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Abstract: The demands for renewable energy generation are progressively expanding because
of environmental safety concerns. Renewable energy is power generated from sources that are
constantly replenished. Solar energy is an important renewable energy source and clean energy
initiative. Photovoltaic (PV) cells or modules are employed to harvest solar energy, but the accurate
modeling of PV cells is confounded by nonlinearity, the presence of huge obscure model parameters,
and the nonattendance of a novel strategy. The efficient modeling of PV cells and accurate parameter
estimation is becoming more significant for the scientific community. Metaheuristic algorithms
are successfully applied for the parameter valuation of PV systems. Particle swarm optimization
(PSO) is a metaheuristic algorithm inspired by animal behavior. PSO and derivative algorithms are
efficient methods to tackle different optimization issues. Hybrid PSO algorithms were developed
to improve the performance of basic ones. This review presents a comprehensive investigation of
hybrid PSO algorithms for the parameter assessment of PV cells. This paper presents how much
work is conducted in this field, and how much work can additionally be performed to improve this
strategy and create more ideal arrangements of an issue. Algorithms are compared on the basis of
the used objective function, type of diode model, irradiation conditions, and types of panels. More
importantly, the qualitative analysis of algorithms is performed on the basis of computational time,
computational complexity, convergence rate, search technique, merits, and demerits.

Keywords: energy harvesting; photovoltaic; metaheuristic; particle swarm optimization

1. Introduction

In the 26th United Nations Climate Change Conference (COP26), countries decided to
move towards clean energy to limit the increase in average global temperature. It is very
important to reduce dependency on the usage of fossil fuels, as these fuels are the main
drivers of global warming. These circumstances direct us towards clean and renewable
energy [1]. Scientific and industrial communities put substantial efforts in harvesting energy
from surrounding energy sources (e.g., solar, wind, and hydropower) [2–4].

Among numerous clean energy sources, solar energy harvesting is an appropriate
candidate, and the market share of solar energy systems is speedily rising [5,6]. Solar energy
generation plants are designed by connecting several photovoltaic (PV) cells in serial or
parallel arrangements. Electricity distribution grids and solar energy plants are connected
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and simultaneously operated [7,8]. Power output from solar energy plants is influenced by
operational and environmental conditions [9,10]. Instabilities in power generation affect
the economic prospect of solar energy plants [11,12]. Therefore, the efficiency of solar
energy generation systems should be enhanced by the effective modeling and parameter
assessment of PV cells or modules. The assessment of unknown parameter PV cells and the
appropriate modeling of PV systems are of the utmost importance. Parameter assessment
is a nontrivial task because of nonlinear, multivariable, and multimodal characteristics [13].
Throughout the past few decades, there have been noteworthy advancements to under-
stand the characteristics of PV systems by means of mathematical modeling. PV cells
could be successfully analyzed through single-(SDM), double- (DDM), and triple-diode
(TDM) models [13–15].

Metaheuristic algorithms are widely discussed and have successfully been applied
for the parameter estimation of PV systems and various other applications [16–31]. Meta-
heuristic algorithms are computational intelligence paradigms that are especially used
for sophisticated solutions of optimization problems. The advantages and disadvantages
of these algorithms are classified on the basis of good trade-offs regarding exploitation
and exploration abilities. One essential circumstance is that various algorithms should be
benchmarked and equated on a job that is similar to the design optimization problem at
hand. Metaheuristic algorithms can be classified in a variety of ways due to their various
characteristics [24]. Figure 1 demonstrates the classification of metaheuristic algorithms into
four groups: evolution-based, human-related, nature-inspired, and bio-inspired algorithms.
Another probable classification of some particular methods is represented in Figure 2.

Figure 1. Different metaheuristic methods for assessment of unknown parameters of PV cells or
modules (adapted with permission from Ref. [13]. Copyright 2022 John Wiley and Sons).

In a very recent work, Karambasti et al. employed a genetic (GE) algorithm for small-
scale power-water production based on the integration of a Stirling engine and a multieffect
evaporation desalination system [32]. For partially shaded conditions, an ant colony op-
timization (ACO)-based hybrid MPPT controller for photovoltaic systems was studied
by Chao et al. [33]. Recently, we implemented arithmetic algorithm for the parameter
extraction of fuel cells [34]. The grey wolf optimization (GWO) algorithm was employed to
enhance the performance of a dual-energy gamma-ray-based three-phase flow meter [35].
Artificial neural network (ANN)-based methods were also used to solve optimization prob-
lems [36,37]. Orosz et al. summarized different nature-inspired multiobjective optimization
techniques [24]. Different types of population-based optimization methods, e.g., genetic
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algorithm (GA), differential evolution (DE), cuckoo search (CS), firefly algorithm (FA),
tunicate swarm algorithm (TSA), whale optimization algorithm (WOA), opposition-based
TSA (OTSA), and particle swarm optimization (PSO), were successfully used for parameter
optimization of solar cells [23–31].

Figure 2. Metaheuristic methods and their categorization (reprinted from Ref. [24]).

Swarm-intelligence-based algorithms are stimulated by the social behavior of animals,
insects, birds, and fish. A widespread method is particle swarm optimization (PSO), which
is inspired by the actions of bird flocks. These birds fly to find their best location (position)
through the search space. Though several PSO and other metaheuristic algorithms were
developed, none provides an optimal explanation to all sets of problems, as per the ‘no
such thing as a free lunch’ theorem’ [38,39]. This directs researchers and scientists to further
develop new algorithms or modify previous algorithms to resolve optimization problems.
PSO and modified PSO algorithms are studied for various engineering applications e.g.,
speech emotion recognition, railway controls, job shop scheduling problems, geotechnical
engineering, load flow control, source seeking problems, elevator door systems, quad
assignment problems, equipment possession quantity, optimal designs of PID controllers,
parameter estimation of photovoltaic cells or modules, and the beam-slab layout design of
rectangular floors [40–49]. Hajihassani et al. studied PSO algorithms for applications in
geotechnical engineering [43]. In a very recent work, Huang et al. proposed a multilayer
hybrid fuzzy classification-based PSO for speech emotion recognition [40].

This review article summarizes recent developments in hybrid PSO algorithms for the
parameter assessment of PV cells or modules. This article is useful for researchers who are
working on the parameter optimization of different issues. Although PSO algorithms are
applicable for different types of applications, we limited this analysis to only the parameter
optimization of PV cells or modules.

2. Estimating PV Cell/Module Parameters

Figure 3 illustrates the different processes involved in the parameter assessment of PV
cells or modules. Generally, any PV cell or module is modeled using an electrical equivalent
circuit, which preferably includes a current source, diode, and resistors. Equivalent circuits
can be articulated employing three types of models, namely, SDM, DDM, and TDM,
and each model has advantages and disadvantages. The number of diodes in the model
decides the accuracy of I–V curve estimation. SDMs are usually employed for modeling PV
cells or modules because of their reliability, accuracy, and simplicity [49]. Other models
are also used for more accurate curve reproduction and the inclusion of recombination
losses [13–15]. However, the complexity of the simulation process is significantly increased.
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Figure 3. Different processes for modeling and parameter estimation of PV cells. PV: photovoltaic,
SDM: single-diode model, DDM: double-diode model, and TDM: triple-diode model (adapted with
permission from Ref. [13]. Copyright 2022 John Wiley and Sons).

Figure 4 illustrates the SDM equivalent circuit of a standard PV cell. The diode (D) is
connected to the current source in parallel. Moreover, the shunt resistor (Rsh) and series
resistance (Rs) are connected for the consideration of losses due to carrier recombination and
metallic junction. According to Figure 4, the electrical behavior of PV cell is expressed as:

I = Ip − I0

[
exp
(

qeV
akBT

)
− 1
]

(1)

where I, Ip, I0, V, a, and T are output current, photocurrent, reverse saturation current,
output voltage, quality factor, and cell temperature, respectively. The Boltzmann constant
(kB) is 1.3806 × 10−23 m2·kg/s2K, and elementary charge (qe) is 1.602 × 10−19 C.

Figure 4. SDM equivalent circuit of standard PV cell.

The assessment of each unknown parameter and the process of PV modeling are of
utmost importance. Besides model selection, another key step is to select a method for the
estimation of unknown parameters. Generally, the two technique types that are employed
for unknown-parameter determination are analytical and metaheuristic methods [50]. Ana-
lytical methods apply different operating conditions and available manufacturer datasheets
to attain PV characteristics [50,51]. Metaheuristic methods employ the curve fitting tech-
nique to assess PV characteristics (I–V curve). Thus, the datasheet of a predicted I–V curve is
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matched with the manufacturer and/or measured datasheets [52]. Metaheuristic methods
are more useful for enhanced performance and reduced computational load than analytical
ones are. A combination of the two methods can also provide superior performance.

Table 1 displays the different error functions applicable for the evaluation of meta-
heuristic and other optimization algorithms. These functions are absolute error (AE),
individual absolute error (IAE), relative error (RE), mean square error (MSE), mean bias
error (MBE), root mean square error (RMSE), and the sum of squared error (SSE) [53–55].
Among them, the commonly used objective function to analyze efficiency is the RMSE
metric. In the case of SDM, five parameters (Ip, Isd, a, Rs and Rsh) should be assessed to
obtain the minimal value of the RMSE.

Table 1. Various performance parameters.

Error Metrics Function

Individual absolute error IAE = |Im − Is|
Relative error RE = (Im−Is)

Is

Absolute error AE =

∣∣∣∣ N
∑

i=0
Im − Is

∣∣∣∣
Mean absolute error MAE =

N
∑

i=0

(Im−Is)
N

Normalized mean absolute error NMAE =
N
∑

i=0

(Im−Is)/Is
N

Mean bias error MBE = (Im−Is)
N

Root mean square error
RMSE =

√(
N
∑

i=0
Im−Is

)2

N
Note: Im, actual (measured) current; Is, calculated/estimated current; number of data points in I–V characteristics, N.

Different algorithms are mainly employed to optimize the unknown parameters of
equivalent models (SDM, DDM, and TDM) of PV cells. Another objective is to diminish the
error among measured and assessed datasets. The RMSE objective function is expressed as

RMSE =

√√√√1
k

k

∑
N=1

f (Vl , Il , X) (2)

where, Il and Vl are the measured current and voltage parameters of the PV cell/module.
The number of the experimental dataset is represented by parameter k. Vector X denotes
the best solution. In the case of SDM [13,15]:{

fsingle(Vl , Il , X) = Ip − Isd

[
exp
(

q(Vl+Il Rs)
a1kBT

)
− 1
]
− Vl+Il Rs

Rsh
− Il(

X = Ip, Isd, a , Rs, Rsh
) (3)

For the DDM [14,15]:
fdouble(Vl , Il , X) = Ip − Isd1

[
exp
(

q(Vl+Il Rs)
a1kBT

)
− 1
]

−Isd2

[
exp
(

q(Vl+Il Rs)
a2kBT

)
− 1
]
− Vl+Il Rs

Rsh
− Il(

X = Ip, Isd1 , Isd2 , a1, a2, Rs, Rsh
) (4)

For the TDM [14,15]:
fdouble(Vl , Il , X) = Ip − Isd1

[
exp
(

q(Vl+Il Rs)
a1kBT

)
− 1
]

−Isd2

[
exp
(

q(Vl+Il Rs)
a2kBT

)
− 1
]
− Isd3

[
exp
(

q(Vl+Il Rs)
a3kBT

)
− 1
]
− Vl+Il Rs

Rsh
− Il(

X = Ip, Isd1 , Isd2 , Isd3 , a1, a2, a3, Rs, Rsh
) (5)
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As stated previously, equivalent circuit models can be differentiated on the basis of
number of diodes in the circuit. Therefore, the number of unknown parameters is different
for different models. Thus five, seven, and nine parameters need to be estimated for SDM,
DDM, and TDM, respectively. The characteristics (V–I and P–I) of PV cells are described on
the basis of the best-optimized parameters. Distinctive V–I and P–I curves of PV cells in
standard conditions are shown in Figure 5.

Figure 5. Characteristic curve of PV cells at standard conditions (reprinted from Ref. [10]).

3. Particle Swarm Optimization

The particle swarm optimization (PSO) method was introduced by J. Kennedy and R.
C. Eberhard for solving nonlinear functions [56,57]. It is a population-based self-adaptive
and nature-inspired stochastic optimization technique. The PSO algorithm works as follows.
Initial particles are first created and assigned as initial velocities. The objective function is
evaluated at every particle’s location. The best function value and location are determined.
In the next step, new velocities are selected on the basis of recent velocity, the best locations
of individual particles, and the best locations of their adjacent particles. After that, the
location, velocities, and neighbors of particles are iteratively updated. The new location
is assessed by adding the velocity to the previous location. Locations are altered to retain
particles within bounds. The process continues for several iterations till the algorithm
arrives at a stopping criterion.

The PSO algorithm explores the space of an optimization problem by modifying the
paths of individual members, called particles because these paths form partwise paths
in a quasistochastic fashion. The motion of the swarming particle consists of two major
parts, the stochastic and the deterministic parts. In this technique, each potential solution
is considered to be a particle with its own random velocity and location in the search
space. The search space is defined as the set of all probabilistic solutions for the problem to
be optimized. Each particle achieves its best position and velocity according to the best
solution (fitness) in the solution space. The i-th particle in the PSO algorithm updates its
velocity and position at every t-th step according to the equations given below:

Vt+1
i = wVt

i + r1C1
(

Pbest–Xt
i
)
+ r2C2

(
Gbest–Xt

i
)

(6)

In the above expression, the first, second, and third terms are previous velocity,
cognitive learning, and social learning, respectively.

Xt+1
i = Xt

i + Vt+1
i (7)

where Xt
i and Vt

i designate the position and velocity vector of the i-th particle in the swarm,
w represents the inertial weight to maintain the balance between local and global search
ability, and C1 and C2 denote the acceleration constant and are predefined by the user.
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r1 and r2 are random numbers generated in the range of (0, 1). Pbest is the personal best
position of the i-th particle at time t, and Gbest is the global best position of the i-th particle
within the swarm. The term inertial weight (w) was not initially included in the ordinary
PSO; it was included by Shi and Eberhart in 1998 [56].

The representation of the PSO model is shown in Figure 6, where bold lines depict the
velocity and position of the particle after each iteration, dotted lines depict the components
of Equation (6), Pbest denotes the personal best position of the particle, Gbest represents
global best position of particular particle in a search space, and X and Y represent the
horizontal and vertical direction of search in a solution space, respectively.

Figure 6. Representation of particle swarm optimization (PSO) model.

Pseudocode for implementation of PSO algorithm [Algorithm 1] is as follows:

Algorithm 1. Pseudocode of PSO

1 Objective function f (x), x =
(

xi, . . . , xp
)t

2 Initialize locations Xt
i and velocity Vt

i of ith particles
3 Find Gbest from min [ f (x1), f (xn)] (at t = 0)
4 while (max iteration)
5 t = t + 1 (iteration counter)
6 for loop over all ith particles and all p dimensions
7 Generate new velocity Vt+1

i using Equation (6)
8 Calculate new locations Xt+1

i = Xt
i + Vt+1

i
9 Evaluate objective functions at new locations Xt+1

i
10 Find best current for each particle Pbest
11 end for
12 Find the current global best Gbest
13 end while
14 Output results Pbest and Gbest

The PSO algorithm also has certain advantages compared with numerous other con-
tinuous optimization techniques.

4 It does not produce assertions about the consistency and the convexity of the opti-
mization problem to be optimized.

4 It is not necessary to measure the coefficient of the optimal solution.
4 There is no need for good initial points of reference or extensive a priori knowledge

of its most interesting regions of the search domain.

Now, we discuss modified and hybrid PSO algorithms, which are the derivative of
basic PSO. Several investigators have endeavored to hybridize PSO through different
methods and guaranteed upgrades according to the exhibition perspective.



Electronics 2022, 11, 909 8 of 23

4. Hybrid PSO Algorithms

PSO algorithms are efficient methods to tackle different optimization issues. Neverthe-
less, the fundamental PSO regularly experiences untimely convergence, and demonstrates
poor performance for many intricate and multimodal optimization problems [42,49,57].
Several studies were conducted to improve the performance of basic PSO [58–73]. These
improvements were largely focused on the population structure and the estimation pro-
cess of the next velocity of every other particle. This helped to upsurge the effectiveness
and consistency of the initial hunt process, and avert the amount of miscellany. Detailed
analysis is devoted to monitoring the expansion of velocity, consistency, and convergence,
and parameter changes. The hybridization of PSO through additional algorithms could
significantly improve the performance of basic PSO [49,57–62]. The convergence rate of
PSO could be exceptionally expanded by changing the speed increase proportion to the
best design utilizing auxiliary boundaries [42]. Table 2 summarizes various hybrid PSO
algorithms for the parameter assessment of PV cells.

Table 2. Comparison of different hybrid PSO algorithms for parameter approximation of PV systems.

Hybrid PSO Objective
Function Used

Type of Diode
Model Irradiation Conditions Types of Panel

FODPSO (Fractional Order
Darwinian PSO) [60]

IAE
SIAE
RMSE

SDM
DDM

1000 W/m2 at 33 ◦C RTC silicon solar cell

1000 W/m2 at 45 ◦C
Photowatt

PWP201PV Module

675 W/m2 at 48.3 ◦C
Monocrystalline cell

(TSM185M-72M)

616.4 W/m2 at 47.4 ◦C
Polycrystalline cell
(SW 250–260 poly)

NPSOPC (niche PSO in parallel
computing) [61] RMSE

SDM
DDM
PMM

1000 W/m2 at 33 ◦C RTC silicon solar cell

1000 W/m2 at 45 ◦C
Photowatt-
PWP201PV

module

EPSO (enhanced PSO) [63] MSE
SDM
DDM
TDM

1000 W/m2 at 33 ◦C RTC silicon solar cell

1000 W/m2 at 45 ◦C
DPL Photowatt-

PWP201PV
module

PSOGWO (grey wolf optimization
combined with PSO) [63] RMSE SDM

1000 W/m2 at 25 ◦C KC200GT PV module

800 W/m2 at 20 ◦C SQ85 PV module

WOAPSO (whale optimization
combined with PSO) [49] RMSE SDM

DDM

1000 W/m2 at 30 ◦C RTC France solar cell

1000 W/m2,
870 W/m2,

720 W/m2, and
630 W/m2 at 25 ◦C

PV module (SS2018P)

CIWPSO (chaotic inertial
weight PSO) [64]

RMSE
IAE
AE

SDM
DDM

1000 W/m2 at 33 ◦C RTC France solar cell

1000 W/m2 at 45 ◦C
Photowatt

PWP201PV module

1000 W/m2 at 47 ◦C,
800 W/m2 at 44 ◦C,
600 W/m2 at 42 ◦C,
400 W/m2 at 36 ◦C,
200 W/m2 at 27 ◦C

JKM330P-72 PV
module
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Table 2. Cont.

Hybrid PSO Objective
Function Used

Type of Diode
Model Irradiation Conditions Types of Panel

CPMPSO (classified perturbation
mutation-based PSO) [65]

RMSE
IAE

SDM
DDM

1000 W/m2 at 45 ◦C
Photowatt-
PWP201PV

module

1000 W/m2 at 33 ◦C RTC France solar cell

51 STM6-40/36 PV
module

55 STP6-120/36 PV
module

DEDIWPSO (double exponential
function-based dynamic inertial

weight PSO) [66]

RMSE
IAE

SDM
DDM

1000 W/m2 at 33 ◦C RTC France solar cell

1000 W/m2 at 45 ◦C
Photowatt

PWP201PV module

SAIWPSO (simulated annealing
inertia weight PSO) [67] RMSE SDM

DDM 1000 W/m2 at 33 ◦C RTC France solar cell

PSOAG (autonomous
groups PSO) [68,69]

CR
RMSE
MAE

SDM 1000 W/m2 at 33 ◦C RTC France solar cell

CPSO (chaos PSO) [70]
RMSE
MAE

RACF *

SDM
DDM 1000 W/m2 at 33 ◦C RTC France solar cell

HPSOSA (hybrid PSO and
simulated annealing) [70]

RMSE
MAE

RACF *

SDM
DDM 1000 W/m2 at 33 ◦C RTC France solar cell

* RACF: residual autocorrelation function.

4.1. FODPSO

In a very recent work, Ahmed et al. proposed a fractional order Darwinian PSO
(FODPSO) algorithm to find the parameters of PV cells [60]. In this research work, a
modification was proposed for controlling the velocity of each particle by incorporating
the concept of fractional order derivative.

The Grunwald–Letnikov definition is used to define the fractional derivatives as
given below [60]:

Dα[X(t)] =
1

Tα

r

∑
k=0

(−1)kΓ(α + 1)x(t− kh)
Γ(α + 1)Γ(α− k + 1)

(8)

where α is the derivative order, T is the period of sampling, and r is the truncation order.
Other elements of Equation (8) were defined in [60]. The original velocity to implement
fractional-order calculus on PSO (Equation (6)) is rewritten as:

Vt+1 + Vt = C1 × rand(P− XT) + C2 × rand(G− XT) (9)

The left-hand side of the above equation represents the discrete formula of the deriva-
tive of order number α = 1. Let us assume that T = 1; we arrive at

Dα[Vt+1] = C1 × rand(P− XT) + C2 × rand(G− XT) (10)

Equation (11) denotes the application of the fraction order number (Equation (8)) on
the speed of particles with a range from α = 0 to α = 1 (∆α = 0.1) and r = 4:

Vt+1 = αVt +
1
2 α(1− α)Vt−1 +

1
6 α(1− α)(2− α)Vt−2 +

1
24 α(1− α)(2− α)(3− α)Vt−3+

C1 × rand(P− XT) + C2 × rand(G− XT)
(11)
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The main benefit of the fractional calculus derivatives is the additional level of degree
of freedom. Equation (11) shows the possibility to govern the speed of particles concerning
the derivative order (α). This is the key benefit as compared to the basic PSO algorithm. The
additional level of opportunity of fractional calculus derivation induction takes into consid-
eration an exact depiction of the conduct of many cycles through the exact enhancement of
framework display, planning, and control.

To show the effectiveness of FODPSO, eight metaheuristic algorithms (existing in
the literature) are compared. Furthermore, two types of diode models (SDM and DDM)
are exploited to show the efficiency of FODPSO. However, the authors considered only
standard testing conditions for the measurement of current and voltage. Furthermore, there
was no emphasis given on other objective functions such as MAE, NMAE, and MBE.

4.2. NPSOPC

The niche particle swarm optimization in parallel computing (NPSOPC)-based op-
timization algorithm was proposed by Lin and Wu in 2020 [61]. Niches in parallel archi-
tecture were set up with a PSO-based parameters extraction model to improve extraction
performance. The process flow diagram of NPSOPC is provided in Figure 7.

Figure 7. Process flow chart of parallel computing of NPSOPC (reprinted with permission from
Ref. [61]. Copyright 2022 Elsevier).

Experimental validation was conducted by parameters identifying the cation of SDM
and DDM for solar cells and monocrystalline PV modules. However, there is no experimen-
tal validation on other recent PV technologies such as thin-film and perovskite solar cells.
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4.3. EPSO

In 2021, Wang R proposed an enhanced version of PSO termed as enhanced parti-
cle swarm optimization (EPSO). In this latest modification, the authors implemented an
orthogonal opposition-based learning mechanism for initializing the position of the parti-
cles [62]. This method increased the PSO algorithm’s convergence speed and improved
global optimization quality. The swarm initiation employed in this investigation is shown
in the following equation:

θld(0) = θd,min + rand[θd,max − θd,min]
l = 1, 2, L, Np/2

θld(0) = θd,max + θd,min − θl+Np/2, d(0)
l = Np/2 + 1, Np/2 + 2, L, Np

(12)

where θld(0), θd,min, and θd,max are the initial value, minimal, and maximal values of the
candidate solution in the d-th dimension, respectively.

EPSO was tested for three diode models: SDM, DDM, and TDM. Experimental voltage
and current were taken for the validation. The effectiveness of EPSO was verified on an
RTC France solar cell and Photowatt PWP 201 PV module under standard temperature
conditions. However, there was no validation for other types of PV modules such as
monocrystalline and thin-film. Furthermore, there was no comparison provided by the
authors for varying irradiance and temperature levels.

4.4. PSOGWO

In 2020, Premkumar et al. proposed a novel hybrid version of PSO known as particle
swarm optimization and grey wolf optimization (PSOGWO) [63]. In this hybrid version,
the GWO assists the PSO in decreasing the probability of escaping the local-optimum trap.
To avoid the potential of a local-minimum trap, the GWO’s exploration capabilities are
employed to steer some particles towards partially improved positions rather than random
locations. The mathematical model of PSOGWO is illustrated by the following equations.

V−i
q+1 = wV−i

q + c1r1

(
X1 − X−i

q

)
+ c2r2

(
X2 − X−i

q

)
+ c3r3

(
X3 − X−i

q

)
(13)

In addition to this, the efficacy of the hybrid PSOGWO was validated for the problem of
parameter assessment, and its performance was compared with that of GWO and grey wolf
optimizer–cuckoo search (GWOCS). However, PSOGWO and GWOCS algorithms have a
great computing cost due to hybridization. Furthermore, the authors did not emphasize
experimental validation under different climatic conditions.

4.5. WOAPSO

Recently, Sharma et al. proposed another hybrid version of whale optimization and
PSO algorithms (WOAPSO) for the parameter optimization of PV cells [49]. The exploitation
ability of PSO with adaptive weight function was used in pipeline mode with a WOA for
its enhancement and to improve convergence speed of basic PSO. Figure 8 displays the
process flowchart of WOAPSO algorithm implementation.
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Figure 8. Flowchart of WOAPSO algorithm (reprinted from Ref. [49]).

4.6. CIWPSO

Recently, Kiani et al. developed an improved PSO employing chaotic inertial weight
and acceleration coefficients [64]. In the CIWPSO algorithm, the performance of basic
PSO is enhanced by employing two approaches: control inertial weight and acceleration
coefficients. First, an appropriate balance between local and global search is accomplished
by utilizing a sine chaotic inertial weight approach. Subsequently, an optimal solution is
found by guiding acceleration coefficients with the tangent chaotic tactic (Figure 9).

The mathematical model of sine iterator based on chaotic search function is ex-
pressed as

Xn+1 = sin πxn (14)

Using Equation (14), the chaotic sequence (Xn+1) is engendered between 0 and 1.
Factor w is exhibited as

w(it + 1) = ∅× sin(πwt) + τ, (15)

where ∅ and τ are constants [64]. The proposed CIWPSO method produced better outcomes
to the DDM at the expense of greater computational weight than those of the SDM for the
RTC France solar cell. For the Photowatt PWP201 PV module, SDM and DDM displayed
similar outcomes as far as RMSE is concerned; however, DDM is computationally bulky in
light of the number of included obscure parameters.
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Figure 9. Flowchart of CIWPSO algorithm for parameter estimation of PV models (reprinted from
Ref. [64]). Here, Figure 3 of Ref. [64] demonstrated the Newton Raphson method for the formulation
of the objective function.

4.7. CPMPSO

A characterized perturbation mutation-based PSO algorithm was proposed by Liang
et al. for the accurate parameter extraction of PV modules [65]. The two strategies of
perturbation mutation and damping bound handling were employed in a conventional
PSO to provide a good trade-off between exploration and exploitation steps. For improving
exploration, a larger perturbation mutation strategy was employed for the low-quality
personal best location, and to avoid falling into the local optimum, a damping bound
handling method was used.

zi,d =


pbesti,d + rand

(
pbestk1,d − pbestk2,d

)
If

f (pbest) < mean( f itnesspbest)
pbestk1,d + rand

(
pbestk2,d − pbestk3,d

)
otherwise

(16)

where mean( f itnesspbest) =
(

∑NP
i=1 f (pbesti)

)
/NP. NP represents the size of the popu-

lation, and zi,d signifies the d-th dimension magnitude of the trail vector. The randomly
generated integers within [1, NP] were defined as k1, k2, and k3, and they were mutually
different. These integers were also dissimilar after i.

The variable value of trail vector that violates the boundary conditions is rearranged
as follows:

zi,d =

{
xmaxd, if zi,d > xmaxd
xmind, if zi,d < xmind

(17)
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where xmaxd and xmind are the maximal and minimal boundary conditions of the d-th
dimension of one inconstant.

zi,d =


If xi,d > xmaxd

xi,d = xmaxd; vi,d = −vi,d·rand
elseif xi,d < xmind

xi,d = xmind; vi,d = −vi,d·rand

(18)

where xi,d is the d-th dimension of the position, and vi,d is d-th dimension of the velocity of
the i-th particle. The range of the random numbers (rand) was from 0 to 1.

The authors validated the efficiency of CPMPSO on three types of solar panels: poly-
crystalline KC200GT, single-crystalline SM55, and thin-film ST40. However, there was no
perfect match between experimental and simulated values.

4.8. DEDIWPSO

Kiani et al. proposed a double exponential function-based dynamic inertial weight
(DEDIW) approach for the optimal parameter forecast of PV cells or modules. This method
upholds a proper equilibrium between the exploitation and exploration processes to allevi-
ate the early convergence issue of basic PSO [66].

The DEDIW method is propelled by the fast-developing nature of the exponential func-
tion, and consolidates the Gompertzian function, which is a vanishing double exponential
function given below:

w(it + 1) = y(exp− exp(−Ri)) (19)

Ri =

(
maxit− it

maxit

)
(20)

where y = 1. The performance index (Ri) is assessed for individual particles at each iteration.
The magnitude of w diminishes as the number of iterations increases.

Three case studies were performed for the assessment of the suggested technique:
PV module (Photowatt PWP201), RTC France PV cell, and polycrystalline PV module
JKM330P-72 (310 W) under actual climatic circumstances. However, computation time was
longer than that of the conventional PSO because of the large number of tuning parameters
in DEDIWPSO.

4.9. SAIWPSO

The SAIWPSO algorithm by Kiani et al. assessed the parameter of PV cells [67]. Inertial
weight had a higher value at the initial stage (heating process) for global search. However,
it progressively decreases (moderate cooling process) for local search. The mathematical
formulation of the SAIWPSO search mechanism is given by the following equation:

w(iter) = wmin + (wmax − wmin)× temp(iter−1) (21)

SAIWPSO performed very well for the parameter extraction of RTC France solar
cells. However, the computational complexity of SAIWPSO was greater than that of other
metaheuristic algorithms. In addition to this, current and voltage are measured under
standard temperature conditions.

4.10. PSOAG

In 2021, an improved version of PSO known as AGPSO was presented [68]. In AGPSO,
all particles are first divided into different groups, and these groups then use the different
types of functions for tuning social and cognitive parameters. This modification leads to
fast convergence and avoids local minima.

Pseudocode for the implementation of the PSOAG algorithm [Algorithm 2] is
as follows [68,69]:
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Algorithm 2. Pseudocode of the PSOAG algorithm.

Create and initialize a D-dimensional PSO
Randomly divide particles into autonomous groups
Repeat

Calculate particles fitness Pbest and Gbest
For each particle:

Extract the particle group
Use its group strategy to update C1 and C2
Use C1 and C2 to update velocities (6)
Use new velocities to define new positions (7)

End for
Until stopping condition is satisfied.

Experimental results in this study depict that there was 14% improvement in computa-
tion cost, and 20% improvement in terms of convergence rate compared to other metaheuris-
tic algorithms. However, no comparison was provided with new metaheuristic techniques.

4.11. CPSO

The CPSO algorithm was proposed as a low-computational-complexity method for
parameter estimation of PV cells/modules [70,71] where the chaotic search-based method is
employed to overcome the tendency of PSO to become stuck in a local solution. Chaos is a
well-known nonlinear event in physical systems. Randomicity, monotonicity, and nonrepeat
ability are features of chaotic variables. The following equation illustrates the efficient
search strategy of the chaos mechanism. Inertial weight in CPSO decreased linearly:

w = wmax + itrcurr(wmax − wmin)G (22)

where wmax, wmin, itrcurr, and G are the maximal inertial weight, minimal inertial weight,
current number of iterations, and maximal number of iterations, respectively.

In that research study, the effectiveness of CPSO is shown by taking three indices:
RMSE, MBE, and MAE. However, there was no proper validation provided by the authors
for different environmental conditions.

4.12. Hybrid PSO and Simulated Annealing (HPSOSA)

Mughal et al. proposed another hybrid version of PSOSA for the parameter estimation
of PV cells. In this hybrid version, premature convergence problem PSO was removed by
including the simulated annealing (SA) algorithm in pipeline mode [70]. First, the best
global solution is generated by PSO algorithm. Then, this best solution is taken as input by
SA algorithm to further improve the solution (Figure 10).

Furthermore, the authors took RMSE and MAE as two objective functions for mea-
suring the effectiveness of HPSOSA, and tested their algorithm on the RTC France solar
cell. No experimental validation was provided by the authors for other solar panels under
different climatic conditions.
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Figure 10. Process flowchart of parallel computing of HPSOSA (reprinted from Ref. [70]).

5. Qualitative Analysis

This segment compares the SI-based algorithms presented in Section 3 on the basis of
key parameters for the parameter estimation of solar cells or modules. These key parameters
are computational complexity, convergence speed, optimization function, computational
time, and search technique. The comparison of the algorithms is shown in Table 3.

Table 3. Qualitative comparison of hybrid PSO for parameter estimation of PV cells or modules.

Name of
Algorithm

Computational
Time

Computational
Complexity

Convergence
Rate

Search
Technique Merits Demerits

FODPSO [60] Low High Low Mutation High scalability,
good diversity Poor accuracy

NPSOPC [61] Medium Medium Low Mutation and
crossover

Good at
exploration

Not good at
exploitation

EPSO [62] Low Low High Selection High adaptivity
Not good for

high dimension
problem

PSOGWO [63] High High Low Selection
Can easily

escape from
local minima

Poor accuracy
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Table 3. Cont.

Name of
Algorithm

Computational
Time

Computational
Complexity

Convergence
Rate

Search
Technique Merits Demerits

WOAPSO [49] Low Low High Mutation and
Selection

Good
convergence

speed for high
dimensional

problem

Not suitable
for high-

dimension
problems

CIWPSO [64] Medium Low High Selection

Suitable for
solving

distributed
optimization

problem

Low diversity

CPMPSO [65] Medium Low Medium Selection High adaptivity Low diversity

DEDIWPSO [66] High High Medium Mutation and
crossover High diversity

Large number
of tuning

parameters

SAIW-PSO [67] High High Medium Mutation Low tuning
parameters Low diversity

PSOAG [68] Medium Low High Selection High diversity

Not suitable
for high-

dimension
problems

CPSO [70] Low Low High Selection Low tuning
parameters Poor accuracy

HPSOSA [70] High High Medium Selection
Good

diversity and
adaptability

Uncertain
convergence

time

Computational complexity is the system’s demand for computation resources as a func-
tion of the number of parameters to be optimized. Resources are specified by the expected
calculation time and computational storage needed for generating the optimized solution.
Algorithms employing partitioning techniques have relatively lower computational costs.

The pace at which the algorithm can find the optimal solution is referred to as the
convergence rate. An effective algorithm should have a fast convergence rate and be capable
of avoiding local optimal solutions. Premature convergence is described as the convergence
of an SI-based algorithm before obtaining a globally optimal solution, and it is typically
caused by a deficiency of diversity.

Computation time is the amount of time needed to complete a computational process.
A computation is represented as a set of rule applications, with computation time being
related to the quantity of the rule applications.

The search technique denotes the exact method by which the algorithm solves a
problem. The majority of SI-based algorithms employ one of three kinds of search tech-
niques: crossover, mutation, and selection. The process for global exploration is a mutation,
whereas selection serves two functions: one is to accept the optimal available solution in
the search space, and the other is to preserve a driving factor for convergence. Lastly, a
crossover broadens the search space’s diversity. For the RTC France solar cell, a comparison
of hybrid PSO algorithms for the parameter estimation of SDM and DDM is shown in
Tables 4 and 5, respectively.
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Table 4. Comparison of hybrid PSO algorithms for parameter estimation of RTC France solar cell
(single-diode model).

Algorithms Ip (A) Rs (Ω) Rsh (Ω) Id (µA) a RMSE

FODPSO 0.7609 0.0364 51.9512 0.3187 1.4806 9.7486 × 10−4

NPSOPC 0.7608 0.0363 53.7583 0.3325 1.4814 9.8856 × 10−4

EPSO NA NA NA NA NA 0.0010
PSOGWO NA NA NA NA NA NA
WOAPSO 0.7597 0.0342 83.0131 0.499 1.5483 7.1700 × 10−4

CIWPSO 0.7607 0.0365 53.3394 0.0312 1.4762 7.7300 × 10−4

CPMPSO 0.7607 0.0363 53.7185 0.3230 1.4811 9.8602 × 10−4

DEDIWPSO 0.7607 0.0365 52.8898 0.3106 1.4755 7.7300 × 10−4

SAIWPSO 0.7607 0.0365 52.8898 0.3106 1.47559 7.7300 × 10−4

PSOAG NA NA NA NA NA NA
CPSO 0.7607 0.0354 59.012 0.4000 1.5033 NA

HPSOSA 0.7608 0.0365 52.8898 0.3107 1.4753 7.7301 × 10−4

Table 5. Comparison of hybrid PSO algorithms for parameter estimation of RTC France solar cell
(double diode model).

Algorithms Ip (A) Rs (Ω) Rsh (Ω) Id1
(µA) Id2 (µA) a1 a2 RMSE

FODPSO 0.7609 0.0365 52.7589 0.3857 0.2664 1.9999 1.4654 9.7334 × 10−4

NPSOPC 0.7607 0.0366 55.1170 0.2509 0.5454 1.4598 1.9994 9.8208 × 10−4

EPSO NA NA NA NA NA NA NA 0.0010
PSOGWO NA NA NA NA NA NA NA NA
WOAPSO 0.7601 0.0311 100 0.5 0.5 1.5755 1.7314 9.8412 × 10−4

CIWPSO 0.7608 0.0379 60.9400 0.1353 8.0314 1.4022 NA 7.1837 × 10−4

CPMPSO 0.7607 0.0367 55.4854 0.7493 0.2259 2 1.4510 9.8248 × 10−4

DEDIWPSO 0.7608 0.0379 60.9353 0.3523 8.0117 1.4027 2.4999 7.1823 × 10−4

SAIWPSO 0.7608 0.0377 56.2704 0.0703 1.000 1.3627 1.7943 7.4193 × 10−4

PSOAG NA NA NA NA NA NA NA NA
CPSO NA NA NA NA NA NA NA NA

HPSOSA 0.7608 0.0374 55.5392 0.1119 0.8559 1.3959 1.8201 7.7583 × 10−4

6. Discussion

Here, we discussed the application of hybrid PSO algorithms for the parameter opti-
mization of PV cells. Hybrid PSO algorithms are also applicable for various other applica-
tions: maritime transportation [74], space trusses [75], Internet of Things [76], managing
deliveries of pharmaceuticals [77], load dispatching [78], power quality improvement [79],
economic emission dispatch problems [80], pressurized water reactors [81], the partial shad-
ing of PV systems [82], the stability of security systems [83], the control of hybrid energy
storage systems [84], the operation of integrated energy systems [85], the control optimiza-
tion of an inverted pendulum [86], optimal chiller loading [87], and many more [73,88–93].

PSO algorithms are widely useful for microwave engineering [94], parameter opti-
mization in electromagnetic shields [95,96], saving energy in antennas [97], saving energy
in electromagnetic conductors [98] and many more [99]. Thus, scholars and researchers are
encouraged to conduct further research on the theory and applications of PSO algorithms in
forthcoming years. The following years will almost certainly see further refinement of the
methodology and its incorporation with different procedures, such as applications moving
out of the exploration lab into industry and trade. Further comprehension is required
of the overall qualities of PSO and different methods, and of the difficulties in sending a
PSO-based framework. PSO is a welcome expansion to advancement tool kits. The future
exploration of planning mind-boggling issues in multilevel-headed (or many-objective)
optimization issues and tackling them with appropriate parallelization procedure could be
invaluable directions. Additionally, for issues with few factors or huge information issues,
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parallelization could adequately upgrade the proficiency and execution by utilizing equal
adaptations of heuristics.

7. Conclusions

Hybridization is a developing area of intelligent framework research that means to
consolidate the advantageous properties of various ways of relieving their singular short-
comings. This paper presents a bird’s eye view of hybrid PSO algorithms applied for the
parameter assessment of PV cells or modules. The algorithms were compared on the basis
of the used objective function, type of diode model, irradiation conditions, and types of pan-
els. The qualitative analysis of algorithms was performed on the basis of computation time,
computational complexity, convergence rate, search technique, and merits and demerits.
Several hybrid PSO algorithms were proposed and employed for various applications apart
from the parameter assessment of PV cells. However, this review article studied hybrid
PSO algorithms employed for the parameter assessment of PV cells during 2020–2022,
namely, the FODPSO, NPSOPC, EPSO, CPMPSO, DEDIWPSO, PSOG-WO, WOAPSO,
CIWPSO, HPSOSA, PSOAG, and SAIW-PSO algorithms. The hybridization of basic PSO
with additional methods significantly enhances the efficiency of parameter assessment.
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