# New Modulation Technique in Smart Grid Interfaced Multilevel UPQC-PV Controlled via Fuzzy Logic Controller

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Structure of Multilevel Unified Power Quality Conditioner (UPQC)

#### 2.1. Generating Reference Signals

#### 2.2. Control of the Series Converter

#### 2.3. Control of the Parallel Converter

## 3. Proposed Modulation Technique

## 4. Connecting the Photovoltaic System and Maximum Power Point Tracking (MPPT)

^{2}and a temperature of 25 °C. Figure 8 presents the detailed control structure of the UPQC, including the photovoltaic array that injects its power to the constant DC-Link of 840 volts.

## 5. Simulation Results

#### 5.1. Voltage Sag

#### 5.2. Voltage Swell

#### 5.3. Compensation of Current Harmonics

#### 5.4. Compensation of Current Harmonics for Asymmetric Load

#### 5.5. Compensation of Voltage Harmonics

#### 5.6. Interruptions of Source Voltage

#### 5.7. Single Phase-to-Ground Fault

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

UPQC | Unified power quality conditioner |

AHB | Adaptive hysteresis band |

PV | Photovoltaic |

PWM | Pulse-width modulation |

SRF | Synchronous reference frame |

THD | Total harmonic distortion |

## References

- Sridhar, J.; Prakash, R. Power Quality Issues and Its Mitigation by Unified Power Quality Conditioner. In Proceedings of the International Conference on Current Trends in Engineering Science and Technology, ICCTEST, Bangalore, India, 5–7 January 2017. [Google Scholar]
- Mohammed, N.; Ciobotaru, M.; Town, G. Online parametric estimation of grid impedance under unbalanced grid conditions. Energies
**2019**, 12, 4752. [Google Scholar] [CrossRef] [Green Version] - IEEE. IEEE Standard Definitions for the Measurement of Electric Power Quantities under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions; IEEE: Piscataway, NJ, USA, 2010. [Google Scholar]
- Akagi, H. Modern active filters and traditional passive filters. Bull. Pol. Acad. Sci. Tech. Sci.
**2006**, 54, 255–269. [Google Scholar] - Zahira, R.; Fathima, A.P. A technical survey on control strategies of active filter for harmonic suppression. Procedia Eng.
**2012**, 30, 686–693. [Google Scholar] [CrossRef] [Green Version] - Hussien, Z.; Atan, N.; Abidin, I. Shunt active power filter for harmonic compensation of nonlinear loads. In Proceedings of the National Power Engineering Conference, Bangi, Malaysia, 15–16 December 2003; pp. 117–120. [Google Scholar]
- Nabipour, M.; Razaz, M.; Seifossadat, S.G.; Mortazavi, S. A novel adaptive fuzzy membership function tuning algorithm for robust control of a PV-based Dynamic Voltage Restorer (DVR). Eng. Appl. Artif. Intell.
**2016**, 53, 155–175. [Google Scholar] [CrossRef] - Paramanik, S.; Sarker, K.; Chatterjee, D.; Goswami, S. Smart grid power quality improvement using modified UPQC. In Proceedings of the 2019 Devices for Integrated Circuit (DevIC), Kalyani, India, 23–24 March 2019; pp. 356–360. [Google Scholar]
- Ali, M.; Khan, M.M.; Xu, J.; Faiz, M.T.; Ali, Y.; Hashmi, K.; Tang, H. Series Active Filter Design Based on Asymmetric Hybrid Modular Multilevel Converter for Traction System. Electronics
**2018**, 7, 134. [Google Scholar] [CrossRef] [Green Version] - Varschavsky, A.; Dixon, J.; Rotella, M.; Morán, L. Cascaded nine-level inverter for hybrid-series active power filter, using industrial controller. IEEE Trans. Ind. Electron.
**2009**, 57, 2761–2767. [Google Scholar] [CrossRef] - Geethalakshmi, B.; Kavitha, M.; Delhibabu, K. Harmonic compensation using multilevel inverter based shunt active power filter. In Proceedings of the 2010 Joint International Conference on Power Electronics, Drives and Energy Systems & 2010 Power India, New Delhi, India, 20–23 December 2010; pp. 1–6. [Google Scholar]
- Saad, S.; Zellouma, L. Fuzzy logic controller for three-level shunt active filter compensating harmonics and reactive power. Electr. Power Syst. Res.
**2009**, 79, 1337–1341. [Google Scholar] [CrossRef] - Massoud, A.M.; Finney, S.J.; Cruden, A.J.; Williams, B.W. Three-phase, three-wire, five-level cascaded shunt active filter for power conditioning, using two different space vector modulation techniques. IEEE Trans. Power Deliv.
**2007**, 22, 2349–2361. [Google Scholar] [CrossRef] - Vinnakoti, S.; Kota, V.R. Implementation of artificial neural network based controller for a five-level converter based UPQC. Alex. Eng. J.
**2018**, 57, 1475–1488. [Google Scholar] [CrossRef] - Campanhol, L.B.; da Silva, S.A.; Azauri, A. A three-phase four-wire grid-connected photovoltaic system using a dual unified power quality conditioner. In Proceedings of the 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), Fortaleza, Brazil, 29 November–2 December 2015; pp. 1–6. [Google Scholar]
- Subrahmanyam, K.; Gopal, B. PV system integration with multilevel-UPQC for power quality improvement in distribution system. Mater. Today Proc. 2020; in press. [Google Scholar] [CrossRef]
- Muneer, V.; Bhattacharya, A. Cascaded H bridge multi level inverter based unified power quality conditioner. In Proceedings of the 2018 IEEE 8th Power India International Conference (PIICON), Guangzhou, China, 14–16 May 2018; pp. 1–6. [Google Scholar]
- Vinothkumar, V.; Kanimozhi, R. Power flow control and power quality analysis in power distribution system using UPQC based cascaded multilevel inverter with predictive phase dispersion modulation method. J. Ambient. Intell. Humaniz. Comput.
**2021**, 12, 6445–6463. [Google Scholar] [CrossRef] - Gupta, A. Power quality evaluation of photovoltaic grid interfaced cascaded H-bridge nine-level multilevel inverter systems using D-STATCOM and UPQC. Energy
**2022**, 238, 121707. [Google Scholar] [CrossRef] - Sekhar, A.H.; Bharathi, S.L.K.; Asif, N.A.H.; Manikandan, P.V. Power Quality Enhancement Using Multi-Level Inverter with UPQC and Robust Back Propagation Neural Network Strategy. SPAST Abstr.
**2021**, 1. Available online: https://spast.org/techrep/article/view/2967 (accessed on 1 February 2022). - Shriwastava, R.; Daigavane, M.; Wagh, N. Comparative Analysis of Three Phase 2-Level VSI with 3-Level and 5-Level DCMLI Using CB-SVM. In Proceedings of the IEEE International Conference on Electrical, Electronics, Computers, Communication, Mechanical and Computing (EECCMC-2018), Tamil Nadu, India, 28–29 January 2018; pp. 4304–5386. [Google Scholar]
- Haris, M.; Pathak, M.; Agarwal, P. Comparison of SPWM multilevel inverter fed PMSM drive with two level inverter fed drive. In Proceedings of the International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), Jaipur, India, 9–11 May 2014; pp. 1–5. [Google Scholar]
- Benanti, S.; Buccella, C.; Caruso, M.; Castiglia, V.; Cecati, C.; Di Tommaso, A.; Miceli, R.; Romano, P.; Schettino, G.; Viola, F. Experimental analysis with FPGA controller-based of MC PWM techniques for three-phase five level cascaded H-bridge for PV applications. In Proceedings of the 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), Birmingham, UK, 20–23 November 2016; pp. 1173–1178. [Google Scholar]
- Lezana, P.; Pou, J.; Meynard, T.A.; Rodriguez, J.; Ceballos, S.; Richardeau, F. Survey on fault operation on multilevel inverters. IEEE Trans. Ind. Electron.
**2009**, 57, 2207–2218. [Google Scholar] [CrossRef] [Green Version] - Hafezi, H.; Faranda, R. A new approach for power losses evaluation of IGBT/diode module. Electronics
**2021**, 10, 280. [Google Scholar] [CrossRef] - Kouro, S.; Malinowski, M.; Gopakumar, K.; Pou, J.; Franquelo, L.G.; Wu, B.; Rodriguez, J.; Pérez, M.A.; Leon, J.I. Recent advances and industrial applications of multilevel converters. IEEE Trans. Ind. Electron.
**2010**, 57, 2553–2580. [Google Scholar] [CrossRef] - Szromba, A. The unified power quality conditioner control method based on the equivalent conductance signals of the compensated Load. Energies
**2020**, 13, 6298. [Google Scholar] [CrossRef] - Patjoshi, R.K.; Mahapatra, K. Resistive optimization with enhanced PLL based nonlinear variable gain fuzzy hysteresis control strategy for unified power quality conditioner. Int. J. Electr. Power Energy Syst.
**2016**, 83, 352–363. [Google Scholar] [CrossRef] - Rai, S.K.; Mathew, L.; Shimi, S. Software and Hardware Implementation of a Nine Level Inverter with Low Component Count. In Proceedings of the IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020; pp. 3318–3324. [Google Scholar]
- Arulmurugan, R.; Chandramouli, A. Design and implementation of a nine-level inverter with shunt active filter for distributed system. In Proceedings of the 2018 4th International Conference on Electrical Energy Systems (ICEES), Chennai, India, 7–9 February 2018; pp. 224–228. [Google Scholar]
- Yusof, N.A.; Sapari, N.M.; Mokhlis, H.; Selvaraj, J. A comparative study of 5-level and 7-level multilevel inverter connected to the grid. In Proceedings of the 2012 IEEE International Conference on Power and Energy (PECon), Kota Kinabalu, Malaysia, 2–5 December 2012; pp. 542–547. [Google Scholar]

**Figure 5.**Calculating the Adaptive Hysteresis Band (HB) using fuzzy logic: (

**a**) for current and (

**b**) for voltage.

**Figure 6.**The generation of pulses for both parallel (

**a**) and series (

**b**) converters of phase a through AHB.

**Figure 9.**The simulation results of the 40% symmetrical voltage sag with a duration of 80 ms: (

**a**) Source voltage, (

**b**) injected voltage, and (

**c**) load input voltage.

**Figure 10.**The simulation results of the voltage swell (

**a**) Source voltage, (

**b**) injected voltage, (

**c**) load voltage.

**Figure 11.**The simulation results of the current waveform before and after compensation the harmonics: (

**a**) load current, (

**b**) filter current, and (

**c**) source current.

**Figure 12.**The simulation results of the current waveforms before and after compensation harmonics for the asymmetric load (

**a**) load current, (

**b**) UPQC current, and (

**c**) source current.

**Figure 13.**The simulation results of voltage harmonics (

**a**) Source voltage, (

**b**) injected voltage, and (

**c**) load voltage.

**Figure 14.**The simulation results of the voltage interruption (

**a**) Source voltage, (

**b**) injected voltage, and (

**c**) load voltage.

**Figure 15.**The simulation results of the phase interruption (

**a**) Source voltage, (

**b**) injected voltage, and (

**c**) load voltage.

V_{s} | NL | NM | ZE | PM | PL | |
---|---|---|---|---|---|---|

di_{c}/dt,dv/dt | ||||||

NL | PVS | PS | PS | PM | PM | |

NM | PS | PS | PS | PM | PM | |

ZE | PL | PL | PVL | PL | PL | |

PM | PM | PM | PS | PS | PS | |

PL | PM | PM | PS | PS | PVS |

Description | Value | Unit |
---|---|---|

Maximum power | 200 | W |

Maximum power voltage | 26.3 | V |

Maximum power current | 7.61 | A |

Open circuit voltage | 32.9 | V |

short circuit current | 8.21 | A |

Numbers of serial cells | 54 | - |

Quantity | Value | Unit |
---|---|---|

Line to line voltage of the grid | 380 | V |

Phase voltage of the grid | 220 | V |

Maximum phase voltage | 311 | V |

Grid frequency | 50 | Hz |

Load impedance | R = 15 | $\mathsf{\Omega}$ |

L = 30 | mH | |

Transformation ratio | 1:1 | - |

Reference DC Voltage | 840 | V |

Line impedance | ${R}_{\mathrm{L}}$ = 0. 1 | $\mathsf{\Omega}$ |

${L}_{\mathrm{L}}$ = 10 | µH | |

Switching frequency | 5 | kHz |

Shunt filter impedance | R = 1 | mΩ |

L = 2.1 | mH |

Phase | Source THD% | THD% Using SPWM | THD% Using AHB |
---|---|---|---|

A | 15.15 | 1.32 | 0.63 |

B | 15.5 | 1.36 | 0.69 |

C | 15.32 | 1.37 | 0.7 |

Phase | Source THD% | THD% Using SPWM | THD% Using AHB |
---|---|---|---|

A | 10.97 | 1.05 | 0.29 |

B | 11.02 | 1.06 | 0.31 |

C | 10.98 | 1.08 | 0.32 |

Phase | Source THD% | THD% Using SPWM | THD% Using AHB |
---|---|---|---|

A | 23.97 | 2.72 | 1.49 |

B | 24.1 | 2.76 | 1.5 |

C | 24.04 | 2.77 | 1.5 |

Phase | Source THD% | THD% Using SPWM | THD% Using AHB |
---|---|---|---|

A | 18.2 | 2.29 | 1.43 |

B | 18.16 | 2.24 | 1.43 |

C | 20.22 | 2.26 | 1.44 |

Phase | Source THD% | THD% Using SPWM | THD% Using AHB |
---|---|---|---|

A | 17.67 | 1.11 | 0.55 |

B | 17.69 | 1.14 | 0.58 |

C | 17.7 | 1.12 | 0.56 |

Phase | Source THD% | THD% Using SPWM | THD% Using AHB |
---|---|---|---|

A | 53.86 | 2.32 | 1.65 |

B | 53.9 | 2.36 | 1.68 |

C | 53.89 | 2.37 | 1.69 |

Phase | Source THD% | THD% Using SPWM | THD% Using AHB |
---|---|---|---|

A | 53.86 | 2.52 | 1.90 |

B | 0.28 | 2.46 | 1.89 |

C | 0.29 | 2.45 | 1.88 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kenjrawy, H.; Makdisie, C.; Houssamo, I.; Mohammed, N.
New Modulation Technique in Smart Grid Interfaced Multilevel UPQC-PV Controlled via Fuzzy Logic Controller. *Electronics* **2022**, *11*, 919.
https://doi.org/10.3390/electronics11060919

**AMA Style**

Kenjrawy H, Makdisie C, Houssamo I, Mohammed N.
New Modulation Technique in Smart Grid Interfaced Multilevel UPQC-PV Controlled via Fuzzy Logic Controller. *Electronics*. 2022; 11(6):919.
https://doi.org/10.3390/electronics11060919

**Chicago/Turabian Style**

Kenjrawy, Hassan, Carlo Makdisie, Issam Houssamo, and Nabil Mohammed.
2022. "New Modulation Technique in Smart Grid Interfaced Multilevel UPQC-PV Controlled via Fuzzy Logic Controller" *Electronics* 11, no. 6: 919.
https://doi.org/10.3390/electronics11060919