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Abstract: Multi-camera vehicle tracking at the city scale has received lots of attention in the last
few years. It has large-scale differences, frequent occlusion, and appearance differences caused by
the viewing angle differences, which is quite challenging. In this research, we propose the Tracklet
Similarity Network (TSN) for a multi-target multi-camera (MTMC) vehicle tracking system based on
the evaluation of the similarity between vehicle tracklets. In addition, a novel component, Candidates
Intersection Ratio (CIR), is proposed to refine the similarity. It provides an associate scheme to build
the multi-camera tracking results as a tree structure. Based on these components, an end-to-end
vehicle tracking system is proposed. The experimental results demonstrate that an 11% improvement
on the evaluation score is obtained compared to the conventional similarity baseline.

Keywords: vehicle tracking; multiple camera; tracklet similarity; deep learning

1. Introduction

With the recent advancement of computer vision, city-scale automatic traffic manage-
ment is now possible. Real-time multi-target multi-camera (MTMC) vehicle tracking can
be improved by techniques for automatic traffic monitoring and management [1–6]. Auto-
matic video analytics can enhance traffic infrastructure design and congestion handling
through the pervasively deployed traffic cameras.

Real-time multi-target multi-camera tracking is one of the crucial tasks in traffic
management. Its purpose is to achieve better traffic design and traffic flow optimization
by tracking many vehicles in a network across multiple surveillance cameras, as shown in
Figure 1. Most approaches in MTMC follow the tracking by detection pipeline. Firstly, a
detector is adopted to obtain all vehicle detections. After vehicle detection, a single-camera
tracker needs to form vehicle tracklets of the same vehicle in each view. Then, these vehicle
tracklets are associated across cameras.

There are also several difficulties for the MTMC task. The problems of how to eliminate
unreliable vehicle tracklets and deal with view variations are significant in these tasks.
Large-scale automatic video analytic systems must handle a large variability of vehicle
types and appearances to meet the accuracy and reliability requirements in the real world.
For applications such as vehicle re-identification, large view variations cast a significant
challenge in vehicle re-identification across views. Similarly, how best to perform space–
time vehicle tracklet association across views is important for vehicle counting and traffic
analysis. In addition, images are captured by different cameras. The vehicle may have
different poses and illumination conditions, resulting in different colors of the appearances.
Different weather conditions, such as raining or hazing, make vehicle tracking problems
more challenging.

Existing works [7,8] evaluate the connectivity between tracklets across cameras by
simple Euclidean distance and cosine similarity. However, these metrics are not robust
enough to measure the connectivity in tracklets. Moreover, when one tracklet is associated
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only with a tracklet having the highest similarity score, it does not fully use the information
of the whole ranking list. To address these problems, a novel Tracklet Similarity Network
(TSN) and Candidate Intersection Ratio (CIR) metric is proposed. TSN can better learn
robust similarity scores. CIR and its corresponding association scheme can better leverage
the ranking information of the tracklets.

Figure 1. A multi-target multi-camera tracking example. The four subfigures show different views
captured by cameras. The bounding box with the same color refers to the same car across cameras.

In this paper, the proposed MTMC system is proposed via a complete pipeline. Firstly,
Faster-RCNN is adopted as the vehicle detection module. Then, the TrackletNet tracker
can generate tracklets based on vehicle detection results. Filters are applied to eliminate
unreasonable tracklets. Finally, the proposed TSN evaluates similarities between tracklets,
and the CIR matching scheme associates tracklets across cameras. To sum up, the contribu-
tions of this paper include the following. (1) Several novel components are proposed in this
paper. Re-Id Block learns the feature representation for each tracklet rather than applying
CNN to extract image features. Disentangle Block separates the tracklet feature from
cameras to learn a camera-independent feature by exploiting camera loss and the ranked
list loss functions. Similarity Measurement Block leverages strong similarities information
from the ranking list of tracklets rather than using the tracklet with the highest score alone
via a random walk scheme. (2) The aforementioned components are exploited to build
an end-to-end deep multi-camera vehicle tracking model. (3) The experimental results
demonstrate that an 11% improvement on the evaluation score is obtained compared to the
conventional similarity baseline. The proposed CIR outperforms the pairing method over
3.6% by the Cosine Similarity and nearly 2% by the IDF1 score.

2. Related Work
2.1. Single-Camera Tracking

The tracking-by-detection paradigm has been dominant in single-camera tracking
tasks. DeepSORT [9] combines the Kalman filter [10] and Hungarian algorithm [11]. The
Kalman filter helps predict the next position of a tracklet. The Hungarian algorithm is a
data association method. It is used to associate tracklets. However, tracking-by-detection is
a time-consuming process. The JDE tracker [12] is proposed to address this problem. The
JDE tracker can generate vehicle detection and embeddings simultaneously so that it can
save significant time. Yang et al. [2] propose a tracklet reconnection technique in SCT. They
leverage GPS information and pre-defined zone areas to refine tracklet results.
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2.2. Multi-Camera Tracking

Multi-camera tracking aims to associate tracklets across cameras. Most approaches
follow the pipeline of vehicle detection, vehicle feature extraction, single-camera tracking,
and multi-camera tracking. These approaches can be classified into three categories: ve-
hicle feature extraction, hierarchical structure, and exception handling methods. Many
multi-camera tracking methods focus on representative feature extraction for tracking.
He et al. [1] propose a spatial–temporal attention mechanism in their feature extraction
module. Therefore, they can generate more robust tracklet features. Ristani et al. [13]
proposed adaptive weighted triplet loss for learning appearance features and hard identity
mining for sampling hard negatives more frequently. Peri et al. [14] introduced an unsu-
pervised excitation layer for highlighting the discriminative saliency region. The saliency
map can increase the robustness and performance of the model. However, these methods
fail to consider feature disentanglement and the variations brought by different cameras.

The second category is hierarchical structure methods. Li et al. [3] develop a hierar-
chical match strategy by the rule-based method. When associating tracklets, many rules
can be considered, such as vehicle speed, directions, motion, etc. Xu et al. [5] presented a
hierarchical composition model to composite the geometry, appearance, and motion of tra-
jectories for multi-view multi-object tracking. Xu et al. [15] exploited semantic attributes by
building a parse tree to relate the same people on different camera views for multi-camera
people tracking. Wen et al. [16] achieve multi-camera multi-target tracking by formulating
the problem as a sampling-based search of the space–time view hypergraph. The hyper-
graph is able to encode higher-order constraints on 3D geometry, motion continuity, and
trajectory among 2D tracklets within and across different camera views. These methods
capture multi-view objects by adding the physical properties of objects. However, their
formulations usually have many parameters for different terms. The parameter tuning is
difficult and time consuming.

The third category is exception handling methods. You et al. [17] utilizes local pose
matching to solve the occlusion problem for multi-target multi-camera tracking. Optical
flow is applied to reduce the distance caused by fast motion. The idea can be extended
from pedestrians to vehicles easily. Specker et al. [18] consider that most tracking errors
of false detection occur in occlusions. They develop an occlusion handling approach by
labeling the overlap higher than a non-maximum suppression threshold as an occlusion
pair. The occlusion information is leveraged for removing false detections and multi-camera
clustering for tracking.

Bredereck et al. [6] proposed a data association method with the greedy algorithm to
associate trackers for multi-object tracking. Some physical constraints are used to make the
tracklet reliable. The aforementioned research evaluates the similarity between tracklets
by simple cosine similarity, Euclidean distance, or handcrafted metric. Instead of using
evaluation metrices, Hou et al. [4] proposed a network to measure the similarity. They
adopt temporal sliding windows in their data sample method to capture the local temporal
feature of tracklets. In comparison, our method proposes deep neural network learning
features across cameras and exploits the Random Walk method to refine the similarity by
further considering the relationships between tracklets in the target gallery.

2.3. Random Walk

The Random Walk algorithm is a graphical method to determine the probability of
one point to another point. An initial probability can be defined for the graph that decides
which point to start. For each walking step, the point-to-point probability is updated. After
a few iterations, the probability will be stabilized. Ref. [19] proposed a random walk layer
in deep neural networks. The network calculates the refined affinities between probe image
and gallery images. By calculating cross-entropy loss with refined affinities, the network
can be updated with stronger supervision. Motivated by [19], we exploit and design an
additional random walk layer in our model.
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2.4. Ranked List Loss

Triplet Loss [20] is widely used for learning similarity and dissimilarity semantic
information of data. The Triplet Loss is computed to ensure that an anchor image xa

i is closer
to positive samples xp

i while pushing away from negative samples xn
i and maintaining a

margin distance m in feature space f :

Ltriplet = ∑
i

[
‖ f (xa

i )− f (xp
i )‖

2
2 − ‖ f (xa

i )− f (xn
i )‖2

2 + m
]
+

(1)

where [·]+ denotes the hinge function. However, it is known to cause slow convergence.
Ranked List Loss (RLL) [21] is proposed to address this problem by pushing negative
samples from a boundary α, maintaining a margin m between positive samples and negative
samples, and pulling closer positive samples within a boundary α−m. This paper adopts
Ranked List Loss for features disentanglement to maintain intra-class compactness and
inter-class separation; this method helps learn more discriminative features.

3. Proposed Method

Following the tracking-by-detection paradigm, the framework of vehicle tracking is
composed of three stages: (1) vehicle detection, (2) single-camera tracking, and (3) multi-
camera tracking. In the first stage, video frames are extracted and used as the input into a
vehicle detector. The bounding boxes are determined and passed into a feature extraction
module. In the single-camera tracking stage, the bounding boxes under the same camera
are associated altogether to build vehicle tracklets. Parked cars or bounding boxes with
no car are likely to appear in the vehicle tracklets. Therefore, three filters are designed to
remove false positive samples. In the last stage, the Tracklet Similarity Network is used
to calculate the similarity between tracklets. The Candidates Intersection Ratio is used to
refine the similarity and obtain the final similarity results. A CIR association scheme can
represent the same tracklet under different cameras as a tree structure. The pipeline of the
system framework is depicted in Figure 2.

Figure 2. Multi-target multi-camera tracking pipeline.

3.1. Revisiting of Random Walk

The Random Walk algorithm is widely used to refine the probability to a stable status.
Let A ∈ Rn×n denote the pairwise affinities of gallery objects, where n is the number of
gallery objects, and f0 denote the initial affinities between the query object and other objects.
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To keep the sum of each row equal to one ∑j A(i, j) = 1, let S store the value of A. A(i, j)
can be normalized as follows.

A(i, j) =
exp S(i, j)

∑i 6=j exp S(i, j)
(2)

A(i, j) is set to 0 for i = j. Then, the distribution can be updated by Equation (3).

ft = f0 At (3)

where ft denotes the distribution after t iterations.
To avoid the affinities deviating too far away from the initial affinities, the refined

affinities and initial affinities are combined.

ft = λA ft−1 + (1− λ) f0 (4)

After several derivation steps, the equation can be re-written as follows.

f∞ = (1− λ)(I − λA)−1 f0 (5)

In this paper, we adopt Equation (5) to integrate the Random Walk algorithm in the
proposed deep network.

3.2. Tracklet Similarity Network

The Tracklet Similarity Network (TSN) is proposed to calculate the similarity between
tracklets. TSN consists of three building blocks, including ReID Block, Disentangle Block,
and Similarity Measurement Block, as depicted in Figure 3.

Figure 3. The architecture of the Tracklet Similarity Network.

ReID Block. The ReID block aims to learn the feature representation of the tracklet.
The ResNet series includes the most popular CNN models in the computer vision field. IBN-
Net is usually used to enhance ResNet, since it is appearance-invariant without additional
computational consumption. Therefore, ResNet-101-IBN-Net becomes a common backbone
model for feature extraction in the vehicle re-identification problem. ResNet101-IBN-Net-
a [22] is exploited to extract the feature for each video frame, which is denoted as f̃ . The
mean and standard deviation of features extracted from each frame within the tracklet are
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calculated and concatenated. This forms the tracklet feature by the 4096-dimension. Denote
~f as the tracklet feature. The feature extraction module is fixed during the training process.

Disentangle Block. Videos from different cameras may have different color tones or
brightness. Basically, camera specification has its impact on the image feature learned from
images from that camera. Therefore, using the camera ID as the answer of classification
enforces the deep model to learn camera-specific features. The is the reason to introduce
Camera Cross-Entropy Loss to learn the classifier and extract the camera feature. To reduce
the impact brought by cameras, we can disentangle the camera feature from the tracklet
feature. Technically, the following process can be applied.

The feature representation learned from the ReID Block is used as the input into the
camera encoder to learn the camera feature, ~fcam. Several fully connected layers are served
as the classifier for camera ID classification. The learning of camera features is optimized via
the cross-entropy loss of camera ID. Next, the camera feature is subtracted from the tracklet
feature; the feature without camera information denotes ~f ′. Finally, we use the ranked list
loss to ensure that the learned disentangled feature can distinguish the difference between
tracklets. The details of ranked list loss are introduced in the next subsection.

Similarity Measurement Block. The similarity measurement block leverages the
disentangled feature to measure the similarity between each tracklet. Denote ~fa−e the
residual by subtracting ~f ′e from ~f ′a. This extracts more discriminant features for each
tracklet. Three fully connected layers are exploited to measure the similarity between each
tracklet. Each dimension of the output represents the similarity score between one tracklet
to another tracklet. Finally, a random walk is used to refine the similarity. The network
is optimized with the refined similarity by cross-entropy loss. Although the random
walk matrix provides full affinities for each pair of the tracklets, only the similarity scores
between the query and the gallery are required. One can note that during the calculation
of similarity between the query and the gallery, the similarities between gallery tracklets
are considered altogether. Once we consider the similarity between the query tracklet A to
the gallery tracklet B, the similarity is affected by the similarities between tracklet B and
tracklet C, D, and E as well. This leverages the information not only between query and
gallery but also similarities between gallery tracklets.

Loss Function. The cross-entropy loss is used when learning the camera features for
each tracklet. The camera cross-entropy loss can be formulated as follows.

LCAM = − 1
N

N

∑
i=1

yi
cam log(ŷi

cam) (6)

where ŷi
cam is the camera ID of the prediction, and yi

cam is the target.
The binary classifier distinguishes tracklet similarity through refined affinities from

the random walk. Similarly, the classifier is optimized by the similarity binary cross-entropy
loss using the following formula:

LSIM = − 1
N

N

∑
i=1

yi
sim log(ŷi

sim) + (1− yi
sim) log(1− ŷi

sim) (7)

where ŷi
sim is the similarity of the prediction, and yi

sim is the target.
The ranked list loss is adopted to distinguish positive and negative samples. The

ranked list loss is defined as:

Lm(xi, xj) = (1− yij)[α− dij]+ + yij[dij − (α−m)]+ (8)
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where [·]+ refers to the hinge function, and

LRLL =
1
N ∑
∀c,∀i

0.5 ∑
xc

j∈|P
∗
c,i |

1
Pc
Lm(xc

i , xc
j )

+

0.5 ∑
xc

j∈|N
∗
c,i |

1
Nc
Lm(xc

i , xc
j )

 (9)

where x denotes the tracklet feature, and yij ∈ {0, 1} denotes whether the identity of xi and
xj is the same or not. If xi and xj are the same identity, yij is 1. Otherwise, it is 0. dij denotes
the Euclidean distance between xi and xj. α is the negative boundary, and m represents the
margin of the positive and the negative sample. To minimize Lm, the distance between
the data sample and the positive sample is constrained to be lower than α−m, while the
distance between the data sample and the negative sample aims to be larger α. In the loss
function LRLL, xc

i means data sample xi is from class c. |P∗c,i| denotes the set of all positive
samples to xc

i . Thus, the first term of Equation (9) calculates the average distance of data
sample xi and all its positive samples over all data samples and all classes. Similarly, |N∗c,i|
denotes the set of all negative samples to xc

i . LRLL calculates the average distance from
data sample to its positive negative samples.

The total loss for the Tracklet Similarity Network is defined as follows.

Ltotal = λRLLLRLL + λCAMLCAM + λSIMLSIM (10)

3.3. Candidates Intersection Ratio

We develop the CIR tracklet matching metric to evaluate the similarity between two
tracklets for the calculation and ranking of tracklet associations iteratively, and the asso-
ciation will be performed hierarchically similar to the standard agglomerative clustering
algorithm in hierarchical clustering. We follow a similar notation in considering a tracklet
A with matching candidates LA and another tracklet B with matching candidates LB. The
CIR metric for evaluating the association similarity of the matching list of tracklets LA and
LB is defined as:

CIR(LA, LB) =
size(LA ∩ LB)

min(size(LA), size(LB))
(11)

Figure 4 shows an example of the CIR metric calculation, where the intersection of
the matching list of two tracklets is calculated according to Equation (11) to determine if
the two tracklets should be associated together (i.e., merged or linked, and regarded as the
tracklets of the same vehicle across views).

Figure 4. A Candidates Intersection Ratio example.

The CIR tracklet association algorithm performs iteratively by considering all such
(LA, LB) pairs across views. Initially, all distinct (unassociated) tracklets are regarded as
individual nodes without edges connecting them. The matching list of associated tracklets
is constructed by associating the pair (LA, LB), and repeated association yields a binary
tree-like structure, where the root of the tree indicates the vehicle ID of this association tree.
This way, the association tree is constructed by regarding tracklets and their CIR similarity
as nodes and edge weight. During tree construction, we enforce that the size of the parent
node must be larger or equal to the size of the children nodes. This way, a unique vehicle
ID should be retained for each tree throughout the whole iterative association process.



Electronics 2022, 11, 1008 8 of 16

We iteratively compute the CIR score between every tracklet and the tracklets of sizes
smaller or equal to the first one. Figure 5 illustrate an example of the tracklet association.
In the association of tracklet A to its candidates, we find that tracklet B contains a larger
CIR score with tracklet A (where the score > threshold). Therefore, tracklet A is assigned
as the parent node of tracklet B. By repeating this process, we can cluster the same tracklets
as a tree.

Figure 5. A tracklet association example during the execution of the CIR association. Suppose tracklet
B has the max CIR with tracklet A. Since the size of tracklet B is smaller than the size of tracklet A,
tracklet A is assigned as tracklet B’s parent. We repeat this process and group the tracklets as a tree.

In contrast to a naive greedy best-first tracklet association algorithm that only considers
the association of the best-matching pair of tracklets, the proposed CIR tracklet association
considers the matching of the whole matching list of tracklets for optimization.

Avoid cyclic tracklet associations. Repeated tracklet association following the above
steps by associating tracklets with the best-first selection of CIR scores might result in an
unwanted case of cycle associations, where the resulting vehicle ID of the associated set
cannot be uniquely defined, causing problematic MTMC results. To avoid such an issue,
we enforce the following rules during the CIR association steps to explicitly check and
avoid cyclic associations.

1. When the size of the matching list of tracklet A is larger than the size of the matching
list of tracklet B, we assign tracklet B as the child node of tracklet A.

2. If the size of the matching list of tracklet A is equal to the size of the matching list of
tracklet B, we check and make sure that tracklet B is not the ancestor of A. If tracklet
B is indeed the ancestor of A, we assign tracklet B to be the parent of tracklet A.
Otherwise, we assign tracklet A to be the parent of tracklet B.

The CIR association iteration terminates when all pairwise tracklet lists are examined.
Afterwards, we assign the vehicle ID of each tree root to all of its descent nodes. This
completes the CIR multi-camera vehicle tracking. Algorithm 1 shows the detailed steps of
the CIR vehicle tracklet association algorithm in pseudo code.
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Algorithm 1: CIR Tracklet Association.
Input: tracklets T1, ..., TN , number of tracklets N
Output: tracklets after association T′1, ..., T′N
for i = 1 to N do

Calculate the pair-wise cosine similarity Si,j
Obtain Ti.L the matching list of Ti using Si,j
Ti.L := L
//initialize CIR threshold
Ti.max_score := 0.33

for i = 1 to N do
for j = 1 to N do

if (i == j) or (Ti.camera == Tj.camera) or (size(Ti) < size(Tj)) then
continue

score := CIR(Ti.L, Tj.L)
if size(Ti) == size(Tj) then

if is_ancestor(Ti, Tj) then
if score > Ti.max_score then

Ti.parent := Tj
Ti.max_score := score

else
if score > Tj.max_score then

Tj.parent := Ti
Tj.max_score := score

else
if score > Tj.max_score then

Tj.parent := Ti
Tj.max_score := score

for i = 1 to N do
T′i .id := Ti.root_id

3.4. Other System Components

Vehicle Detection and Single-Camera Tracking. In the begining of the multi-target
multi-camera tracking pipeline of Figure 2, Faster R-CNN [23] is adopted as the detector
using ResNet-101 as the backbone model. TrackletNet Tracker [24] is used for single-camera
tracking. TrackletNet Tracker is a graphical model that effectively reduces computational
complexity with temporal information and predicts bounding boxes with epipolar geometry.

Single-Camera Tracklets Filtering. As shown in Figure 6, there is an empty bounding
box. The empty bounding box occurs in two situations: (1) the car is at high speed, and
(2) the car stays for a long time. We propose the tracklet speed filter and the tracklet stay
time filter to deal with the two situations. In addition, we propose the tracklet IoU filter to
eliminate the parked car.

Figure 6. Unreliable tracklet examples.
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The tracklet speed filter is defined as:

v− µv

σv
> τv (12)

where v is the tracklet speed, µv is the average speed in the same camera, σv is the standard
deviation of the speed, and τv is the threshold. The tracklet speed is computed with the
GPS position and duration time. The GPS position and duration time are projected from the
calibration homography matrix provided by AICITY Organization. In this way, the tracklet
speed filter removes the outlier of the tracklet speed. The number of removed tracklets is
3% manually controlled. Similarly, the tracklet stay time filter is defined as:∣∣∣∣ t− µt

σt

∣∣∣∣ > τt (13)

where t is the stay time of the tracklet, µt is the average stay time in the same camera, σv is
the standard deviation of the stay time, and τv is the threshold. With the two filters, we can
remove most of the empty bounding boxes.

The proposed tracklet IoU filter is defined as:

boxs ∩ boxe

boxs ∪ boxe
> τiou (14)

where boxs refers to the first bounding box, and boxe refers to the last bounding box. If the
IoU is greater than the threshold, the car in the tracklet does not move. The filters eliminate
the candidate bounding boxes, thereby reducing mismatched tracklets.

The overview pipeline is described in Algorithm 2. The Single-Camera Tracking
module (SCT) uses video frames as input and outputs the raw tracklets T1 to TNraw . By
conducting three filters: speed, staytime, and IoU, tracklets can be refined as T1 to TN . Then,
they are used as input to the Tracklet Similarity Network (TSN). The output of TSN is the
top N rank list of each query tracklet, which is represented as a matrix of SN×N . After
processing the Candidates Intersection Ratio (CIR), it outputs the final associated tracklets.

Algorithm 2: Multi-target multi-camera tracking pipeline.
Input: video frames f1, . . . , fK
Output: tracklets after association T′1, ..., T′N
[T1, . . . , TNraw ] := SCT( f1, . . . , fK)
[T1, . . . , TNsp ] := filterspeed([T1, . . . , TNraw ]))
[T1, . . . , TNst ] := filterstaytime([T1, . . . , TNsp ]))
[T1, . . . , TN ] := filteriou([T1, . . . , TNst ]))
SN×N := TSN([T1, . . . , TN ])
[T′1, . . . , T′N ] := CIRassociation([T1, . . . , TN ], S)

4. Experimental Results
4.1. Implementation Details

The Disentangle Block comprises fully connected layers; the number of neurons is
given by 4096–4096–32. After this, the Similarity Measurement Block comprises three fully
connected layers of 4096–2048–1024–1, as illustrated in Figure 3. All fully connected layers
in TSN except the classifier are initialized following [25]. In the classifier, the weights are
sampled from the normal distribution with a mean of 0 and a standard deviation of 0.001,
and the biases are set to 0.

In the single-camera filtering stage, we set the three threshold τiou = 0.05, and
τs = τv = 1. If the number of removed tracklets exceeds 3%, the thresholds are added
to 0.5. This procedure is repeated until the number of removed tracklets is less than 3%.
We adopt Stochastic Gradient Descent (SGD) as the optimizer, set the learning rate to 0.001,
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and set the weight decay to 0.3. The α and m are set to 1.4 and 0.8, respectively. Following
the hyperparameter settings, the training process is converged in five epochs. In the CIR
association scheme, we set τsim = 0.8 to determine which candidates can be selected into
the match list. The hyperparameters are listed in Table 1.

The performance analysis of our method is 12.94 fps to process one image during
testing and 6.6 h for training. The evaluation is performed with an AMD Ryzen 9 5950X
CPU and NVIDIA GeForce RTX 3090 GPU. All experiments are repeated three times, and
the average results are reported in the following sections.

Table 1. Hyperparameter settings.

Hyperparameter Value

Hidden layers in the Disentangle Block 4096-4096-32
Hidden layers in the Similarity Measurement

Block 4096-2048-1024-1

Optimizer SGD
Learning rate 0.001
Weight decay 0.3

Batch size 16
Number of epochs 5

α 1.4
m 0.8

τiou 0.05
τs 1
τv 1

λRLL 1.0
λCAM 1.0
λSIM 1.0

4.2. Dataset

We evaluate our method on the CityFlowV2 dataset [26,27]. The dataset contains
six scenes captured by a total of 46 cameras. The length of the videos is 215 min. In the
dataset, three scenes are used for training, two are used for validation, and one is used for
testing. The car is annotated if at least two cameras capture it.

The dataset comprises hard samples and easy samples. A hard sample is a sample that
cannot be correctly sorted by cosine similarity. Otherwise, it is an easy sample. For each
sample, we choose a query tracklet and the corresponding positive and negative gallery
tracklets. The data sample obeys the following rules:

1. The number of positive and negative gallery tracklets must be consistent.
2. The data sample in which the similarity between any negative gallery tracklet and a

query tracklet is greater than the similarity between the positive gallery tracklet and
the query tracklet is a hard sample; otherwise, it is an easy sample.

3. The ratio of hard samples and easy samples is kept to 1:1.

We sample 668 training data and 668 validation data following these rules.

4.3. Evaluation Metric

IDF1, IDP, and IPR [28] are common evaluation indicators for multi-camera tracking
and single-camera tracking and are usually the default indicators for evaluating tracker
capabilities. The formula is defined as follows:

IDF1 =
2IDTP

2IDTP + IDFP + IDFN
(15)

IDP =
IDTP

IDTP + IDFP
(16)
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IDR =
IDTP

IDTP + IDFN
(17)

where IDTP, IDFP, and IDFN represent the true positive, false positive, and false negative
of the vehicle ID, respectively.

MOTA is one of the indicators used to evaluate a single-camera tracker. It does not
calculate the accuracy of the object position but uses the missing rate, misjudgment rate,
and mismatch rate to evaluate the quality of a tracker. The formula of MOTA is listed
as follows.

MOTA = 1−∑
t

(FNt + FPt + φt)

GTt
(18)

where t is the index of the number of frames, FN, FP, and GT are the number of false
negatives, false positives, and ground truths. φ is the number of ID switches.

4.4. Ablation Study

Table 2 presents the results of single-camera tracking filtering. For the baseline method,
parked cars or bounding boxes with no car are likely to appear in the vehicle tracklets
and thus decrease the performance. The proposed three filters improve the single-camera
tracking task by 20% in IDF1 scores. Especially, the IoU filter provides the most significant
improvement.

Table 2. The results of single-camera tracking filtering.

Filters IDF1

baseline 40.99%
speed 44.10%

speed + staytime 51.41%
speed + staytime + IOU 61%

Table 3 presents the effect of the proposed CIR metric. In this experiment, the similarity
metric is cosine similarity, and we use the CIR metric for refinement. The top-1 method in
the table means the tracklet is directly paired with the highest cosine similarity candidate.

Table 3. Comparison of CIR tracklet association against the top-1 baseline.

Method IDF1 IDP IDR

Top-1 42.17% 55.19% 34.13%
CIR 45.80% 64.64% 35.46%

The proposed CIR association scheme can increase the IDF1 score by 3.6% on the
validation set. It significantly reduces the number of false positive samples. The number of
reduced samples is more than 10,000, which brings significant improvement by our method.
It shows that the CIR association scheme can avoid mismatches due to insufficient pairing
information. The IDP and IDR of CIR are also improved by the top-1 method.

Table 4 presents the ablation study brought by each TSN module. The first two
rows are the results of the previous experiments. Under the same similarity metric Cosine
Similarity, the proposed CIR outperforms the pairing method by over 3.6%. The baseline
only uses fully connected layers to predict the results. With the proposed CIR, the IDF1
can be improved close to 2%. Next, we compare the results by adding random walk in
the reranking phase or training phase. IDF1 scores of 50.08% and 50.83% can be obtained,
respectively. Among them, the random walk refined results can be used to calculate the
loss to achieve more substantial supervision. Therefore, a better IDF1 score is achieved
when adding random walk in the training phase.
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Table 4. Performance comparison of TSN modules. DE denotes the disentangle module.

Similarity Metric Association IDF1 IDP IDR

Cosine Top-1 42.17% −− −−
Cosine CIR 45.80% −− −−

Baseline CIR 47.55% 59.40% 39.64%
Baseline + RW reranking CIR 50.08% 69.03% 36.66%
Baseline + RW training CIR 50.83% 65.36% 41.58%

Baseline + RW training + DE CIR 52.68% 71.49% 41.72%
Baseline + RW training + DE + RLL CIR 53.15% 73.49% 41.62%

Finally, we use the disentangle module (DE) to separate the camera feature and the
ranked list loss in the training stage. With the disentangle module, we obtain the result
of 53.15%. This result is 11% higher than the cosine and top-1 methods. In summary, our
TSN can separate camera features from tracklet features and uses Ranked List Loss (RLL)
to limit negative and positive boundaries. Exploiting random walk into the network allows
gallery-to-gallery information to be considered during the training. It makes the similarity
of the prediction from the model more accurate. The IDP goes up to 73.49% when all
components are considered. The IDR score is relatively close when RW, DE, and RLL
are exploited.

Table 5 shows the results of using different samples to train TSN. Easy represents that
the dataset contains only easy samples, while Hard represents that the dataset contains only
hard samples. Merge represents the mixture of easy samples and hard samples. The results
indicate that sampling with an easy sample achieves a result of 48.43%, while using a hard
sample can achieve a result of 49.90%. After mixing the hard and easy samples, the model
benefits from the cosine similarity and avoids TSN from being biased toward hard samples.
The IDF1 can be improved to 53.15%. The IDP is decreased a little while IDR is improved
over 5%.

Figure 7 shows the loss curves of training and validation; following the settings, the
training converges at five epochs.

Table 5. The results of the data sampling method.

Dataset IDF1 IDP IDR

Easy 48.43% 76.81% 35.36%
Hard 49.90% 78.69% 36.54%

Merge 53.15% 76.89% 41.62%

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Epoch

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Lo
ss

Training loss
Validation loss for easy samples
Validation loss for hard samples

Figure 7. Curves of training loss and validation loss on easy and hard samples.
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5. Discussion

The proposed Tracklet Similarity Network (TSN) includes several novel components.
Instead of learning image features from a conventional CNN model, Re-Id Block learns
the feature representation for each tracklet. Then, Disentangle Block learns the camera-
independent feature by exploiting camera loss and ranked list loss functions to achieve
feature disentanglement. Lastly, Similarity Measurement Block leverages strong similarities
information from the ranking list of tracklets via a random walk scheme rather than using
the tracklet with the highest score alone from a query tracklet. The experimental results
demonstrate that each component provides incremental improvement for the IDF1 score.
The associations of vehicles across cameras from TSN can be further refined by the CIR
Tracklet association scheme to achieve multi-camera vehicle tracking. Compared to the
recent multi-camera vehicle tracking framework in Table 6, our work is more devoted to
developing a multi-camera tracking model and scheme. However, in the front end, the
results of single-camera tracking also play an important role in the whole framework, since
multi-camera tracking is applied based on the results of single-camera tracking. If the
accuracy of vehicle detection and single-camera tracking models can be improved, the
overall IDF1 can be also significantly increased. In this paper, only baseline methods of
vehicle detection and vehicle re-identification are exploited in the multi-target multi-camera
tracking framework. For interested readers, please refer to [26] for the state-of-the-art
results. In the future, our model can be extended to include the single-camera tracking
model as a larger end-to-end tracking system. This can be expected to see higher tracking
accuracy.

Table 6. Comparison to the state-of-the-art methods.

Method IDF1

Ren et al. [29] 57.63%
Yang et al. [2] 54.58%

Ours 53.15%

6. Conclusions

The Deep Tracklet Similarity Network is proposed to calculate the similarity between
tracklets. Disentangle techniques are applied to reduce the camera information from the
tracklet features. In addition, the ranked list loss is adopted and shows significant improve-
ment. The results are refined by the random walk to obtain better tracklet similarities. The
Candidates Intersection Ratio scheme is proposed for tracklet association. It leverages the
information of the tracklet match list to adjust the tracklet similarity. We integrate tracklets
with the same ID into a tree structure in the CIR association scheme. Compared with the
existing method, our method significantly improves the IDF1 score by 11% .
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