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Abstract: Capacitive power transfer (CPT) is an attractive wireless power transfer (WPT) technol-
ogy and it has been widely studied in many applications. Symmetrical structures and high-order
compensation networks are always produced as optimization results and common configurations for
high-efficiency CPT systems. However, in space-limited scenarios, an asymmetric structure tends
to be a better choice. The related large number of high-order asymmetric system parameters is a
key problem in parameter design. In this study, a general parameter design method that is based on
reactive power optimization is proposed for an electric field resonance-based CPT system with an
asymmetric six-plate coupler. The reactive power in the compensation network was analyzed and
optimized under the constraint of transferred power. With equal reactive power, the optimization
complexity was significantly reduced and the optimized system parameters were provided. To
validate the effectiveness of the proposed method, a 1 MHz, 3.2 kW asymmetric CPT protype with
100 mm gap distance was implemented. The results indicate that, with the optimized parameters,
high system efficiency can be achieved when the system’s volume is reduced. At the rated power,
about 95% DC–DC overall efficiency was achieved through a 6-pF coupling capacitor.

Keywords: general parameter design; asymmetrical coupler structure; reactive power optimization;
electric field resonance (EFR); capacitive power transfer (CPT)

1. Introduction

Wireless power transfer (WPT) technology that offers a way to transfer electric power
through air or other another nonconductive medium has more advantages than traditional
conductive charging technology [1–3]. In recent years, WPT technologies have been widely
studied and many commercialized products have been released in low-power and high-
power applications [4–7], such as consumer electronics [8–11], electrical machines [12–14],
biomedical devices [15–19], and transportation systems [20–25]. Among the WPT tech-
nologies, inductive power transfer (IPT) and capacitive power transfer (CPT) are the two
main types in which a magnetic field or an electric field is utilized for power transmission,
respectively.

Inductive wireless power transfer is one of the most promising WPT technologies
and extensive studies have been implemented on the IPT system. In the IPT system, the
magnetic coupler is a key component that always consists of transmission coils with a
symmetric or asymmetric structure [26]. Since the magnetic couplers are always loosely
coupled [27], heavy ferrite cores are needed in order to redistribute the magnetic field
in the coupler and enhance the magnetic coupling of the transmission coils. Besides
this, shielding plates are required to prevent the magnetic field from leaking into the
surrounding environment. To improve the transferred power and efficiency, compensation
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circuits are needed in order to achieve circuit resonance. The basic compensation circuit
topology is just one resonant capacitor that is connected in series or parallel with each of
the transmission coils [28–30]. The high-order compensation circuit’s topology consists
of a complex circuit structure, such as inductance–capacitance–capacitance (LCC) [31,32],
inductance–capacitance–inductance (LCL) [33], series–series–parallel (S-SP) [34,35], or
series–parallel–series (SP-S) [36]. With more freedom within their parameter design than
in those of a basic compensation circuit, high-order compensation circuits can achieve
zero-voltage switching (ZVS), zero phase angle (ZPA), and a constant current/voltage
(CC/CV) output at the same time with appropriate parameter design [37,38]. Within
compensation circuits, the transferred power of IPT systems can be up to ten kilowatts
(kW) under a transmission distance of hundreds of mm and the transmission efficiency
can be up to 90–96% [31,39]. However, due to the eddy current effect, the magnetic field
in the coupler can cause a huge temperature rise in the surrounding metal objects, which
threats the operation of the system [40]. In contrast, the electric field in the capacitive
coupler, which is used for power transmission in CPT systems, does not cause a significant
temperature rise in metal objects [41]. Besides this, the capacitive coupler always consists of
several metal plates. Compared with the expensive and heavy ferrite cores that are found
in IPT systems, the cost and weight of the CPT system can be reduced. Therefore, the CPT
system is becoming an attractive alternative for the IPT system and an increasing amount
of research is focused on CPT technologies, recently [5].

In the literature regarding CPT systems, most of the research focuses on the design
of the capacitive coupler and compensation circuit [5]. The capacitive coupler in the CPT
system is always made up of several metal plates with a rectangular or circular shape. The
coupling structure can be configured in a rotating [42], horizontal [25,43], vertical [44], or
interleaved style [45]. Generally, there are at least four plates in the capacitive coupler, two
of which are set as transmitting plates and the other two plates are set as receiving plates.
The mutual capacitances are generated between the transmitting plates and receiving plates.
In order to improve the transferred power and efficiency, the compensation circuits are
needed to make the circuit resonant, which allows it to achieve zero phase angle (ZPA)
on the grid side [40]. Just like the IPT system, the basic compensation circuit of the CPT
system is just one inductor connected in series or parallel with the capacitive coupler at
the transmitting side and receiving side [46,47], respectively. However, in long-distance
applications, the mutual capacitance of the coupler is very small (usually in the range of
several to tens of picofarads), which makes the compensation inductors very large (usually
in the range of several millihenry). To further improve the transferred power and reduce
the value of the compensation inductors, a high frequency and high-order compensation
circuit is needed [40]. Nowadays, the operating frequency of a CPT system is usually in
the range of several or tens of megahertz (MHz). High-order compensation circuits, such
as LCL [44,48], electric field resonance (EFR) [49,50], capacitance-inductance-inductance-
capacitance (CLLC) [51], multistage LC [52,53], and inductance-capacitance-inductance-
capacitance (LCLC) [25,40] compensation circuits, provide large voltage gains and improve
the capability of power transmission. With these compensation circuits, the transferred
power of the CPT system can be up to several kW and the transmission distance can be
up to hundreds of mm; the system’s performance is significantly improved. In [25,40],
a double-sided LCLC compensation circuit was used for a horizontal four-plate coupler,
about 1.5 kW of power was transferred through a 150 mm transmission distance with a DC–
DC overall efficiency of 93.5% [40]. However, the coupling plate voltage can be up to several
kilovolts, which may be excessive of the safety limit, causing electromagnetic radiation
(EMR) problems and serious security incidents. As a solution, shielding structures were
added to the traditional four-plate coupler and a six-plate coupler was proposed in [48,49].
With the shielding plates covering over the capacitive coupler, the electric field emission
can be significantly reduced. Besides this, the parasitic capacitance of the shielding plates
can also be used as the resonant capacitance, which can eliminate the external capacitance
of the compensation circuit, such as makes the LCLC compensation circuit into a LCL
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compensation circuit [44]. In [49], a six-plate coupler-based EFR compensation circuit
was proposed and about 91.1% DC–DC overall efficiency was achieved with a transferred
power of 700 W. However, high-order compensation circuits increase the total number
of circuit parameters. A large number of circuit parameters make it difficult to design
and optimize the system’s parameters. To optimize the circuit’s parameters and improve
the system’s efficiency, Lagrange multipliers and two-stage optimization methods were
proposed in [50,53–56]. In [53–56], the multistage LC matching networks were analyzed
by using the method of Lagrange multipliers and the number of matching network stages
and the distribution of the gains and compensation among the stages were optimized in
order to achieve high-efficiency matching networks. Reference [50] proposes a two-stage
parameter design method for an EFR-based CPT system, which can optimize the system
parameters through optimizing the reactive power in the coupling capacitor CS and the
whole system. With the proposed two-stage method, when 3 kW of power is transferred
over a distance that is under 100 mm, the system efficiency can be up to 95.7%. According to
the optimization results in [50,53–56], the optimized CPT systems tend to have symmetric
circuit parameters when the compensation circuits on the primary side and secondary
side are the same. The coupling structures of the capacitive coupler are also symmetric.
However, in many practical applications, especially for mobile devices [57], unmanned
aerial vehicles [58,59], and electric vehicles (EVs) wireless charging applications [60,61],
the available installation space on the receiving side is always smaller than that which
is available on the transmitting side, which limits the volume of the receiver. In these
scenarios, the receiver needs to be compact and flat. An asymmetric coupler structure is an
effective configuration for the WPT systems that are used in these applications [59]. The
asymmetric coupler structure leads to asymmetric system parameters. The optimization
results from symmetric cases are not suitable for a system with asymmetric parameters
and the use of systematic parameter optimization methods for asymmetric CPT systems is
rarely mentioned in previous studies.

In this present study, an EFR-based six-plate capacitive coupler with an asymmetric
structure was used in order to make an asymmetric CPT system for EV wireless charging
applications. A general parameter optimization method that is based on reactive power
optimization is proposed for this asymmetric CPT system. A capacitive coupler with
different geometry was analyzed and modeled. According to the circuit model, the appro-
priate voltage and current were obtained in order to derive the system’s reactive power.
Under the constraint of transferred power, the reactive power was optimized based on the
independence of the circuit parameters. By using equal reactive power, the general circuit
conditions under which the circuit parameters should be satisfied were derived. With these
circuit conditions, the optimization complexity was reduced and the optimized asymmetric
system parameters were given.

The following is the organization of this paper. Section 2 introduces the asymmetric
coupling structure and the modeling of the asymmetric CPT system. Based on this circuit
model, the system’s reactive power and its effect on the system’s efficiency are derived.
Section 3 analyzes the independence of the circuit parameters and proposes a general
parameter optimization method. Section 4 introduces the implementation of this method.
The effectiveness of the proposed method is verified in Section 5. Section 6 provides the
conclusions.

2. Modelling of the CPT System
2.1. Asymmetrical Capacitive Coupler Model

A capacitive coupler that consists of six rectangular metal plates was used in this
experiment. The typical structure is shown in Figure 1. l1 and l2 are the plate lengths, d1, d2,
and d12 are the airgap distances. There were 15 coupling capacitors in the six-plate coupler
and the performance of this structure can be characterized by four primary capacitors,
CS1, CS2, C2, and C3. CS1 and CS2 represent the equivalent mutual capacitors between the
transmitting plates and receiving plates; C2 and C3 represent the equivalent self-capacitors
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between the transmitting plates or between the receiving plates. The equivalent circuit
model with four coupling capacitors is shown in Figure 2a [48]. Due to the fact that the
capacitors CS1 and CS2 are connected in series, the coupling capacitor CS can be further
simplified, where

CS =
CS1 · CS2

CS1 + CS2
(1)

As described in [50], a symmetric CPT system with an identical transmitter and
receiver is verified to be an efficient configuration. However, the shielding distances d1
and d2 tend to have large values (usually in the range of 50 mm to 100 mm) in order to
achieve high system efficiency. For space-limited scenarios, such as EV wireless charging
applications, the limited space in the receiving side determines that the shielding distance
d2 cannot be very large. Therefore, an asymmetric coupler with different distances d1 and
d2 (where d1 > d2) is more practical in EV wireless charging applications. According to
the different plate lengths l1 and l2, the asymmetric structure can be divided into three
categories: l1 = l2, l1 > l2, and l1 < l2, as shown in Figure 3.
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In the capacitive coupler, the coupling capacitors C2, C3, and CS are determined by
the airgap distances d1, d2, and d12 and plate lengths l1 and l2. An asymmetric coupler
structure always results in asymmetric circuit parameters. In Figure 3a and c, l1 is not
greater than l2 and d1 is greater than d2, as a result the capacitor value of C2 is less than that
of C3. In Figure 3b, the relationship between C2 and C3 is determined by the asymmetric
distance and plate length and the equivalent C2 and C3 can be obtained by appropriate
configuration. When the plate lengths l1 and l2 are not equal, as shown in Figure 3b,c, a
small horizontal misalignment has little effect on the coupling capacitance. In the cases in
which l1 ≥ l2, as shown in Figure 3a,b, the leaked electric field that results from the small
misalignment conditions are mostly exposed to the receiving side. As a comparison, the
leaked electric field that results from small misalignment conditions for the asymmetric
coupler that is shown in Figure 3c are mostly exposed to the transmitting side. Considering
this, the asymmetric structure that is shown in Figure 3c was selected in order to form the
asymmetric CPT system in this study.

2.2. CPT System Model

In this study, an EFR compensation network was used. With the asymmetric capacitive
coupler that is shown in Figure 3c, the equivalent circuit model of the asymmetric CPT
system is shown in Figure 4, where C3 is greater than C2. The EFR compensation circuit
was formed by L1, C1, L2, C2, L3, C3, L4, and C4. M12 and M34 represent the mutual
inductances between L1 and L2 and between L3 and L4, respectively. CS represents the
mutual capacitance in the capacitive coupler. Vin and Vout are the input and output direct
current (DC) voltage sources, respectively. The capacitors C2, C3, and CS achieve EFR
in the compensation circuit and the EFR is resonant with the inductors L2 and L3 at an
angular frequency of ω0. Besides this, C1 and C4 are resonant with L1 and L4 at an angular
frequency of ω0, respectively.
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As shown in Figure 5, the equivalent circuit model of an EFR-based CPT system can be
obtained according to the method of fundamental harmonics approximation. The internal
resistances of all of the circuit components are ignored. U21, U12, U43, and U34 represent
the induced voltage sources that are generated in the coupling inductors L1, L2, L3, and L4.
UAB and Uab represent the input and output AC voltages, respectively, where{

UAB = Vin · 2
√

2/π

Uab = Vout · 2
√

2/π
(2)
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By using UAB as the reference, the voltage and current phasors can then be obtained
based on the superposition theorem as follows [50]:

UAB = UAB∠0◦ = UAB

Uab = Uab∠90◦ = jUab

UC2 = − UAB M34(C3+CS)+Uab M12CS
ω2

0 M12 M34(C3CS+C2CS+C2C3)

UC3 = − UAB M34CS+Uab M12(C2+CS)

ω2
0 M12 M34(C3CS+C2CS+C2C3)

I1 = UabCS
jω3

0 M12 M34(C3CS+C2CS+C2C3)

I2 = − jUAB
ω0 M12

I3 = jUab
ω0 M34

I4 = jUABCS
ω3

0 M12 M34(C3CS+C2CS+C2C3)

(3)

We can see from Equation (3) that the current and voltage phasors on the input side
are in phase, which means zero phase angle is achieved on the input side. Since all of the
internal resistances are not considered, the output power is equal to the input power, which
can be described as

P = −UABI1 = UabI4 =
UABUabCS

ω3
0 M12M34(C2C3 + C2CS + C3CS)

(4)

The mutual inductances M12 and M34 that are featured in Equation (4) can be described
as 

M12 = K12

√
1

ω2
0C1

C3+CS
ω2

0(C2C3+C3CS+C3CS)

M34 = K34

√
1

ω2
0C4

C2+CS
ω2

0(C2C3+C3CS+C3CS)

(5)

where K12 and K34 are the coupling coefficients. By substituting Equation (5) into Equation
(4), the transferred power can be further described as

P =
ω0CSUABUab

√
C1C4

K12K34
√
(C3 + CS)(C2 + CS)

(6)
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We can see from Equation (3) that the current and voltage phasors on the input side 
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where K12 and K34 are the coupling coefficients. By substituting Equation (5) into Equation 
(4), the transferred power can be further described as 
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2.3. Reactive Power on a Compensation Network

According to Equations (3) and (5), the capacitive reactive power in the system that is
shown in Figure 5 can be obtained as follows:

QC1 =
ω0U2

abC4C2
S

K2
12K2

34(C3+CS)(C2+CS)

QC2 =
ω0K2

34U2
ABC1C2(C3+CS)(C2+CS)

2+ω0K2
12U2

abC2C4(C3+CS)C2
S

K2
12K2

34(C2C3+C3CS+C3CS)(C3+CS)(C2+CS)

QC3 =
ω0K2

12U2
abC4(C3+CS)(C2+CS)

2C3+ω0K2
34U2

ABC1(C2+CS)C2
SC3

K2
12K2

34(C2C3+C3CS+C3CS)(C3+CS)(C2+CS)

QC4 =
ω0U2

ABC1C2
S

K2
12K2

34(C3+CS)(C2+CS)

QCS =
ω0K2

34U2
ABC1(C2+CS)CSC2

3+ω0K2
12U2

abC4(C3+CS)CSC2
2

K2
12K2

34(C2C3+C3CS+C3CS)(C3+CS)(C2+CS)

(7)

Here, QC is used to represent the total capacitive reactive power, where

QC = QCS + QC1 + QC2 + QC3 + QC4

= ω0C1U2
AB

(
C2

S
K2

12K2
34(C3+CS)(C2+CS)

+ 1
K2

12

)
+ ω0C4U2

ab

(
C2

S
K2

12K2
34(C3+CS)(C2+CS)

+ 1
K2

34

) (8)

According to Equations (3) and (5), the reactive power on inductors l1, l2, l3, and l4 can
be calculated as follows: 

QL1 =
ω0C4U2

abC2
S

K2
12K2

34(C3+CS)(C2+CS)

QL2 =
ω0C1U2

AB
K2

12

QL3 =
ω0C4U2

ab
K2

34

QL4 =
ω0C1U2

ABC2
S

K2
12K2

34(C3+CS)(C2+CS)

(9)

The total inductive reactive power QL can be described as

QL = QL1 + QL2 + QL3 + QL4

= ω0C1U2
AB

(
C2

S
K2

12K2
34(C3+CS)(C2+CS)

+ 1
K2

12

)
+ ω0C4U2

ab

(
C2

S
K2

12K2
34(C3+CS)(C2+CS)

+ 1
K2

34

) (10)

Since the CPT system is in a resonant state, the total capacitive reactive power and total
inductive reactive power are equal. We can see from Equations (7)–(10) that the reactive
power is excited by the voltage sources UAB and Uab. Since the expressions of the reactive
power are complex, the optimization of the reactive power is very difficult.

2.4. Analysis of System Efficiency

The efficiency of the CPT system is determined by the transferred power and power
losses in the circuit components. Increasing the transferred power while decreasing the
losses can improve the transmission efficiency. Typically, the power losses are divided
into four main parts: rectifier loss Ploss,rec, inverter loss Ploss,inv, capacitor loss Ploss,C, and
inductor loss Ploss,L. Considering these losses, the system’s efficiency η can be expressed as

η =
P

P + Ploss,rec + Ploss,inv + Ploss,C + Ploss,L
(11)

where {
Ploss,C = ∑ Ploss,Ci

Ploss,L = ∑ Ploss,Lj

(
i = S, 1, 2, 3, 4;

j = 1, 2, 3, 4

)
(12)
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In Equation (11), the rectifier loss and inverter loss include the switching losses and
conduction losses, which are determined by the switching devices and switching states;
the losses in the inductors and capacitors are mainly determined by the reactive power
that is in the passive components and the quality factors of the components. Therefore, the
applications of low conduction-resistance power devices and high quality factor passive
components and the realization of a ZVS state are usually efficient methods for the CPT
system [40,56]. When the switching devices and transferred power are determined, we
assume that the rectifier loss and inverter loss are constants. In this case, the system
efficiency can be improved by reducing the losses in the passive components.

Here, the reactive power of the passive components can be represented as QCi and
QLj; the quality factors can be represented as Q∗Ci and Q∗Lj. The power losses in the passive
components can be further described as

Ploss,Ci =
QCi
Q∗Ci

, Ploss,Lj =
QLj
Q∗Lj

Ploss,C = ∑ QCi
Q∗Ci

, Ploss,L = ∑
QLj
Q∗Lj

,

(
i = S, 1, 2, 3, 4;

j = 1, 2, 3, 4

)
(13)

The system efficiency can be obtained from Equations (11)–(13) as

η =
1

1 + ∑ QCi
Q∗Ci P

+ ∑
QLj

Q∗LjP
+

Ploss,rec+Ploss,inv
P

(i = S, 1, 2, 3, 4; j = 1, 2, 3, 4). (14)

In this study, the inductors were wound with Litz wire and the capacitors usually
had low dissipation factors. To simplify the analysis, we assumed that all of the capacitors
(inductors) had the same quality factors, which can be represented as Q∗C (Q∗L). Given these
facts, Equation (14) can be changed to

η =
1

1 + 1
2

(
1

Q∗C
+ 1

Q∗L

)(
QC
P + QL

P

)
+

Ploss,rec+Ploss,inv
P

(15)

where QC and QL represent the total capacitive or inductive reactive power in the CPT
system. When the transferred power is determined, the efficiency in Equation (15) can
be improved by decreasing the reactive power or increasing the quality factors. When
the quality factors are determined, the transmission efficiency is mainly dependent on the
reactive power. Therefore, the reactive power in the CPT system should be optimized for
efficiency improvement. The cases in which the passive components have different quality
factors are described in Appendix A.

3. General Optimization Method

As described above, under the constraint of transferred power, the reactive power
should be optimized in order to improve the system’s efficiency. In this case, we set the
ratio of reactive power to transferred power as the optimization objective. Based on the
properties of a linear CPT system, a general optimization method was proposed in order
to reduce the optimization’s complexity. By applying the equal reactive power to the
optimization objective, the general circuit conditions under which the circuit parameters
should be satisfied were obtained. Based on the circuit conditions, the system model can be
simplified and all of the system parameters can be optimized.

3.1. General Optimization Method Based on Equal Reactive Power

To minimize the optimization objective, the transferred power should be considered
while minimizing the reactive power. Therefore, the transferred power can be seen as a
constraint for the reduction of the reactive power. Since the total inductive reactive power
was equal to the total capacitive reactive power, it was sufficient to minimize the inductive
reactive power in this study.
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In the CPT system, the reactive power is excited by the voltage sources UAB and Uab,
which can be represented as QAB and Qab, respectively. From Equation (10), QAB and Qab
can be expressed as

QAB = ω0C1U2
AB

(
C2

S
K2

12K2
34(C3+CS)(C2+CS)

+ 1
K2

12

)
Qab = ω0C4U2

ab

(
C2

S
K2

12K2
34(C3+CS)(C2+CS)

+ 1
K2

34

) (16)

From Equations (10) and (16), the inductive reactive power can then be expressed as

QL = QAB + Qab (17)

In this study, the system parameters ω0, UAB, Uab, K12, K34, C1, C4, C2, C3, and CS are
independent; they can be adjusted independently. Since the reactive powers QAB and Qab
in the linear system are excited by the independent voltage sources UAB and Uab, QAB and
Qab are independent. The relationship between the transferred power P and the reactive
power QAB and Qab can then be expressed as

√
QABQab = P

√√√√√
 1

K34K12

√(
C3
CS

+1
)(

C2
CS

+1
) +

√(
C3
CS

+ 1
)(

C2
CS

+ 1
)2

+
(

1
K12
− 1

K34

)2
(18)

We can see from Equation (18) that when the transferred power is determined, the
product of QAB and Qab has a minimum value. For each given product value of QAB and
Qab, the total inductive reactive power has a minimum value, where

QL ≥ 2
√

QABQab (19)

The equal sign in Equation (18) is achieved when QAB and Qab are equal. Under the
constraint of transferred power, it can be verified that equal QAB and Qab can be achieved.
Here, we set the equal reactive powers QAB and Qab as a circuit condition. According to
the equal reactive powers QAB and Qab, the total inductive reactive power can then be
expressed as

QL = 2
√

QABQab

= 2ω0UABUab

√
C1C4

(
C2

S
(C3+CS)(C2+CS)

1
K2

12K2
34
+ 1

K2
12

)(
C2

S
(C3+CS)(C2+CS)

1
K2

12K2
34
+ 1

K2
34

) (20)

where

U2
ABC1

(
C2

S + K2
34(C3 + CS)(C2 + CS)

)
= U2

abC4

(
C2

S + K2
12(C3 + CS)(C2 + CS)

)
(21)

Considering the transferred power, the optimization objective can then be derived
from Equations (6) and (20) as

QL
P

= 2

√
1

K2
12

+
1

K2
34

+
(C2 + CS)(C3 + CS)

C2
S

+
1

K2
12K2

34

C2
S

(C2 + CS)(C3 + CS)
(22)
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Furthermore, Equation (22) can be expressed as

QL
P == 2

√√√√√
 1

K34K12

√(
C3
CS

+1
)(

C2
CS

+1
) +

√(
C3
CS

+ 1
)(

C2
CS

+ 1
)2

+
(

1
K12
− 1

K34

)2
(23)

Since K12 and K34 are independent, their values can be adjusted independently. For
each given value of K12 and K34, the optimization objective in Equation (23) can be further
decreased when K12 and K34 are equal. In this case, Equation (23) can be changed to

QL
P

=
2

K12K34

√(
C3
CS

+ 1
)(

C2
CS

+ 1
) + 2

√(
C3

CS
+ 1
)(

C2

CS
+ 1
)

(24)

where
K12 = K34 (25)

By substituting Equation (25) into Equation (21), the relationship between C1 and C4
can be obtained as

U2
ABC1 = U2

abC4 (26)

In this study, an asymmetric six-plate capacitive coupler was used, where C2 < C3. To
simplify the analysis, the coefficients a and b are used to describe the relationship between
capacitors C2, C3 and CS, where

C2 = aCS, C3 = bCS (27)

From Equations (27) and (24), the optimization objective can be derived as

QL
P

=
2

K12K34
√
(a + 1)(b + 1)

+ 2
√
(a + 1)(b + 1) (28)

When the value of b is determined, the minimized QL/P can be obtained. At the
minimum value point, the value of a can be expressed as

a =
1

K12K34(b + 1)
− 1 (29)

where
min

QL
P

=
4√

K12K34
=

4
K12

=
4

K34
(30)

We can see from Equation (30) that the minimum value of QL/P is just related to the
coupling coefficients; by increasing the values of K12 and K34, the value of QL/P can be
further decreased.

By substituting Equations (25) and (26) into Equation (6), the transferred power can be
described as

P =
ω0UABUab

√
C1C4

K12K34
√
(a + 1)(b + 1)

(31)

According to Equation (2), Equation (31) can be changed to

P =
8ω0VinVout

√
C1C4

π2K12K34
√
(a + 1)(b + 1)

(32)
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From the above analysis, a general parameter optimization method that is based on
equal reactive power can be obtained. Figure 6 shows the design flowchart. Considering
the actual application scenarios, the system requirements are given and defined as inputs.
The optimized coefficients K12, K34, a and b can be obtained by Equations (25), (28) and
(29). Based on Equation (27), the relationship between the coupling capacitors can be
derived. With the given airgap distances d12 and d2, an appropriate capacitive coupler with
optimized coupling capacitors can be determined. According to Equations (26) and (27), the
optimized C1 and C4 can be obtained. The resonant inductors can then be obtained by using
the resonant conditions. Finally, the parameters can be adjusted iteratively depending on
the available commercial inductors and capacitors.
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3.2. Comparation with the General Optimization Method

Both the two-stage optimization method [50] and the general optimization method
that is proposed in this study aim to increase the system’s efficiency by optimizing the
reactive power in the CPT system. The optimization objectives and optimization processes
in the two methods are similar. The difference is that in the two-stage optimization method
the capacitive coupler is first optimized and then the symmetric coupling parameters
are verified to be an efficient configuration for the CPT system. The two-stage method
is suitable for a CPT system with symmetric circuit parameters. In order to further the
research, this paper studies the asymmetric CPT system and its general optimization
method. Based on the properties of a linear CPT system, equal reactive power was used to
optimize the reactive power in the CPT system. This method is suitable for both symmetric
and asymmetric CPT systems. Besides this, when the coupling capacitors C2 and C3 were
equal, the optimization results in the two studies were same.

4. Parameter Design and Implementation

Considering the actual requirements in EV wireless charging applications, a CPT
prototype with an asymmetric coupling structure was implemented in order to validate the
proposed method.

4.1. System Requirements

As shown in Table 1, the system requirements in an actual CPT system are given. To
satisfy the requirements of the charging distance and passability, the transferred distance
d12 was set to 100 mm. Since the installation space under the vehicle chassis was limited,
the airgap distance d2 on the vehicle’s side was set to 20 mm. The operating frequency of
the CPT system was 1 MHz. The transferred power was set to 3.2 kW and both the input
and output voltages were set to 450 V.

Table 1. System requirements.

Designator Description Designed Values

d12 Transferred distance 100 mm
d2 Airgap distance 20 mm
f Resonant frequency 1 MHz
P Transferred power 3200 W

Vout Output DC voltage 450 V
Vin Input DC voltage 450 V

K12, K34 Coupling coefficient 0.4

We can see from Equations (28) and (30) that the optimization objective can be reduced
by increasing the value of the coupling coefficients K12 and K34. However, studies have
shown that a large third harmonic can be induced in the inverter when K12 and K34 are
greater than 0.4 [62]. Therefore, the values of K12 and K34 were both set to 0.4 in this study.

4.2. Coupler Design

In this study, the asymmetric six-plate capacitive coupler was formed by 2 mm-thick
aluminum plates. The structure is shown in Figure 7 and the dimensions of the designed
coupler are shown in Table 2. The transmitting plates and receiving plates are square and
centrosymmetric. On the receiving side, the plate length l2 was 600 mm, the shielding
edges le3 and le4 were both 50 mm, and the plate separation ls2 was 100 mm. The distance
d2 was 20 mm and the transmission distance d12 was 100 mm. The remaining dimensions
of the transmitting side were plate length l1 and distance d1.
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Table 2. Dimensions of a six-plate coupler.

Designator Description Values

l1 Plate length 300 mm
l2 Plate length 600 mm
ls1 Plate separation 400 mm
ls2 Plate separation 100 mm

le1, le2 Plate shielding edge 200 mm
le3, le4 Plate shielding edge 50 mm

d12 Transferred distance 100 mm
d1 Shielding distance 50 mm
d2 Shielding distance 20 mm
tp Plate thickness 2 mm

In order to obtain the appropriate plate length l1 and shielding distance d1, ANSYS
Maxwell was used to simulate the coupling capacitors under different l1 and d1 values.
According to Equation (24), the optimization objective under different values of l1 and d1
can then be obtained. The results are shown in Figure 8, where the ratio values decrease
with increasing plate length l1 and airgap distance d1. Without a loss of generality, the plate
length was set to 300 mm in this study in order to form an asymmetric capacitive coupler.
With the defined l1, the plate separation ls2 and the shielding edges le1 and le2 could be
obtained.
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The only parameter that needed to be seriously considered was the gap distance d1.
When other parameters are determined, the variation of d1 can affect the values of the
coupling capacitances, which can be simulated by using ANSYS Maxwell. Figure 9 shows
the simulated values of C2, C3, and CS and coefficients a and b under different values of
airgap distance d1.

We can see from Figure 9a that the capacitance of C3 is greater than that of C2 and CS.
With an increasing airgap distance d1, the values of C2 and C3 decrease, while CS increases
slightly. As a result, both a and b decrease with increasing d1, as shown in Figure 9b. In
Figure 10, the optimization objective under different distance d1 is calculated. To reduce
the value of QL/P, the value of the gap distance d1 tends to be large. However, with a large
d1, the value of C2 is very small, which enlarges the inductance values and makes the CPT
system more sensitive to surrounding disturbances. Therefore, both QL/P and C2 should
be considered in the selection of d1. To achieve an appropriate QL/P and avoid C2 being
too small, d1 was set to 50 mm. Correspondingly, QL/P was set to 16.5, a was set to 2.06, b
was set to 17.06, C2 was set to 12.25 pF, C3 was set to 101.5 pF, and CS was set to 5.95 pF.
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Via the finite element simulation software ANASYS Maxwell, the performance of the 
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It should be noted that when b is given, the theoretical minimum QL/P can be obtained
from Equations (29) and (30). If we assume that the value of b does not change with the
variation of a, the relationship between the ratio of QL/P and the coefficient a is shown in
Figure 11. The minimum QL/P value of 10 can be achieved when the coefficient a is −0.65.
To make the coefficient a higher than 0, the value of b should be less than 5.25.
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Via the finite element simulation software ANASYS Maxwell, the performance of the
capacitive coupler with the given parameters was simulated. Figure 12 shows the simu-
lated capacitances C2 and CS under different X and Y misalignments. With an increasing
misalignment condition, the simulated C2 values increase while the CS values decrease.
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4.3. Resonant Parameter Design

With the given system parameters, the other resonant parameters can then be obtained.
Considering the power losses in an actual system, the transferred power that is used to
calculate the circuit parameters should be set slightly higher than the rated value. Based on
Equations (6) and (31), the capacitances C1 and C4 can be calculated as.

C1 =
PK12K34

√
(a+1)(b+1)

ω0U2
AB

=
3400·0.4·0.4·

√
(2.06+1)·(17.06+1)

2π·106·450·450·8/π2 = 3.92 nF

C4 =
PK12K34

√
(a+1)(b+1)

ω0U2
ab

=
3400·0.4·0.4·

√
(2.06+1)·(17.06+1)

2π·106·450·450·8/π2 = 3.92 nF
(33)

The resonant inductors L1, L2, L3, and L4 can be obtained based on the following
resonant relationship:

ω0 = 2π f = 1/
√

L1C1 =1/
√

L4C4 = 1/
√

L2 ·
(

C2 +
C3CS

C3+CS

)
= 1/

√
L3 ·

(
C3 +

C2CS
C2+CS

)
(34)

The designed system’s parameters are shown in Table 3. It should be noted that the
parasitic capacitance between the windings of the inductors is inevitable and should not
be eliminated in this study. The structure of the actual inductor is shown in Figure 13.
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Generally, the parallel-connected parasitic capacitance in the inductors is very small (usually
in the range of several picofarads), which is close to the capacitance values of C2 and CS. As
a result, the resonant inductors L2 and L3 deviated from the design values. Besides this, the
metal plates were deformed due to the influence of gravity, resulting in a small variation of
the coupling capacitance CS. Considering the actual value of the ceramic capacitors and
the effect of parasitic capacitances in the inductors, C1 and C4 were adjusted to 4.2 nF. To
avoid measurement errors, the parameters were tuned by using a network analyzer.

Table 3. Circuit parameters in the designed CPT system.

Designator Description Calculated Values Actual Values

L1 Input side inductor 6.46 µH 5.7 µH
L2 Primary side inductor 1.41 mH 883 µH

(parallel-connected parasitic capacitor) 9.5 pF
L3 Secondary side inductor 240.1 µH 209 µH

(parallel-connected parasitic capacitor) 14.5 pF
L4 Output side inductor 6.46 µH 5.7 µH
C1 Input side capacitor 3.92 nF 4.2 nF
C2 Primary side capacitor 12.25 pF 12.25 pF
C3 Secondary side capacitor 101.5 pF 101.5 pF
C4 Output side capacitor 3.92 nF 4.2 nF
CS Coupling capacitor 5.95 pF 6.75 pF
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5. Simulation and Experimental Results
5.1. Simulation Results

In this study, the system’s performance was simulated by using LTspice. The circuit
that is shown in Figure 4 was used to model the proposed CPT system. The simulation’s
results are shown in Figures 14–16. The waveforms of the voltages UC2 and UC3, input
current, and voltage (I1 and UAB) are shown in Figure 14. Due to the asymmetric configu-
ration of the CPT system, the rms values of UC2 are greater than those of UC3. The phase
difference between UC2 and UC3 is about 78◦. The phases of the current and voltage on the
input side are almost identical, which allowed the system to operate at high-power factor
conditions.

The simulated values of QL and QL/P under different values of the coefficient a are
shown in Figure 15. The results show that the reactive power increases with increasing
output power and coefficient a value and the ratio of QL/P increases with increasing
coefficient a value and decreases with increasing output power. In this study, the coefficient
a was set to 2, and the value of QL/P at the rated power was approximately 17, which
agrees well with the designed value.

The system efficiency under different values of the coefficient a was simulated and the
results are displayed in Figure 16. The results show that the system efficiency increased
with increasing output power and it decreased with increasing values of the coefficient a.
The trend of system efficiency in Figure 15 is opposite to that of QL/P in Figure 15, which
agrees well with the analysis.



Electronics 2022, 11, 922 18 of 25Electronics 2022, 11, x FOR PEER REVIEW 18 of 25 
 

 

0.0 0.5 1 1.5 2
−20
−10

0
10
20

 V
ol

ta
ge

(k
V

)

78o

UC2

UC3

0.0 0.5 1 1.5 2
 Time ( s)

−450
−225

0
225
450

 V
ol

ta
ge

(V
)

−12
−6
0
6
12

 C
ur

re
nt

(A
)UAB

I1

 
Figure 14. Simulation of UC2, UC3, UAB, and I1. 

 
Figure 15. The simulated Q and Q/P at different output power Pout. 

 
Figure 16. System efficiency at different output power. 

Figure 14. Simulation of UC2, UC3, UAB, and I1.

Electronics 2022, 11, x FOR PEER REVIEW 18 of 25 
 

 

0.0 0.5 1 1.5 2
−20
−10

0
10
20

 V
ol

ta
ge

(k
V

)

78o

UC2

UC3

0.0 0.5 1 1.5 2
 Time ( s)

−450
−225

0
225
450

 V
ol

ta
ge

(V
)

−12
−6
0
6
12

 C
ur

re
nt

(A
)UAB

I1

 
Figure 14. Simulation of UC2, UC3, UAB, and I1. 

 
Figure 15. The simulated Q and Q/P at different output power Pout. 

 
Figure 16. System efficiency at different output power. 

Figure 15. The simulated Q and Q/P at different output power Pout.

Electronics 2022, 11, x FOR PEER REVIEW 18 of 25 
 

 

0.0 0.5 1 1.5 2
−20
−10

0
10
20

 V
ol

ta
ge

(k
V

)
78o

UC2

UC3

0.0 0.5 1 1.5 2
 Time ( s)

−450
−225

0
225
450

 V
ol

ta
ge

(V
)

−12
−6
0
6
12

 C
ur

re
nt

(A
)UAB

I1

 
Figure 14. Simulation of UC2, UC3, UAB, and I1. 

 
Figure 15. The simulated Q and Q/P at different output power Pout. 

 
Figure 16. System efficiency at different output power. Figure 16. System efficiency at different output power.



Electronics 2022, 11, 922 19 of 25

The voltages between the plates in the CPT system with different values of coefficient a
were also analyzed. By using the proposed method, the system parameters under different
values of a can be obtained. The voltages between the plates at the rated power can then be
calculated as shown in Table 4. The voltages between the shielding plates (P5 and P6) were
almost 0, which shows a good shielding effect in this design. Since the circuit parameters
in designed CPT system were asymmetric, the voltages between the plates in the primary
and secondary side were different. The voltages between the transmitting plates (P1 and
P2) were higher than those which were observed between the receiving plates (P3 and
P4). When the value of a increased from 1 to 10, the voltages between the plates in the
transmitting side (P1, P2, and P5) decreased, while in the receiving side (P3, P4, and P6)
the voltages increased. Besides this, the voltages between the transmission plates (P1 and
P3) decreased with the increasing value of a. In this study, the voltage between P1 and P5
was approximately 7.56 kV. There was no risk of arcing [48] because the airgap distance
between the plates was large.

Table 4. Values of the voltages between plates at different a values.

Parameter a = 1 This Study
a = 2 a = 5 a = 10

|VP1–P2| 15.56 kV 15.14 kV 14.10 kV 12.77 kV
|VP1–P3| 9.10 kV 8.91 kV 8.56 kV 8.22 kV
|VP3–P4| 5.53 kV 6.23 kV 7.55 kV 8.86 kV
|VP1–P5| 7.77 kV 7.56 kV 7.04 kV 6.38 kV
|VP3–P6| 2.76 kV 3.12 kV 3.77 kV 4.43 kV
|VP5–P6| 0 0 0 0

5.2. Experimental Verification

To verify the proposed method, a 3.2-kW CPT prototype was built as shown in
Figure 17. The asymmetric capacitive coupler with a large receiver and small transmitter
was made up of six aluminum plates. The plates were held by PVC tubes and ceramic
insulators and the outside shielding plates were floating. Under the capacitive coupler,
a black steel plate was used as the ground. The mutual capacitance was 6.75 pF and the
transferred distance was 100 mm. Just like the schematic circuit that is shown in Figure 4,
a DC power source was used in order to provide a DC voltage to the inverter on the
transmitting side of this prototype. An electric DC load, together with several parallel-
connected resistors, was used as the load and connected to the rectifier on the receiving side.
The power converters were formed by SiC devices IMZ120R045M1 and IDW40G120C5B.
The inductors L1–L4 were wound onto the PVC tubes with 1200-strand Litz wire with a
diameter of 0.04 mm, which allowed easy adjustment of the coupling coefficients K12 and
K34. The compensation capacitors consisted of high voltage, low dissipation factor ceramic
capacitors.

From the designed prototype, the experimental results at the rated power are shown
in Figures 18 and 19. The plates in the coupler were well aligned. In order to reduce
the switching losses and improve the system’s efficiency, zero-voltage turn-on should be
achieved for the switching devices. By slightly reducing the value of inductor L2, the ZVS
condition was realized, as shown in Figure 18a,b. The waveforms of the input voltage
and current were almost in phase and the ZVS condition was achieved by a phase shift of
the input current. At the rated input and output DC voltages, about 3.2 kW power was
delivered from the DC source to the electric DC load and resistors with an efficiency of 95%.
The transmission efficiency under different output power is shown in the Figure 19. With
different output voltages, the maximum system efficiencies were both higher than 94.5%.



Electronics 2022, 11, 922 20 of 25Electronics 2022, 11, x FOR PEER REVIEW 20 of 25 
 

 

Power
Analyzer

Electronic
Load

Oscilloscope
Inverter

DC Source

L2

C1

L1

Resistance

Six-plate
Coupler

L3

C4

L4

Rectifier

 
Figure 17. Configuration of a 3.2-kW CPT prototype. 

I1
UAB

(a)
Vds Vgs

I1

ZVS

(b)

Pin

Pout

η 

(c)  

Figure 17. Configuration of a 3.2-kW CPT prototype.

Electronics 2022, 11, x FOR PEER REVIEW 20 of 25 
 

 

Power
Analyzer

Electronic
Load

Oscilloscope
Inverter

DC Source

L2

C1

L1

Resistance

Six-plate
Coupler

L3

C4

L4

Rectifier

 
Figure 17. Configuration of a 3.2-kW CPT prototype. 

I1
UAB

(a)
Vds Vgs

I1

ZVS

(b)

Pin

Pout

η 

(c)  
Figure 18. Experimental Results. (a) Experimental UAB and I1. (b) ZVS condition. (c) System
efficiency.



Electronics 2022, 11, 922 21 of 25

Electronics 2022, 11, x FOR PEER REVIEW 21 of 25 
 

 

Figure 18. Experimental Results. (a) Experimental UAB and I1. (b) ZVS condition. (c) System effi-
ciency. 

 
Figure 19. Experimental DC–DC efficiency at different output power. 

The comparison between the presently designed CPT system and the previous pub-
lished CPT systems that have a large airgap distance and kilowatt-scale power is shown 
in Table 5. The DC–DC overall efficiency is considered. As shown in Table 5, the airgap 
and coupling area that were used in this study are small, resulting in a lower volume and 
coupling capacitance. When the element numbers of the systems are similar, the designed 
CPT system can achieve high transmission efficiency with a relatively low coupling ca-
pacitance. 

Table 5. Comparison of related CPT system. 

Reference Power 
[kW] 

Efficiency 
(DC–DC) [%] 

Frequency 
[MHz] 

Distance 
[mm] 

Plate 
area [cm2] 

Capacitor 
CS [pF] 

Elements 
Num. 

[25] 2.4 90.8 1 150 7442 18.35 9 
[44] 1.88 85.87 1 150 7442 11.3 9 
[48] 1.97 91.65 1 150 7442 9.91 9 
[40] 1.5 93.57 1 150 7442 12.8 9 
[50] 3.0 95.7 1 100 7200 16.33 7 

This study 3.2 95 1 100 1800 6.75 7 

The power loss distribution of the presently designed system was analyzed. Accord-
ing to the calculation method that was proposed in [44,63,64], the power losses in the 
MOSFETs, diodes, inductors, and capacitors were obtained. Based on the on-resistance 
and switching-off current, the losses in the switching devices could then be calculated; the 
losses in the inductors and capacitors were obtained from the measured quality factors. 
The remaining losses are from within the coupling plates. As shown in Figure 20, the in-
ductors and capacitive coupler dissipate 39.2% and 33.6% of the total loss, respectively, 
which makes up the main losses of the system. 

Figure 19. Experimental DC–DC efficiency at different output power.

The comparison between the presently designed CPT system and the previous pub-
lished CPT systems that have a large airgap distance and kilowatt-scale power is shown in
Table 5. The DC–DC overall efficiency is considered. As shown in Table 5, the airgap and
coupling area that were used in this study are small, resulting in a lower volume and cou-
pling capacitance. When the element numbers of the systems are similar, the designed CPT
system can achieve high transmission efficiency with a relatively low coupling capacitance.

Table 5. Comparison of related CPT system.

Reference Power
[kW]

Efficiency
(DC–DC) [%]

Frequency
[MHz]

Distance
[mm]

Plate
area [cm2]

Capacitor
CS [pF]

Elements
Num.

[25] 2.4 90.8 1 150 7442 18.35 9
[44] 1.88 85.87 1 150 7442 11.3 9
[48] 1.97 91.65 1 150 7442 9.91 9
[40] 1.5 93.57 1 150 7442 12.8 9
[50] 3.0 95.7 1 100 7200 16.33 7

This study 3.2 95 1 100 1800 6.75 7

The power loss distribution of the presently designed system was analyzed. According
to the calculation method that was proposed in [44,63,64], the power losses in the MOSFETs,
diodes, inductors, and capacitors were obtained. Based on the on-resistance and switching-
off current, the losses in the switching devices could then be calculated; the losses in the
inductors and capacitors were obtained from the measured quality factors. The remaining
losses are from within the coupling plates. As shown in Figure 20, the inductors and
capacitive coupler dissipate 39.2% and 33.6% of the total loss, respectively, which makes up
the main losses of the system.
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6. Conclusions

A general parameter optimization method for an asymmetric CPT system is proposed
in this article. A six-plate capacitive coupler with an asymmetric structure was used and
compensated by an EFR compensation circuit. The asymmetric coupler structure was
analyzed and the whole system was modeled. The relationship between the transferred
power and reactive power was analyzed. Based on the properties of a linear CPT system,
an optimization method was proposed. By using the equal reactive power, the circuit
conditions that are required in order to optimize the reactive power were obtained. With
these circuit conditions, the reactive power was simplified and the circuit parameters were
optimized. Based on the optimization process, a general parameter optimization method
was proposed and implemented on a 3.2-kW, 1 MHz CPT protype. Both the simulated
and experimental results show that, with the proposed method, high system efficiency
can be achieved for an asymmetric CPT system with low coupling capacitance. About
3.2 kW of power was transferred with a DC–DC efficiency of 95%. Although the special
compensation topology and an asymmetric coupler were used in this study, the proposed
method is not limited to this topology and it is suitable for both symmetric and asymmetric
CPT systems.
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Appendix A

The conditions under which CPT systems have different quality factors are analyzed
in Appendix A. According to the analysis that was presented in Section 2.4, when other
parameters are determined, the transmission efficiency of the CPT system is dependent
on the reactive power and quality factors of the circuit components. With unequal quality
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factors applied on the circuit components, the optimization objective expression in the
study can then be changed to

∑
QLj

Q∗LjP
+ ∑

QCi
Q∗CiP

(j = 1, 2, 3, 4; i = S, 1, 2, 3, 4). (A1)

When a CPT system is built, the quality factors of the circuit components are deter-
mined. Here, the quality factors can be seen as independent from each other. Since the
quality factors do not affect the independence of the system parameters, the properties of
linear CPT system can also be used to reduce the complexity of the optimization objective.
The difference is that, with unequal quality factors, the circuit conditions that are obtained
to simplify the optimization objective contain unequal quality factors.

The parameter optimization design process for a CPT system with unequal quality
factors is similar to that of one with equal quality factors. Therefore, we just demonstrate
the optimization of a CPT system with equal quality factors in this article.
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