurIPS 2019), Vancouver, Canada, 8–14 December 2019.

22. Yeager, L.; Bernauer, J.; Gray, A.; Houston, M. Digits: The Deep Learning GPU Training System; ICML AutoML Workshop: Lille,
France, 11 July 2015.

23. Pico-CNN. Available online: https://github.com/ekut-es/pico-cnn (accessed on 1 August 2020).
24. ONNX. Available online: https://github.com/onnx/onnx (accessed on 1 July 2020).
25. Lim, S.H.; Kang, S.H.; Ko, B.H.; Roh, J.; Lim, C.; Cho, S.Y. Architecture Exploration and Customization Tool of Deep Neural

Networks for Edge Devices. In Proceedings of the 40th IEEE International Conference on Consumer Electronics, Las Vegas, NV,
USA, 7–9 January 2022.

26. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe: Convolutional Architecture
for Fast Feature Embedding. arXiv 2014, arXiv:1408.5093.

27. Theano Development Team. Theano: A Python framework for fast computation of mathematical expressions. arXiv 2016,
arXiv:1605.02688.

28. Seide, F.; Agarwal, A. CNTK: Microsoft’s Open-Source Deep-Learning Toolkit. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016.

http://nvdla.org/primer.html
http://dx.doi.org/10.1109/JETCAS.2019.2910232
http://dx.doi.org/10.3390/electronics9061005
http://dx.doi.org/10.3390/electronics10131514
http://dx.doi.org/10.1007/s10462-018-09679-z
http://dx.doi.org/10.1007/s10278-017-9965-6
http://www.ncbi.nlm.nih.gov/pubmed/28315069
https://www.tensorflow.org/tensorboard
https://github.com/ekut-es/pico-cnn
https://github.com/onnx/onnx

Electronics 2022, 11, 1041 19 of 19

29. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al.
TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. arXiv 2016, arXiv:1603.04467. Available online: https:
//www.tensorflow.org/ (accessed on 1 March 2020).

30. Apache TVM. Available online: https://tvm.apache.org (accessed on 1 December 2021).
31. Sharp, High Performance Node.js Image Processing. Available online: https://sharp.pixelplumbing.com/ (accessed on 1

December 2021).
32. Google, Protocol Buffers. Available online: https://developers.google.com/protocol-buffers (accessed on 1 December 2021).
33. Waterman, A.; Asanovi’c, K. The RISC-V Instruction Set Manual; Volume I: User-Level ISA; SiFive Inc. and CS Division, EECS

Department, University of California: Berkeley, CA, USA, 2017.
34. Waterman, A.; Asanovi’c, K. The RISC-V Instruction Set Manual; Volume II: Privileged Architecture; SiFive Inc. and CS Division,

EECS Department, University of California: Berkeley, CA, USA, 2017.
35. Herdt, V.; Groβe, D.; Le, H.M.; Drechsler, R. Extensible and Configurable RISC-V Based Virtual Prototype. In Proceedings of the

2018 Forum on Specification and Design Languages (FDL), Munich, Germany, 10–12 September 2018; pp. 5–16.
36. Redmon, J.; Farhadi, A. Yolo9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.
37. Cosine Similarity. Available online: https://en.wikipedia.org/wiki/Cosine_similarity (accessed on 1 December 2020).

https://www.tensorflow.org/
https://www.tensorflow.org/
https://tvm.apache.org
https://sharp.pixelplumbing.com/
https://developers.google.com/protocol-buffers
https://en.wikipedia.org/wiki/Cosine_similarity

	Introduction
	Background and Related Work
	Optimization and Acceleration for Embedded Edge Devices
	Frameworks for Neural Networks

	Integrated Framework for Edge Devices
	GUI Platform
	Inference Engine
	DLA Platform Part

	Experiments
	GUI Interface of Front-End
	Inference Engine
	Results of DLA VP

	Conclusions
	References

