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Abstract: Fundus images captured for clinical diagnosis usually suffer from degradation factors due
to variation in equipment, operators, or environment. These degraded fundus images need to be
enhanced to achieve better diagnosis and improve the results of downstream tasks. As there is no
paired low- and high-quality fundus image, existing methods mainly focus on supervised or semi-
supervised learning methods for color fundus image enhancement (CFIE) tasks by utilizing synthetic
image pairs. Consequently, domain gaps between real images and synthetic images arise. With
respect to existing unsupervised methods, the most important low scale pathological features and
structural information in degraded fundus images are prone to be erased after enhancement. To solve
these problems, an unsupervised GAN is proposed for CFIE tasks utilizing adversarial training to
enhance low quality fundus images. Synthetic image pairs are no longer required during the training.
A specially designed U-Net with skip connection in our enhancement network can effectively remove
degradation factors while preserving pathological features and structural information. Global and
local discriminators adopted in the GAN lead to better illumination uniformity in the enhanced
fundus image. To better improve the visual quality of enhanced fundus images, a novel non-reference
loss function based on a pretrained fundus image quality classification network was designed to
guide the enhancement network to produce high quality images. Experiments demonstrated that our
method could effectively remove degradation factors in low-quality fundus images and produce a
competitive result compared with previous methods in both quantitative and qualitative metrics.

Keywords: fundus image enhancement; unsupervised learning; classification prior loss; U-Net; GAN

1. Introduction

Color fundus images are captured by a specially designed camera system which
records the scene observed by human beings through an ophthalmoscope [1]. Ophthal-
mologists can identify specific pathological features and diagnose diseases by observing
morphological changes of the entire retina in the image. Due to the low cost of imaging,
ease of use, and high safety, color fundus images have been widely used in clinical screen-
ing and diagnosis of ophthalmic diseases and computer-aided diagnosis systems. However,
the fundus image capturing process may introduce some annoying degradation factors to
the image, causing uneven illumination, artifacts, blurs, etc. These mixed degradations
are equivalent to dark clouds obscuring the retina, which severely reduce the visibility of
anatomical retinal structures (e.g., vessel, optic disc, and cup), especially for small patho-
logical features. Thus, the degraded fundus image needs to be enhanced to meet practical
clinical needs and downstream task requirements. For example, CFIE techniques can be
integrated into clinical fundus image capture systems and can improve the visual quality
of degraded images for better diagnosis. Downstream tasks, such as diabetic retinopathy
(DR) classification and retinal vessel segmentation, can also incorporate the CFIE technique
as a pre-process task in the whole task pipeline for enhanced performance.

For low-level tasks, image enhancement algorithms (e.g., denoise [2], dehaze [3–5],
derain [6], super-resolution [7–12], low-light enhancement [13,14], etc.) have evolved
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over generations and yielded many promising results in recent years. Most supervised
image enhancement methods can reach a satisfying score by simply utilizing an L1, L2,
or other referenced loss, with paired low- and high- quality image data as supervision.
These successes are usually attributed to the powerful capability of the elaborated neural
network. With respect to domains without paired data, supervised methods are prone to use
synthesized image pairs. However, synthesized methods can only simulate a few limited
kinds of degradation, which may fail when unseen or more complicated degradations
appear. Regarding the fundus image domain, it is impractical to capture paired low- and
high-quality fundus image data. Degradations in low-quality fundus images are too varied
in quantity and degree to synthesize, so unsupervised image enhancement approaches
represent another option.

With the great success of GAN in image enhancement [15], more and more papers are
adopting GAN networks as their training scheme when there is a lack of paired training
data. GAN networks can generate realistic images while not requiring paired images but
using paired domain images instead, which are quite suitable for fundus image enhance-
ment tasks. However, there are still several critical questions which need to be solved.
Firstly, the GAN generator is trained by minimizing the distribution of generated images
and real target images while maximizing the ability of the discriminator to distinguish
the two kinds of images. GAN loss is not accurate as pixel level loss occurs, so it may
generate undesired features in the enhanced image. This is not acceptable for a fundus
image as these features may interfere with the recognition of pathology and anatomical
retinal structures. Secondly, the generator does not know which enhancement is optimal.
To achieve this goal, extra constraint should be applied on the generator network.

To address the issues above, a U-Net-based [16] GAN network is proposed to enhance
low quality fundus images. Our method treats the degradation removal goal as a reverse
manipulation of adding degradation features to the clean images. That is, inversed degrada-
tion features in low quality images are extracted from the U-Net and are then applied to the
original low quality images to obtain enhanced images. The pathological and anatomical
features remain unchanged. In addition to the GAN loss, a classification prior loss (CPL)
is proposed based on a pretrained fundus image quality classification model, which can
evaluate the quality of enhanced images and provide a gradient to the generator to produce
high quality images.

2. Related Work

Image enhancement techniques are closely related to their target domains. To date, no
enhancement method that can be generalized to every image domain exists. In this section,
image enhancement methods, from natural image domains to fundus image domains, will
be introduced to highlight the common underlying ideas and domain-specific differences
that have stimulated our work.

2.1. Natural Image Enhancement

With the development of deep learning models, many tasks have used learning-
based methods for natural image enhancement, such as SR-GAN [9] for image super-
resolution, [4,17] for dehazing, [18] for denoising, [13] and for low-light enhancement.
In this section, a low-light enhancement task is introduced as an example. Lighting
conditions have a great influence on image quality. Images captured under low light
conditions have poor visibility. Wei et al. proposed Retinex-Net based on Retinex the-
ory [19] which separately decomposes low and high images into a reflectance map and
an illumination map, and then applies a traditional denoising operation BM3D [20] to the
reflectance map to remove the noise. In the meantime, the illumination map is enhanced by
a deep neural network. Finally, the well-lit image is reconstructed with the two adjusted
maps by a simple element-wise product. Considering the noise variance related to the
reflectance map, Zhang et al. [14] introduced Restoration-Net in substitution for BM3D in
Retinex-Net to handle the reflectance map in Retinex-Net. Instead of using Retinex theory,
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Wang et al. [21] designed GLAD-Net which adopted an encoder-decoder network to
generate global a priori knowledge of illumination from low light images to guide the
enhancement process. However, the low-light enhancement methods mentioned above
still depend on the supervision of specially captured or synthetic low and normal light
image pairs. What about no paired training data? Zhao et al. [22] proposed RetinexDIP
which adopted a novel generative strategy for the Retinex decomposition process, that is,
the reflection map and illumination map were generated by two vanilla GAN networks,
and the noise hidden in the reflectance map was removed by the generator. However,
this kind of generative strategy requires significant optimization time. Guo et al. [23]
treat the low light enhancement task as a curve adjustment task which has been widely
used in business image processing software (e.g., Photoshop). The curve parameter was
learned from the low light images with a deep neural network, combined with a set of
carefully formulated non-reference loss functions which implicitly measure the quality of
the enhanced image, such that a low light image is successfully enhanced without any
paired or unpaired dataset. Jiang et al. [15] proposed EnlightenGAN to achieve this by
incorporating a generative adversarial network and regularizing the unpaired training
using information extracted from the input itself. With the help of an illumination attention
map and perceptual loss, Jiang’s methods not only outperformed their recent methods, but
can also be easily adapted to enhance real world images from various domains. For image
domains such as fundus images, for which it is impossible to obtain a paired image dataset,
adversarial training is suitable for enhancing low quality fundus images to match the real
distribution of high-quality fundus images. In this paper, the advantages of GAN training
and non-reference loss are combined for better results.

2.2. Fundus Image Enhancement

Color fundus image quality is often degraded by uneven illumination, artifacts, low
contrast, etc. For improved analysis, degraded color fundus images should be enhanced.
Chen et al. [24] proposed a structure-preserving guided retinal image filtering method based
on an attenuation and scattering model, which can improve the contrast of color fundus
images. Since it is quite difficult to obtain paired medical images, You et al. [25] proposed
a retinal enhancement method called Cycle-CBAM which requires no paired training
data. Cycle-CBAM utilizes Cycle-GAN [26] as its main framework in which CBAM [27] is
embedded, and yields better results than the original Cycle-GAN. However, this method
suffers from the critical defect that it may introduce some fake features to the enhanced
image. Ma et al. [28] proposed StillGAN, which also adopted Cycle-GAN, to improve
medical image quality without paired data. He argued that CycleGAN-based methods
only focus on global appearance without imposing constraints on structure or illumination
which were essential features for medical image interpretation, so his method proposed a
luminance loss function and a structure loss function as extra constraints. The luminance
loss measures illumination smoothness by calculating the variance of the illumination map
in enhanced image patches, and the structure loss measures the dissimilarity between the
low-quality image and its enhanced version by calculating the correlation coefficient in
image patches. After analyzing the ophthalmoscope image system, Shen et al. [1] proposed
a network named cofe-Net which synthesized low and high color fundus image pairs
by modeling the degradation process of uneven illumination, blur, and artifacts. With
supervision of synthesized low- and high-quality fundus image pairs and a synthesized
degradation map, Shen’s cofe-Net can suppress global degradation factors while preserving
anatomical retinal structures and pathological characteristics. However, cofe-Net can only
ideally model a limited type of degradation factors—it may fail when there are more
complicated degradations. Cheng et al. [29] proposed EPC-GAN by training both GAN
loss and contrastive loss to make use of high-level features in the fundus domain. A
fundus prior loss based on a pretrained diabetic retinopathy classification network was
introduced to avoid information modification and over-enhancement. Wang et al. [30]
proposed a fundus image enhancement method which firstly decomposes low quality
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image into three different layers, then the denoising operation, illumination and detail
enhancement are applied to these three layers, respectively. This method yielded enhanced
images with strong and sharp feature edges, but this was accompanied with obvious
color distortion. Zhang et al. [31] proposed a double-pass fundus reflection (DPFR) model
based on intraocular scattering, aimed at improving the clarity of the fundus image. It
was found that DPFR improved the visibility of retinal vessels significantly, but color
distortion continued to occur in the enhanced images. Raj et al. [32] proposed a residual
dense connection based U-Net (RDC-UNet) to enhance five typical degradations in low
quality fundus images with synthetic image pairs individually; the five trained model was
then ensembled together to enhance low quality images—the enhanced results showed
a promising naturalness. However, for different types of degradation, new synthetic
algorithms should be designed to fit the model, which will lead to enormous complexity in
calculation. Stimulated by this prior loss, this paper considers the design of a non-reference
loss method called CPL, based on a pretrained fundus image quality classification network
to measure enhancement quality.

3. Method

As illustrated in Figure 1, our network was adopted from [15], which is designed and
trained in the GAN manner. The generator component adopts a modified U-Net as the main
frame, which takes the concatenation of a low-quality fundus image and its illumination
map as input and produces a high-quality fundus image. There is a skip connection
between the input and output of the U-Net to preserve most of the important features
in the original fundus image; the symmetrically expanding path in the U-Net not only
preserves precise details [5], but also incorporates an illumination attention mechanism [15].
A global discriminator is used to make the high-quality image look more realistic, and a
local discriminator is used to enhance local areas. In addition, a pretrained image quality
classification network is introduced as CPL to drive the generator to remove undesired
degradation factors.
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Figure 1. The overall architecture of our network.

3.1. U-Net Generator with Skip Connection

Degradations in color fundus images, such as uneven illumination, artifacts, blurriness,
etc., are usually caused by human factors, equipment factors or environmental factors [1].
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In a similar way to Retinex theory applied to low light enhancement tasks, a degraded
color fundus image is treated as a composite of a clean image and degradation factors, so
that a degraded color fundus image can be simply formulated as:

xL = y + dxL (1)

where xL is the degraded low-quality image, y is the corresponding undegraded clean
image, and dxL represents the mixed degradation factors related to xL. When a degraded
low-quality image xL was obtained, the restoration process for a high-quality image
y′ becomes:

y′ = xL − dxL (2)

Then the key problem is to find dxL hidden in xL. Inspired by the great success of
U-Net in medical image segmentation, this paper treats this problem as a segmentation-like
task. Instead of directly putting the low-quality image into a network to eliminate the
degradation factors and obtain the enhanced image, our network explicitly extracts the
degradation factors by a separate network branch design. Given a low image xL, the
opposite degradation factors −dxL can be extracted by −dxL = U(xl), where U represents
a modified version of U-Net in Figure 1. Then the full restoration network G can be
formulated as:

y′ = G(xL) = xL + U(xL) (3)

This can be achieved by simply adding a skip connection between the input xL and
the output of U(xL). This kind of operation has the following advantages:

• Most of the important features, e.g., lesions, vessels, macula and optic disc can be well
preserved after enhancement and have no obvious spatial shift;

• The generator network is easy to train with skip connections and saves a lot of training time;
• With the condition of inputting a low quality image, the generator will not produce

unexpected features as other vanilla GANs do without this condition.

3.2. Adversarial Training for Unpaired Image Enhancement

Since there is no ground truth high-quality image for enhanced fundus images to
calculate referenced loss, and supervised learning methods are not applicable to this
kind of FIQE task, adversarial training is utilized to train a generator for the purpose of
enhancement. Given a low-quality image domain X and a high-quality image domain
Y, our goal is to convert a degraded fundus image x ∈ X into a clear fundus image
y′ ∈ Y′ by a generator G, both Y′ and Y should follow the same distribution. The global-
local discriminator loss functions from [15] are adopted as GAN loss functions. The loss
functions for the global discriminator D and the generator G are:

LGlobal
D = Ey∼Y

[(
DRa

(
y, y′

)
− 1
)2
]
+Ey′∼Y′

[
DRa

(
y′, y

)2
]

(4)

LGlobal
G = Ey′∼Y′

[(
DRa

(
y′, y

)
− 1
)2
]
+Ey∼Y

[
DRa

(
y, y′

)2
]

(5)

where DRa is a modified version of relativistic GAN [33] loss function which estimates
the probability that real data is more realistic than fake data and directs the generator to
synthesize images more realistic than real images. DRa can be formulated as:

DRa
(
y, y′

)
= C(y)−Ey′∼Y′ [C

(
y′)] (6)

DRa
(
y′, y

)
= C

(
y′
)
−Ey∼Y[C(y)] (7)



Electronics 2022, 11, 1000 6 of 12

where C denotes the network of the global discriminator. For the local discriminator, five
patches are randomly cropped from y and y′ for each image. The original LSGAN [34] is
adopted as the adversarial loss for the local discriminator as follows:

LLocal
D = Ey∼Ypatches

[
(D(y)− 1)2

]
+Ey′∼Ypatches

[(
D
(
y′
)
− 0
)2
]

(8)

LLocal
G = Ey′∼Y′ patches

[(
D
(
y′
)
− 1
)2
]

(9)

where D denotes the local discriminator. Given the fact that most low quality fundus images
are degraded by uneven illumination [35], the self-feature-preserving loss in Enlighten
GAN is also adopted in our model to preserve the fundus image content features, which
can be adopted to preserve features that are irrelevant to intensity changes. The self-feature-
preserving loss can be described as:

LSFP(x) =
1

Wi,j Hi,j

Wi,j

∑
x=1

Hi,j

∑
y=1

(
φi,j(x)− φi,j(G(x))

)2 (10)

where x denotes the input low quality fundus image, G denotes the generator, φi,j denotes
the feature map extracted from a VGG-16 [36] model pretrained on ImageNet, i, j represents
its j-th convolutional layer after i-th max pooling layer, Wi,j and Hi,j are the dimensions of
the extracted feature maps, and this paper chooses i = 5, j = 1.

3.3. Classification Prior Loss Guided Generator

Although the generator can produce realistic images which match the distribution of
real high-quality images well under the constraint of GAN loss, it may still introduce some
unpleasant artifacts due to the limitation of the discriminator and a lack of real labeled
data. Inspired by Guo et al. [23], a carefully designed unreferenced loss can be adopted to
constrain the image enhancement network, even though there is no target domain data.
This is realized by designing loss functions that constrain certain target domain features.
Yifan J et al. [15] proposed an unreferenced self-feature-preserving loss to preserve the
image content features based on the observation that classification results are not very
sensitive when pixel intensity range changes, which means that features extracted from
both low light images and corresponding normal light images share the same feature space.
Pujin C et al. [29] designed a fundus prior loss by pre-training a DR classification model to
keep the fundus semantic information stable before and after enhancement, because deep
features related to pathological areas should be preserved after enhancement.

An unreferenced classification prior loss (CPL) is proposed to constrain the image
quality produced by the generator. A Resnet-50 [37] is pre-trained as a fundus image quality
classification network P to generate a 3-class label vector l, each component of l represent
the probability of each class (e.g., Good, Usable and Reject in the EyeQ [38] dataset), and
the image quality loss for y′ can be defined as:

LCPL =
N

∑
x=1

wili, l = P(y′) (11)

where wi is the penalty weight of each corresponding component of l. N represents the
number of classes produced by P, which was set to N = 3 because l is a 3-class label. Our
goal was to generate more images labeled with Good; when images labeled with Usable
and Reject were generated, more penalty should be applied, so our method empirically set
w = {0, 1, 2}.
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3.4. Objective Function

With the help of CPL, the overall loss function for the generator is formulated as:

Loss = LGlobal
SFP + LLocal

SFP + LGlobal
G + LLocal

G + λCPLLCPL (12)

where λCPL is the corresponding trade-off weight for CPL, which was set as λCPL = 0.1 in
our project.

4. Experiments
4.1. Datasets

The EyeQ dataset [38] was used to train and validate our proposed method. EyeQ
dataset is a re-annotation subset from the EyePACS [39] dataset for fundus image quality
assessment, which has 28,792 retinal images with a three-level quality grading (i.e., ‘Good’,
‘Usable’ and ‘Reject’). The whole dataset was split into a training dataset consisting of
12,543 images and a testing dataset consisting of 12,649 images. The Resnet-50 for CPL was
pretrained on the training dataset of EyeQ. Images graded as ‘Good’ and ‘Usable’ from the
training dataset were used as real high-quality images and low-quality images respectively
to train our model. Images graded as ‘Usable’ from the testing dataset were used for
qualitative comparison. Since there were no paired images for calculating the full-reference
metric, the open-sourced code from [1] was followed to degrade the ‘Good’ images in EyeQ
dataset into synthesized low-quality images, which contained the permutation of three
kinds of degradation factor (illumination, artifacts and blur), finally yielding seven kinds
of mixed degradation. This paired image dataset was called the synthetic dataset.

4.2. Implementation

Our model was implemented with PyTorch (Version 1.7) and trained on a PC with
two NVIDIA TITAN RTX GPUs. All the images from EyeQ were first preprocessed into a
size of 512 × 512 with code released by [1].

The Resnet-50 for CPL was trained on the training dataset of EyeQ, which takes images
of size 512 × 512 and produces image quality labels (e.g., 0: Good, 1: Usable, 2: Reject) under
the constraint of cross entropy loss. An Adam optimizer with learning rate of 0.0002 was
used for optimization. Finally, the weights chosen for CPL reached a highest classification
accuracy of 0.8623.

Images for training enhancement GAN were resized to 256 × 256 to save training
time. Images for testing were retained at a size of 512 × 512 for fine grained visual
comparison. The Adam optimizer with a learning rate of 0.0002 was used as the optimizer
for GAN training.

4.3. Quantitative and Qualitative Evaluation

In order to demonstrate the advantages of our proposed method, this paper conducted
both quantitative and qualitative evaluations for comparison with other GAN-based meth-
ods, including cGAN [40], CycleGAN [26], CutGAN [41] and StillGAN [28]. The cGAN
was trained with synthetic datasets, while CycleGAN, CutGAN and StillGAN were trained
with the dataset on which our model was trained.

4.3.1. Quantitative Results

PSNR (peak signal-to-noise ratio) and SSIM (structural similarity index measure) were
employed as quantitative metrics to measure enhancement quality. All the scores were
calculated from the test part of the synthetic dataset. Table 1 shows the PSNR and SSIM
score of different methods for the synthetic dataset. The PSNR score of our proposed
method outperformed the other methods. Although our SSIM score was lower than that
for cGAN which was trained on the synthetic dataset, our method still obtained the highest
score compared with methods such as CycleGAN, CutGAN and StillGAN, which require
no paired images. The ablation test data shows that our CPL loss functions improved
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both PSNR and SSIM scores compared with our method without CPL constraint. The
quantitative results demonstrated the effectiveness of our proposed method on removing
synthetic degradations in color fundus images.

Table 1. Average PSNR (dB) and SSIM results on synthetic dataset, higher score means better
performance. The best results are marked in bold.

Method
Synthetic Dataset

PSNR (dB) SSIM

cGAN 23.2 0.8946
CycleGAN 22.84 0.843
CutGAN 21.89 0.8534
StillGAN 23.44 0.8693

Proposed w.o. CPL 23.82 0.8753
Proposed 23.93 0.8859

4.3.2. Qualitative Results

To demonstrate the improvements in enhanced images in downstream tasks,
such as retinal vessel segmentation, the model and pre-trained weight from Iter-Net [42]
were utilized to perform vessel segmentation operations on fundus images before and
after enhancement.

As shown in Figure 2, our enhanced images showed more vessel branches than the
original one. In the meantime, our method and StillGAN did not modify the structure
of retinal vessels while other methods, such as CycleGAN and CutGAN may generate
fake retinal vessel content. Case 1 shows that retinal vessels segmented from our en-
hanced image were clearer and morphologically continuous. Case 2 shows that our
enhanced image did not introduce vessel branches which did not exist in the original
low-quality images.

Figure 3 Shows the visual results of our methods and other methods. Pathological
features in fundus images are critical to clinical diagnosis. Case 1 shows that pathological
features like exudation and micro-angioma in our enhanced image were even more sharp
and clear than the original image. In contrast, some of these features were blurred or erased
by other methods. Case 2 shows that vessels over pathological areas were well preserved
after our enhancement while methods such as CycleGAN and CutGAN failed to recover
this area. Case 3 shows the results of optic disc regions which were brighter than other
areas. Vessels were still clear in our results, but this area suffered from severe degradation
after enhancement with CycleGAN and CutGAN.

In summary, it can be observed that real low-quality images enhanced by cGAN still
suffered from uneven illumination degradations, as shown in both Figures 2 and 3. Though
cGAN achieved the highest SSIM score on the synthetic test dataset, unsatisfying, or worse,
visual results appeared when it was adapted to real degraded fundus images. CycleGAN
and CutGAN appeared to have better overall visual quality, but low scale features and
structures were modified to a certain extent, which means they may introduce interference
to ophthalmologists’ diagnosis. StillGAN achieved similar vessel-structure-preserving
performance to our method, but the pathological features were not sharp enough. It can
be concluded that our method not only improved the overall visual quality of degraded
fundus images, but also preserved low-scale pathological features and structures.
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Figure 3. Visual comparisons on image enhancement task. In each case, the first row contains color
fundus images enhanced by different methods, and the second row are patches cropped from red box
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5. Conclusions

An unsupervised color fundus image enhancement method based on classification
prior loss was proposed in this paper. Synthetic paired-image datasets were no longer
required for the CFIE task, and our method could generalize well to real clinical color
fundus images. With the help of skip connections between the input and output of the
generator in our GAN network and the non-reference classification prior loss, the visual
quality of color fundus images was significantly improved with structural details and
pathological features well-preserved, which is not only beneficial for downstream tasks,
but also makes it straightforward for ophthalmologists to distinguish pathological features.
Both quantitative and qualitative results demonstrated that our method achieved better
enhancement performance than other GAN-based methods.
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